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An original algorithm is presented that generates both restricted integer compositions and restricted integer 
partitions that can be constrained simultaneously by a) upper and lower bounds on the number of summands 
(�parts�) allowed, and b) upper and lower bounds on the values of those parts.  The algorithm can implement each 
constraint individually, or no constraints to generate unrestricted sets of integer compositions or partitions.  The 
algorithm is recursive, based directly on very fundamental mathematical constructs, and given its generality, 
reasonably fast with good time complexity.  A general, closed form solution to the open problem of counting the 
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Introduction 
 

A list of integers greater than zero that sum to the positive integer n is an integer partition of n.  The set of all such 
lists is the set of all integer partitions of n.  For example, for n=4, the set of integer partitions includes the lists 1 1 1 
1, 1 1 2, 2 2, 1 3, and 4.  When the ordering of the summands (�parts�) matters, these become the integer 
compositions of n: 1 1 1 1, 2 1 1, 1 2 1, 1 1 2 , 2 2, 3 1, 1 3, and 4.  A number of algorithms exist for generating all 
compositions, and other, quite distinct algorithms exist for generating all partitions.  Knuth (1997) is widely known 
and used for compositions, and others include Ehrlich (1973), Klingsberg (1982), Ruskey (2003), Arndt (2008), and 
Stojmenovic (2008).  For partitions the list is extensive, but a sample includes several presented in Knuth (1997), 
two developed in Zoghbi & Stojmenivc (1998), which have been the state of the art, and several that have been 
developed more recently in Yamanaka et al. (2007), including versions that generate restricted integer partitions as 
well. 
 
When the set of either integer compositions or integer partitions is �restricted,� it includes only a subset of the lists 
that satisfy some restricting conditions.  The most common such restrictions include constraining a) the number of 
parts allowed in any of the lists, and/or b) the values of those parts (other restrictions include constraining the 
compositions or partitions to fixed numbers of distinct parts, restricting the values of only the leading and trailing 
parts, identifying only those compositions or partitions containing a particular part or excluding a particular part, 
forcing consecutive parts to sum to specific values, etc).  For example, the set of restricted integer compositions of 
n=4 that have at least one part and no more than two parts, and parts with values within the range of 2 to 4, 
includes: 2 2, and 4.   
 
Both restricted integer compositions and restricted integer partitions are fundamental combinatorial objects 
essential in many mathematical, statistical, and scientific applications, including, respectively, an extensive number 
of combinatorial problems, efficient enumeration of restricted and unrestricted sample spaces, and atomic 
behavioral problems in physics.  Yet no general algorithm exists to generate either when the two abovementioned  
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restrictions are applied concurrently.  The only similar algorithm for restricted integer compositions appears to be 
that of Walsh (2000), which restricts individual part values with maximum values, but not minimum values, too 
(neither does it allow only a minimum value to be specified without a maximum value).  It also does not explicitly 
allow the user to restrict the number of parts allowed.  For restricted integer partitions, White (1970b) presents an 
algorithm with only a lower value bound, and no bounds on the number of parts generated.  Ruskey (2003), Knuth 
(1974, 1994), and Yamanaka (2007) present algorithms that concurrently allow an upper bound on the number of 
parts and an upper value bound, but not lower bounds, too (neither do they allow only a lower bound to be specified 
without a maximum value bound).  This paper develops a unified algorithm that does both: simultaneously restricts 
both integer compositions and integer partitions with upper and lower bounds both the number of parts allowed, as 
well as the values of those parts.  No other algorithm can make this claim.  It also generates the unrestricted cases 
and singly-restricted cases of both objects as well. The algorithm, �RICs_RIPs� (Restricted Integer Compositions, 
Restricted Integer Partitions), is based on the (Fibonacci series) off-diagonals of Pascal�s triangle and composition 
and partition �paths� found in the triangle via its representation as ordered binomial coefficients.  RICs_RIPs is 
recursive and, given its generality, reasonably fast with good time complexity (approximately ( )kΟ per 
composition/partition, where k = # parts).  This paper also provides a general, closed form solution to the open 
problem of counting the number of integer compositions doubly restricted in this manner; its formulaic link to an 
analogous solution for counting integer partitions is shown to mirror the previously unidentified algorithmic link 
between these two objects.  I initially focus below on restricted integer compositions, and return to partitions later 
in the paper.   
 
 
 
Background 
 

Algorithms for generating all integer compositions of n are well known (see above), as is the formula for counting 

the number of integer compositions of ( ) ( )1,  2 nn c n −= (see Andrews, 1998).  For a specific number of parts k, 
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Following Kimberling�s (2001) notation, if we restrict the values of those compositions by a minimum value of �a� 
and a maximum value of �b� for 
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∞ =∑  (see Grimaldi, 2000), where nF  is the well known Fibonacci series defined by 

1 2n n nF F F− −= +  where F0 = 0 and F1 = 1.  Put differently, ( )1 | all parts > 1nF c n− = , or equivalently 

( )1 | all parts > 1nF c n= + .  Note that when a=3, ( )2 1 | all parts > 2nF c n= + , where 1 32 2 2n n nF F F− −= + , 

and when a=4, ( )3 1 | all parts > 3nF c n= + , where 1 43 3 3n n nF F F− −= + , and so on (with F#n<a = 0 and F#a = 
1; see Andrews, 1998; for a=3, 4, and 5, these are series A078012, A017898, and A017899, respectively, in Sloan�s 
Online Encyclopedia of Integer Sequences).  These �Fibonacci-shifted� relationships and their growth rates are 
shown in Table 1. 
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Table 1:  Counts of Integer Compositions with Minimum-Valued Parts 
 

Asymptotic 
Growth Rate → 

2.0 
 ( )1 5 2 1.61803φ = + =  1.46557124 

 
1.38028287 

 
1.32474227 

 

n all parts (a=1) all parts > 1 (a=2) all parts > 2 (a=3) all parts > 3 (a=4) all parts > 4 (a=5) 

1 1 0 0 0  0 
2 2 1 0 0  0 
3 4 1 1 0  0 
4 8 2 1 1  0 
5 16 3 1 1  1 
6 32 5 2 1  1 
7 64 8 3 1  1 
8 128 13 4 2  1 
9 256 21 6 3  1 

10 512 34 9 4  2 
11 1,024 55 13 5  3 
12 2,048 89 19 7  4 
13 4,096 144 28 10  5 

14 8,192 233 41 14  6 

15 16,384 377 60 19  8 
16 32,768 610 88 26  11 
17 65,536 987 129 36  15 
18 131,072 1,597 189 50  20 
19 262,144 2,584 277 69  26 
20 524,288 4,181 406 95  34 

 
 
 

One of the many other places the ubiquitous Fibonacci series appears is as the sum of the off-diagonals of Pascal�s 
triangle (see Figure 1 below). 
 
Figure 1:  Off-Diagonals of Pascal�s Triangle Sum to Fibonacci Series 
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What is less well known is that the off-diagonals themselves are the number of integer compositions of n with k 
parts when a=2, that is, ( ), , 2,c n k ∞ (see Kimberling, 2002; in fact, the entire Triangle represents the number of 
compositions of n with k parts, as shown in Chinn and Heubach (2003)).  However, Pascal�s triangle not only 
allows one to count the number of compositions of n with a=2, but also provides the structure for generating these 
restricted integer compositions via composition �paths� that can be traced efficiently through the triangle.  A 
mathematical construct that allows for the efficient identification of restricted integer compositions is important 
because, as a comparison of the growth rates of columns 2 vs. 3 through 6 in Table 1 shows, generating all integer 
compositions of n, and then deleting those with any parts=1 (or any parts<a), would be extremely computationally 
wasteful and expensive, not to mention runtime prohibitive for large n.  So it is necessary to use an algorithm that 
efficiently and directly identifies the restricted integer compositions of n for specified a and b (and k).  We begin 
with RICs_Base, the special �base case� of a=2 (and b=∞, or in practice, b=n), and easily modify RICs_Base to 
the more general algorithm �RICs� to accommodate any specified values of k, a and b simultaneously. 
 
 
 
The RICs_Base Algorithm � the �Base Case� of a=2  
 
For any positive integer n ≥ 2, with a=2 (and b=n), ( )max 2k n=     (more generally, max(k) = n a   , and when b ≤ 
n, min(k) = n b   ), and this is the number of off-diagonals for n = (row# + 2) in the �row-column,� ordered 

binomial coefficient representation of Pascal�s triangle in Figure 2 below (each #
#

row
column
 
 
 

  is an �r-choose-c� 

binomial coefficient, where r=row# and c=column#, and  ( )
!

! !
r r
c c r c
 

= =  − 
 the value of the node in the triangle as 

shown in Figure 1). 
 
 
Figure 2:  (Ordered) Binomial Coefficient Representation of Pascal�s Triangle 
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 n = 11 = (9 + 2) = (row# + 2) 
( )max 11 2 5 off-diagonalsk n a= = =      
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With a=2 (and b=n), the RICs_Base algorithm loops max(k) times and generates all restricted integer compositions 
corresponding to each value of k on each loop.  The movement of the algorithm through the triangle can be 
described as follows: 
 
 
 
Description of RICs_Base: 
 
Start at the leftmost off-diagonal Node of the Triangle corresponding to the specified n.  For the first off-diagonal 
(where Column# = 0), simply output n.  Otherwise proceed with the steps below for each off-diagonal. 
 
1) Initialize and keep track of Row# and Column# for each call to the subroutine that moves from Node to Node 

through the Triangle. 
 
Let �Cell� be an array that will contain the composition parts. 
 
Let �Level� = current Row# minus initial off-diagonal Row#.  Level tracks how many �left turns� deep into the 
triangle we move up and away from the off-diagonal.  Level #1 represents the first slot containing the first part 
of each of the compositions; Level #2 represents the second slot, etc.  There are max(k) Levels in RICs_Base. 
 
Initialize Level = 0.  Keep track of Level for each call to the subroutine that moves from Node to Node through 
the Triangle. 
 

2) Always move towards the top of the triangle 
 
Always turn to the Left Node first 
 
For every Left turn: 
a) Level ← Level + 1 
b) Cell[Level] ← 2 
c) Column# ← (Column# - 1) 
d) Row# ← (Row# � 1) 
 
Once away from the off-diagonal, recursively call the Node-to-Node subroutine with the Row#, Column#, and 
Level values associated with the Node to the Right of the current Node (that is, recursively turn to the Right 
Node) 
 
For every Right turn: 
e) Cell[Level] ← (Cell[Level]+1) 
f) Row# ← (Row# � 1) 

 
3) If Column# = 1, then enter an output loop (looping from j = 1 to Row#) that fills in the last two Cell values 

(with the values of (j+1) and (row + 2 � j), respectively) and outputs the entire composition (i.e. all values of 
Cell that have been filled in) 
 

 
 
Pseudo code implementing RICs_Base is presented below. 
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BEGIN RICs_Base(n) 
 
Define Subroutine Node2Node(row, col, level) 
 if col ≠ 0 then  do 
  if Col = 1 then for j=1 to row do 

 Cell[i-1] ← (j+1) 
 Cell[i] ← (row + 2 - j) 
 Print Cell[1] through Cell[i] 

  endo 
else do 
 Cell[Level+1] ← 2 

   Node2Node (row ← row � 1, col ← col � 1, Level ← Level+1) 
  endo 
 endo 
 else Print n 
 if Level > 0 & row > 1 then  do 

Cell[Level] ← Cell[Level]+1 
  Node2Node (row ← row � 1, col ← col, Level ← Level) 
 endo 
End Node2Node 
 
for i = 1 to floor(n/2) do 
 Node2Node (row ← (n � 1 � i), col ← (i � 1), level ← 0) 
endo 
 
END RICs_Base 
 
CALL RICs_Base(n ← 11) 
 
 
 
 
Actual computer code that implements the RICs_Base algorithm in SAS® can be found in Appendix A (SAS® is the 
largest privately owned software firm in the world, and with over 44,000 user sites, the SAS® platform is 
ubiquitous.  Only the Base SAS® module is needed to run the code presented in this paper.  C++ code, too, will be 
made available on the author�s website at http://www.DataMineIt.com).  An example of its output for n=11 can be 
seen in Table 2 below.  The total number of restricted integer compositions is, as expected, 

( ) 1 1011, unrestricted, 2, 55nc n k a b F F−= = = = ∞ = = = .  The corresponding paths RICs_Base traces through 
Pascal�s triangle (only for k=3 to maintain visual clarity) are shown in Figure 3 below.  Each path is numbered and 
the corresponding compositions are identified in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.datamineit.com/
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Table 2:  All Restricted Integer Compositions of n = 11 with parts > 1 (i.e. a=2, b=∞) 

   Output from RICs_Base (n=11) 
 

Composition.# Level1 Level2 Level3 Level4 Level5 
1 11     
2 2 9    
3 3 8    
4 4 7    
5 5 6    
6 6 5    
7 7 4    
8 8 3    
9 9 2    

10 2 2 7   
11 2 3 6   
12 2 4 5   
13 2 5 4   
14 2 6 3   
15 2 7 2   
16 3 2 6   
17 3 3 5   
18 3 4 4   
19 3 5 3   
20 3 6 2   
21 4 2 5   
22 4 3 4   
23 4 4 3   
24 4 5 2   
25 5 2 4   
26 5 3 3   
27 5 4 2   
28 6 2 3   
29 6 3 2   
30 7 2 2   
31 2 2 2 5  
32 2 2 3 4  
33 2 2 4 3  
34 2 2 5 2  
35 2 3 2 4  
36 2 3 3 3  
37 2 3 4 2  
38 2 4 2 3  
39 2 4 3 2  
40 2 5 2 2  
41 3 2 2 4  
42 3 2 3 3  
43 3 2 4 2  
44 3 3 2 3  
45 3 3 3 2  
46 3 4 2 2  
47 4 2 2 3  
48 4 2 3 2  
49 4 3 2 2  
50 5 2 2 2  
51 2 2 2 2 3 
52 2 2 2 3 2 
53 2 2 3 2 2 
54 2 3 2 2 2 
55 3 2 2 2 2 

 
 
 
 
 
 

→ Path 6 

→ Path 1 

→ Path 2 

→ Path 3 

→ Path 4 

→ Path 5 
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Table 3:  All Restricted Integer Compositions of n = 11 with mink=2, maxk=5, a=2, b=4  
 

Composition.# Level1 Level2 Level3 Level4 Level5 
1 3 4 4   
2 4 3 4   
3 4 4 3   
4 2 2 3 4  
5 2 2 4 3  
6 2 3 2 4  
7 2 3 3 3  
8 2 3 4 2  
9 2 4 2 3  

10 2 4 3 2  
11 3 2 2 4  
12 3 2 3 3  
13 3 2 4 2  
14 3 3 2 3  
15 3 3 3 2  
16 3 4 2 2  
17 4 2 2 3  
18 4 2 3 2  
19 4 3 2 2  
20 2 2 2 2 3 
21 2 2 2 3 2 
22 2 2 3 2 2 
23 2 3 2 2 2 
24 3 2 2 2 2 

 

Figure 4:  Composition Paths Traced by RICs(n=11, k=3, a=2, b=4) 
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RICs remains efficient in the same sense that RICs_
restricted integer composition once and only once, 
words, it does not proceed up any left-path to the
composition that satisfies the specified values of min
Rule i) is not satisfied immediately upon turning rig
turns along the same Level (from Cell[Level]=a to ei
comes first) to know whether it needs to make any m
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Base is efficient in that it still uniquely identifies every valid 
and takes no unnecessary �exploratory� left turns.  In other 
 next Level unless it contains at least one restricted integer 
k, maxk, a, and b (Rule ii) ensures this).  However, whenever 
ht (which is fairly rare), RICs must make �exploratory� right 
ther b, or a+[Row# � Col#] � the end of the Level � whichever 
ore left turns further up into the Triangle (an example of this is 
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RICs(n=12, k=3, a=3, b=4) � upon RICs� first right turn, Cell[Level]=3, which is not valid, so another right turn 
must be made to check to see whether Cell[Level]+1=4 is valid, and it is, leading to the composition 4 4 4).  SAS® 
code implementing the general case of RICs can be found in Appendix B, and pseudo code is presented below. 
 
 
BEGIN RICs(n, mink, maxk, a, b) 
 
Define Subroutine Node2Node(row, col, level, cum_sum_parts) 
 if col ≠ 0 then do 
  if col = 1 then for j = max[a, (n � cum_sum_parts � b)]   to   min[b, (n � cum_sum_parts � a)] do 
   Cell[i � 1] ← j 
   Cell[i] ← (n � cum_sum_parts � j) 
   Print Cell[1] through Cell[i] 
  endo 
  else do 
   Cell[Level+1] ← a 
   cum_sum_parts_temp ← cum_sum_parts + a 
   if ( a≤ [(n � cum_sum_parts_temp)/(i � Level � 1)] ≤b   &  Cell[Level+1] ≤b ) then  
     Node2Node (row ← row�a+1, col ← col�1, Level ← Level+1, cum_sum_parts ← cum_sum_parts_temp) 
   else for q=1 to min[(b � a), (row � a) � (col � 1)] do 
    Cell[Level+1] ← Cell[Level+1] + 1 
    cum_sum_parts_temp ← cum_sum_parts_temp + 1 
    if ( a≤ [(n � cum_sum_parts_temp)/(i � Level � 1)] ≤b   &   Cell[Level+1] ≤b ) then do  
         q2  ← q 
         q  ← min[(b � a), (row � a) � (col � 1)] 
      Node2Node (row←row�a+1�q2, col←col�1, Level←Level+1, cum_sum_parts←cum_sum_parts_temp) 
    endo 
   endo 
  endo 
 endo 
 else Print n 
 if Level > 0 & row > 1 then  do 
  Cell[Level] ← Cell[Level]+1 
  cum_sum_parts ← cum_sum_parts + 1 
  if Cell[Level]<a then do 
   cum_sum_parts ← cum_sum_parts + (a � Cell[Level]) 
   Cell[Level] ← a 
   row ← row  �  (a � Cell[Level]) 
  endo 
  toploop ← min[(b � Cell[Level]), (row � 1 � col)] 
  if ( a≤ [(n � cum_sum_parts)/(i � Level)] ≤b   &   Cell[Level] ≤b ) then  
   Node2Node (row←row � 1, col←col, Level← Level, cum_sum_parts ← cum_sum_parts) 
  else for p=1 to toploop do 
   Cell[Level] ← Cell[Level]+1 
   cum_sum_parts ← cum_sum_parts + 1 
   if ( a≤ [(n � cum_sum_parts)/(i � Level)] ≤b   &   Cell[Level] ≤b ) then do  
        p2  ← p 
        p  ← toploop 
    Node2Node (row←row � p2, col←col, Level← Level, cum_sum_parts ← cum_sum_parts) 
   endo 
  endo  
 endo 
End Node2Node 
 
rowdec ← 0 
for i = mink to maxk do 
 if a≠1 then rowdec ← i 
 if (a≤ (n/i) ≤b) then Node2Node (row ← n�1�rowdec, col ← i�1, level ← 0, cum_sum_parts ← 0) 
endo 
 
END RICs 
 
CALL RICs(n←11, mink←2, maxk←5, a←2, b←4) 
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Note that Rule ii) is applied at the off-diagonal nodes as well, in the main loop on the Node2Node subroutine, so 
that if no restricted integer compositions of, say, k=2 exist for n=11, a=2, and b=4 (which is true), then even if 
mink=2 is specified, Node2Node is not called on the second off-diagonal, which corresponds to k=2. 
 
Also note that the algorithm assigns a value of Cell[Level] = a (instead of 2 as in RICs_Base) for every left turn so 
that RICs immediately �jumps� to the node to the right along the same Level where Cell[Level] = a, while 
incrementing Cum_Sum_Parts (the sum of the parts already assigned to Cell[]) accordingly.  This efficiently 
eliminates unnecessary checks of Rules i) and ii) at every Node on a Level.  But along a given Level, RICs still 
must explicitly check whether Rule ii) is satisfied for every value of Cell[Level] = a through either b, or a+(Row# � 
Col#) � the end of the Level � whichever comes first.  In this sense, whenever Rule i) is not satisfied immediately 
upon turning right (or after a right �jump�), which is rare, RICs must make additional �exploratory� right turns on 
the same Level to know whether it needs to make any further left turns deeper up into the Triangle. 
 
A final note on the efficiency of RICs: for this general case valid for any values for a and b (and k), the endpoints of 
the output loop in RICs are defined exactly by: 
 
Low value = max[a, (n � sum of the parts already assigned � b)] 
High value = min[b, (n � sum of the parts already assigned � a)] 
 
so no unnecessary looping is performed in the output loop. 
 
 
Counting the Number of Restricted Integer Compositions � the General Case 
  

Although for b=∞ (in practice, b=n), both ( ) ( ) 1
, , , , ,0,

1
n ka k

c n k a c n ka k
k

− + − ∞ = − ∞ = − 
 and  

( )
1

1
, ,

1

n a

k

n ka k
c n a

k

  

=

− + − 
∞ =  − ∑  are well known, to the best of this author�s knowledge (and that of C. Kimberling via 

email correspondence, 07/24/08), no closed-form solutions exist for ( ), , ,c n k a b and ( ), ,c n a b generally, that is, 
for any a, b, and k, (of course, where 1 ≤ a ≤ b ≤ n (b>n is ignored) and n b k n a≤ ≤       ) and they remain open 
problems.  Some related results include Heubach and Mansour�s (2004) presentation of the generating function for 
the number of compositions of n with k parts in the set A.  They use the generating function to solve for some 
examples of specifically defined A, but do not solve for A generally as defined by an arbitrary range (that is, A 
including all positive integers x such that a ≤ x ≤ b, which is what is needed here).  Chinn and Heubach (2003) 
present recursions for counting  the number of compositions with k parts that exclude a particular part x, but it is not 
obvious how this can be utilized to solve the complement of the general case of a ≤ x ≤ b by excluding entire sets of 

parts where x < a and x> b (i.e. by solving for c cA  , where A A = ∪ ! ).  Conversely, Knopfmacher and Mays 
(1996) identified a convenient recursive relationship for counting the number of compositions of n that contain at 

least one part = x, but again, some of those compositions counted by ( ) ( )12 |  one or more parts = n c n x− − will 
include compositions with, for example, one or more parts = x+1, and if (x+1)<b, we cannot double count these 

compositions when subtracting both counts from ( )12 n− in 
( ) ( ) ( )( )12 |  one or more parts = |  one or more parts = 1n c n x c n x− − − + . 

 
All of these results come tantalizingly close to a general solution, but the results of RICs in Table 4 below reveals a 
very simple recursion as a solution to ( ), ,c n a b (zeros are excluded from all Tables of counts to enhance visual 
clarity): 
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For n ≤ b,  b has no effect on the outcome, so ( ) ( )
1

1
, , , ,

1

n a

k

n ka k
c n a b c n a

k

  

=

− + − 
= ∞ =  − ∑  

                        (1) 

but for n > b,  ( ) ( )
( )

( )
, , , ,

n a

i n b

c n a b c i a b
−

= −

= ∑  

 
(1) can be combined into a single formula: 
 

( ) ( ) ( )
( )

( )

max 1,

, ,    , ,
n a

i n b

c n a b I n b c i a b
−

= −  

= ≤ + ∑                    (2)  

 
where the indicator function I( ) = 1 if n ≤ b, and I( ) = 0 otherwise, and  1 ≤ a ≤ b ≤ n  (b > n is ignored). 
 
 
 
Table 4:  Counts of Restricted Integer Compositions for Specified Values of n, a, and b: ( ), ,c n a b  

 a= 2 3 4 2 2 4 4 4 4 4 4 4 4 

n b= 3 4 5 4 5 5 6 7 8 9 10 11 12 

1               
2  1   1 1         
3  1 1  1 1         
4  1 1 1 2 2 1 1 1 1 1 1 1 1 
5  2  1 2 3 1 1 1 1 1 1 1 1 
6  2 1  4 4  1 1 1 1 1 1 1 
7  3 2  5 7   1 1 1 1 1 1 
8  4 1 1 8 10 1 1 1 2 2 2 2 2 
9  5 1 2 11 16 2 2 2 2 3 3 3 3 

10  7 3 1 17 24 1 3 3 3 3 4 4 4 
11  9 3  24 37  2 4 4 4 4 5 5 
12  12 2 1 36 57 1 2 4 6 6 6 6 7 
13  16 4 3 52 87 3 3 5 7 9 9 9 9 
14  21 6 3 77 134 3 6 7 9 11 13 13 13 
15  28 5 1 112 205 1 7 10 12 14 16 18 18 
16  37 6 1 165 315 1 7 13 17 19 21 23 25 
17  49 10 4 241 483 4 7 16 22 27 29 31 33 
18  65 11 6 354 741 6 11 20 29 36 41 43 45 
19  86 11 4 518 1,137 4 16 26 38 47 55 60 62 

20  114 16 2 760 1,744 2 20 35 51 63 73 81 86 

21  151 21 5 1,113 2,676 5 21 46 67 86 98 109 117 

22  200 22 10 1,632 4,105 10 25 59 89 116 135 148 159 

23  265 27 10 2,391 6,298 10 34 75 118 154 184 203 217 

24  351 37 6 3,505 9,662 6 47 97 157 206 248 278 298 

25  465 43 7 5,136 14,823 7 57 127 207 278 333 378 408 
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We can see a similar recursion for ( ), , ,c n k a b in Tables 5 and 6 below, such that: 

( ) ( )
( )

( )

max 1,

, , ,     , 1, ,
n a

i n b

c n k a b c i k a b
−

= −  

= −∑                                          (3) 

 
where  c(i,0,a,b) = 1,  1 ≤ a ≤ b ≤ n  (b > n is ignored), and  n b k n a≤ ≤       . 
 
Table 5:  Counts of Restricted Integer Compositions for Specified Values of n, k, a=2, b=5: ( ), , ,c n k a b  

 a= 2 2 2 2 2 2 2 2 2 2 2 2 
 b= 5 5 5 5 5 5 5 5 5 5 5 5 

n k= 1 2 3 4 5 6 7 8 9 10 11 12 

1                         
2  1             
3  1             
4  1 1            
5  1 2             
6    3 1           
7    4 3           
8    3 6 1          
9    2 10 4          

10    1 12 10 1         
11     12 20 5         
12     10 31 15 1        
13     6 40 35 6        
14     3 44 65 21 1       
15     1 40 101 56 7       
16      31 135 120 28 1      
17      20 155 216 84 8      
18      10 155 336 203 36 1     
19      4 135 456 413 120 9     

20      1 101 546 728 322 45 1    

21       65 580 1,128 728 165 10    

22       35 546 1,554 1,428 486 55 1   

23       15 456 1,918 2,472 1,206 220 11   

24       5 336 2,128 3,823 2,598 705 66 1 

25          1 216 2,128 5,328 4,950 1,902 286 12 
 
 
So a solution to the problem of counting the number of compositions simultaneously restricted both in the number 
of parts allowed, and the values of those parts, i.e. ( ),min max , ,c n k k k a b≤ ≤ , is simply  
 

( ) ( )
( )

( )max

min max 1,

,min max , ,  , 1, ,
n ak

k k i n b

c n k k k a b c i k a b
−

= = −  

 
 ≤ ≤ = − 
 
 

∑ ∑                 (4) 

 
where  c(i,0,a,b) = 1,  1 ≤ a ≤ b ≤ n  (b > n is ignored), and  n b k n a≤ ≤        (Mathematica® code for generating all 
Tables of counts contained herein is provided in Appendix D). 
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Formulae (2), (3), and (4) mirror the analogous solutions for counting doubly-restricted integer partitions presented 
later in the paper.  Although their recursive nature makes these formulae less convenient than, say, a simple 
combinatoric equation or sum, they still provide closed form solutions to problems which had none before, and 
their calculation is not onerous.  Derivation of straightforward combinatoric equivalents of each is the topic of 
continuing research. 
 
Table 6:  Counts of Restricted Integer Compositions for Specified Values of n, k, a=3, b=7: ( ), , ,c n k a b  

 a= 3 3 3 3 3 3 
 b= 7 7 7 7 7 7 

n k= 1 2 3 4 5 6 

1              
2          
3  1       
4  1       
5  1       
6  1 1      
7  1 2      
8    3      
9    4 1     

10    5 3     
11    4 6     
12    3 10 1    
13    2 15 4    
14    1 18 10    
15     19 20 1   
16     18 35 5   
17     15 52 15   

18     10 68 35 1 

19     6 80 70 6 

20     3 85 121 21 

21     1 80 185 56 

22      68 255 126 

23      52 320 246 
24      35 365 426 

25        20 381 666 
 
 
Time Complexity of RICs 
 
If k is not explicitly bounded by the RICs user then an estimate of the time complexity of RICs is 

( )
( )

( )
 , 1, ,

n a n a

k n b i n b

k c i k a b
−  

= = −  

  
  Ο −  
  

  
∑ ∑i  to calculate ( ), ,c n a b compositions (if k is explicitly bounded by the RICs 

user then for ( ),min max , ,c n k k k a b≤ ≤  this estimate is ( )
( )

( )max

min

 , 1, ,
n ak

k k i n b

k c i k a b
−

= = −

  
  Ο −  
  

  
∑ ∑i ).  This estimate 

assumes that ( )RICsΟ  is a function of only two parameters: 1) the number of compositions that exist given the 
specified values of a and b (and mink and maxk), and 2) the number of parts in each of these compositions.  Of 



Forthcoming � Journal of Mathematical Modelling and Algorithms 

©2008  J.D. Opdyke         Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions             Page 15 of 36 

course, the algorithm does need to enforce Rules i) and ii) before calling the Node2Node subroutine, and it also 
occasionally must make exploratory �right turns� (on a given Level) before calling Node2Node to decide whether 
to turn left, deeper up into the Triangle, so on the one hand this may be an underestimate of the magnitude of 

( )RICsΟ .  On the other hand, this may be an overestimate in that the number of times Node2Node is called for a 
given composition is rarely as large as k � 1, because most �paths,� up to the output loop, contain many 
compositions, with only the last two parts changing via the output loop; in other words, only when there exists a 
single composition for a given k will it be necessary to call Node2Node the full k � 1 times, as assumed by this 
estimate of ( )RICsΟ  (for example, compare Path 1 vs. Path 6 in Table 2).  Graphs 1 and 2 below plot the relative 
runtime (real and cpu) for the algorithm by the relative number of steps as estimated by 

( )
( )

( )
 , 1, ,

n a n a

k n b i n b

k c i k a b
−  

= = −  

  
  Ο −  
  

  
∑ ∑i , and a relationship that is very close to linear with unit slope is evident for 

both real and cpu runtimes.  For cpu time, the slight increase in slope for larger values of ( ), ,c n a b (here the 

largest is ( ) ( ), , 25, 2, 46,386c n a b c n a b n= = = = = ) indicates that this approximation may still be 

underestimating RICs� time complexity slightly, at least for moderate to large values of ( ), ,c n a b .  But for most 
practical applications, especially those focused on real runtimes, this appears to be a good approximation of 

( )RICsΟ .  I compare ( )RICsΟ  to composition growth rates in Table 7 below.  Note in column 5 that 
( ) ( )RICs , ,c n a bΟ  is simply the weighted average number of parts per composition, or average k for a given 

( ), ,c n a b .  So to the extent that this overall estimate of ( )RICsΟ  is accurate as shown in Graphs 1 and 2, the 
asymptotic time complexity of RICs  per composition is simply ~ ( )kΟ . 
 
 

Relative Runtimes (Real and CPU) by Relative Approximation of ( )RICsΟ   
Graph 1               Graph 2 
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Table 7:  Counts of (Un)restricted Integer Compositions vs. ( )( )RICs , , 2, 5n k unrestricted a bΟ = = =  
 

n 

Unrestricted  
Integer Compositions 

( ) ( )12 nc n −=  

Restricted 
Integer Compositions 

( ), ,c n a b  ( )RICsΟ  
( ) ( )RICs , ,c n a bΟ  

= average k ( ) ( )1RICs 2 n−Ο  

1 1 0 0   
2 2 1 1    1.000     0.500 
3 4 1 1    1.000     0.250 
4 8 2 3    1.500     0.375 
5 16 3 5    1.667     0.313 
6 32 4 9    2.250     0.281 
7 64 7 17    2.429     0.266 
8 128 10 28    2.800     0.219 
9 256 16 50    3.125     0.195 

10 512 24 83    3.458     0.162 
11 1,024 37 141    3.811     0.138 
12 2,048 57 235    4.123     0.115 
13 4,096 87 389    4.471     0.095 

14 8,192 134 643    4.799     0.078 

15 16,384 205 1,053    5.137     0.064 
16 32,768 315 1,723    5.470     0.053 
17 65,536 483 2,803    5.803     0.043 
18 131,072 741 4,549    6.139     0.035 
19 262,144 1,137 7,359    6.472     0.028 
20 524,288 1,744 11,872    6.807     0.023 
21 1,048,576 2,676 19,110    7.141     0.018 
22 2,097,152 4,105 30,688    7.476     0.015 
23 4,194,304 6,298 49,188    7.810     0.012 
24 8,388,608 9,662 78,691    8.144     0.009 
25 16,777,216 14,823 125,681    8.479     0.007 

 
 
Potential Disadvantages of RICs 
 
RICs obviously is not loopless, a characteristic which would allow it to achieve theoretically minimal time 
complexity.  Nor is it iterative, but rather, it is recursive, a quality some consider a disadvantage relative to iterative 
algorithms, mostly on the basis of ease of manipulation and/or understanding (see Strojmenovic, 2008).  However, 
some believe the opposite in many cases, since some computers actually provide a speed premium to recursive 
algorithms.  Also, given the binomial coefficient representation of Pascal�s triangle that is the foundational structure 
of the algorithm, RICs should lend itself to an iterative implementation, with iteration based on the row numbers 
and column numbers of the Triangle.  To avoid recursion, the row numbers and column numbers would have to be 
updated dynamically.  Completing a non-recursive version of RICs is the topic of continuing research. 
 
A potentially more valid criticism of RICs (depending on the reason for its usage) is that the order of the restricted 
integer compositions it generates is neither lexicographic nor antilexicographic.  The implementation of RICs in 
Appendix B is lexicographic for each value of k, and it easily can be modified to be antilexicographic for each 
value of k, but it is neither across all values of k, that is, it is not (anti)lexicographic across all of the restricted 
integer compositions generated.  This may not matter to the user of RICs depending on his or her objectives, but if 
one of these two common orderings is required, then an additional sort of the compositions generated by RICs is 
required. 
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Advantages of RICs 
 
RICs is flexible, allowing any combination of ranges of values for a) the number of parts allowed, and b) the values 
of those parts, to be specified simultaneously.  No other algorithm in the literature known to this author can make 
this claim.  RICs also is reasonably fast, mainly because it uniquely identifies each valid restricted integer 
composition once and only once, and with minor exceptions, takes no unnecessary steps �looking for� these valid 
compositions.  On modern computers, even for moderately large n, RICs runs in only seconds.  For all practical 
purposes, its time complexity, based on empirical observation, appears to be approximately the product of the 
number of compositions generated, and the number of parts in these compositions.  Per composition, this 
approximate time complexity is simply ~ ( )kΟ .  Finally, RICs is based on very fundamental and well understood 
mathematical constructs, namely, Pascal�s triangle and its (Fibonacci series) off-diagonals, the fundamental 
properties of which lend a generality to the algorithm that allows it, with only minor modifications, to generate 
restricted integer partitions as well, as shown below. 
 
 
From RICs to RIPs: Generating Restricted Integer Partitions 
 
While several algorithms exist to count the number of restricted integer partitions under very general conditions 
(Beyer and Swinehart, 1973, Sanchis and Squire, 1996, Uppuluri and Carpenter, 2006, and White, 1970a), none 
known to this author actually generate restricted integer partitions under the two most common restrictions, applied 
concurrently.  Yet starting with RICs, only two minor modifications are required to create the �RIPs� algorithm to 
efficiently generate restricted integer partitions under the same two restrictions: upper and lower bounds on the 
number of parts allowed, and upper and lower bounds on the values of those parts.  The two additional rules are: a) 
for each right turn on a Level of the triangle, increment the value of �a,� the minimum part value, by one; and b) in 
the output loop, decrease the high loop value by half the distance to the low value: high ← high � ceiling((high � 
low)/2).  The former restriction prevents a different ordering of the same partition from being generated at the lower 
Levels, and the latter restriction prevents the same from occurring at the two highest Levels whose Cell[] values are 
assigned in the output loop.  Pseudo-code that implements either RICs or RIPs (i.e. the �RICs_RIPs� algorithm), 
depending on a user-specified parameter, is provided below, with differences from RICs highlighted in red.  SAS® 
code for RICs_RIPs is provided in Appendix C (RICs_RIPs will be made available on the author�s website in C++ 
code as well).  Its time complexity (see Graphs 3 and 4 below) and (dis)advantages are the same as those of RICs 
above, and Table 8 below can be compared to Table 3 above, as it presents the output from RIPs instead of RICs 
under the same specified parameter values of n, mink, maxk, a and b. 
 
While facially the similarities between integer partitions and integer compositions are obvious, algorithms 
presented in the literature to generate these two combinatorial objects, whether restricted or unrestricted, often are 
quite dissimilar.  RICs_RIPs is a unifying exception to this.  Basing this algorithm on such a fundamental 
mathematical construct as Pascal�s triangle provides an important algorithmic link between these two combinatorial 
objects not previously identified in the literature, and one that warrants further study.  This link is readily apparent 
when comparing (2), (3), and (4) above to the formulae presented below, (5), (6), and (7), for counting doubly-
restricted integer partitions. 
 
 
Table 8:  All Restricted Integer Partitions of n = 11 with mink=2, maxk=5, a=2, b=4  
 

Partition # Level1 Level2 Level3 Level4 Level5 
1 3 4 4   
2 2 2 3 4  
3 2 3 3 3  
4 2 2 2 2 3 
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BEGIN RICs_RIPs(comp_part, n, mink, maxk, a, b) 
 
Define Subroutine Node2Node(row, col, level, cum_sum_parts, a) 
 if col ≠ 0 then do 
  high ← min[b, (n � cum_sum_parts � a)] 
  if comp_part = part then high ← high � floor((high � low + 1)/2)  
  if col = 1 then for j = max[a, (n � cum_sum_parts � b)]   to  high  do 
   Cell[i � 1] ← j 
   Cell[i] ← (n � cum_sum_parts � j) 
   Print Cell[1] through Cell[i] 
  endo 
  else do 
   Cell[Level+1] ← a 
   cum_sum_parts_temp ← cum_sum_parts + a 
   if ( a≤ [(n � cum_sum_parts_temp)/(i � Level � 1)] ≤b   &  Cell[Level+1] ≤b ) then  
     Node2Node (row ← row�a+1, col ← col�1, Level ← Level+1, cum_sum_parts ← cum_sum_parts_temp, a ← a) 
   else for q=1 to min[(b � a), (row � a) � (col � 1)] do 
    Cell[Level+1] ← Cell[Level+1] + 1 
    if comp_part = part then a ← a + 1  
    cum_sum_parts_temp ← cum_sum_parts_temp + 1 
    if ( a≤ [(n � cum_sum_parts_temp)/(i � Level � 1)] ≤b   &   Cell[Level+1] ≤b ) then do  
         q2  ← q 
         q  ← min[(b � a), (row � a) � (col � 1)] 
      Node2Node (row←row�a+1�q2, col←col�1, Level←Level+1, cum_sum_parts←cum_sum_parts_temp, a ← a) 
    endo 
   endo 
  endo 
 endo 
 else Print n 
 if Level > 0 & row > 1 then  do 
  Cell[Level] ← Cell[Level]+1 
  if comp_part = part then a ← a + 1  
  cum_sum_parts ← cum_sum_parts + 1 
  if Cell[Level]<a then do 
   cum_sum_parts ← cum_sum_parts + (a � Cell[Level]) 
   Cell[Level] ← a 
   row ← row  �  (a � Cell[Level]) 
  endo 
  toploop ← min[(b � Cell[Level]), (row � 1 � col)] 
  if ( a≤ [(n � cum_sum_parts)/(i � Level)] ≤b   &   Cell[Level] ≤b ) then  
   Node2Node (row←row � 1, col←col, Level← Level, cum_sum_parts ← cum_sum_parts, a ← a) 
  else for p=1 to toploop do 
   Cell[Level] ← Cell[Level]+1 
   if comp_part = part then a ← a + 1  
   cum_sum_parts ← cum_sum_parts + 1 
   if ( a≤ [(n � cum_sum_parts)/(i � Level)] ≤b   &   Cell[Level] ≤b ) then do  
        p2  ← p 
        p  ← toploop 
    Node2Node (row←row � p2, col←col, Level← Level, cum_sum_parts ← cum_sum_parts, a ← a) 
   endo 
  endo  
 endo 
End Node2Node 
 
rowdec ← 0 
for i = mink to maxk do 
 if a≠1 then rowdec ← i 
 if (a≤ (n/i) ≤b) then Node2Node (row ← n�1�rowdec, col ← i�1, level ← 0, cum_sum_parts ← 0, a ← a) 
endo 
 
END RICs_RIPs 
 
CALL RICs_RIPs(comp_part←part, n←11, mink←2, maxk←5, a←2, b←4) 
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Counting the Number of Restricted Integer Partitions � the General Case 
  
As previously mentioned, several algorithms exist to count the number of restricted integer partitions under very 
general conditions, but none present the specific formula for counting the number of doubly-restricted integer 
partitions with both upper and lower bounds.  Andrews (1998) presents the general result from which (5), (6), and 
(7) below can be derived, but for these specific formulae, Ruskey (2003) comes closest when presenting a formula 
(4) for counting the number of doubly restricted integer partitions with only an upper bound on the part values (and 
exactly k parts): 
 

( ) ( )
( )

1

min , 2

max 1,

, , , 1,
n b

k

b n b k

i

p n k b p n b k i
−

−

− − +

  =     

= − −∑                         (4) 

(4) is similar to the recursion shown below in (6) that places both upper and lower bounds on part values for a 
specific k, but first the case with no restrictions on the number of parts, k, is shown in (5): 
 

( ) ( ) ( )
( )

( )

max 1,

, ,     , ,
n a

i n b

p n a b I n b p i n i b
−

= −  

= ≤ + −∑          where 1 ≤ a ≤ b ≤ n  (b > n is ignored).                 (5)  

 
Table 9 contains results based on (5).  Note that when (5) is compared to (2), we can see that the term for the 
minimum part value (�a�) in the summation is decremented for each value i of the n parameter, as is done explicitly 
in the RICs_RIPs generation algorithm.  Otherwise, the two formulae are identical, which is an intriguing finding.  
For a specific number of parts, k, the formula for partitions below (6) shares the same similarity with the analogous 
formula for compositions, (3): 
 

( ) ( )
( )

( )

max 1,

, , ,    , 1, ,
n a

i n b

p n k a b p i k n i b
−

= −  

= − −∑                    (6) 

 
where   p(i,0,a,b) = 1,  1 ≤ a ≤ b ≤ n  (b > n is ignored),   and n b k n a≤ ≤       . 
 
Tables 10a-10i below show results based on (6).  Finally, (7) shows the doubly-restricted formula for partitions that 
is analogous to (4) for compositions: 
 

( ) ( )
( )

( )max

min max 1,

,min max , ,  , 1, ,
n ak

k k i n b

p n k k k a b p i k n i b
−

= = −  

 
 ≤ ≤ = − − 
 
 

∑ ∑                     (7)   

 
where   p(i,0,a,b) = 1,  1 ≤ a ≤ b ≤ n  (b > n is ignored),   and n b k n a≤ ≤       .   
 
Note that the columns of Tables 9 and 10a-10i will be recognized as the coefficients of the Gaussian polynomials, 
or the q-analogs of the binomial coefficient (see Koepf, 1998).  This is not surprising given that the ordered 
binomial coefficients of Pascal�s triangle form the basis of the algorithm, and this directly leads us to see (5), (6), 
and (7) as specific results of the general solution for counting restricted integer partitions presented in Andrews 
(1998).  However, the specific, easily interpretable (and programmable) form of equations (5), (6), and (7) has not 
been presented previously, which is probably why their important link to the completely original, analogous 
solutions of (2), (3), and (4) for compositions have been missed until now.  Consequently, they are worth presenting 
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in this first paper to unify the approach to generating (un)restricted integer compositions and (un)restricted integer 
partitions. 
 

Relative Runtimes (Real and CPU) by Relative Approximation of ( )RIPsΟ   
Graph 3               Graph 4 
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Table 9:  Counts of Restricted Integer Partitions for Specified Values of n, a, and b:  

 a= 10 9 8 7 6 5 4 3 2 

n b= 10 10 10 10 10 10 10 10 10 

1          
2          1
3         1 1
4        1 1 2
5       1 1 1 2
6      1 1 1 2 4
7     1 1 1 1 2 4
8    1 1 1 1 2 3 7
9   1 1 1 1 1 2 4 8

10  1 1 1 1 1 2 3 5 12 
11       1 2 5 13 
12      1 2 4 8 20 
13      1 2 4 9 22 
14     1 2 3 6 11 31 
15     1 2 4 6 14 36 
16    1 2 3 4 8 17 48 
17    1 2 2 4 8 19 55 
18   1 2 2 3 5 11 25 73 
19   1 1 1 2 5 11 28 83 
20  1 1 1 1 3 7 15 34 107 
21     1 3 7 15 40 123 
22     1 4 8 19 47 154 
23     2 4 9 20 54 177 
24    1 3 6 11 26 66 220 
25    1 3 5 12 27 74 251 
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Tables 10a-10i:  Counts of Restricted Integer Partitions for Specified Values of  n, k, a, and b: 
10a: (a = 2) 

 a= 2 2 2 2 2 2 2 2 2 2 2 2 
 b= 10 10 10 10 10 10 10 10 10 10 10 10 

n k= 1 2 3 4 5 6 7 8 9 10 11 12 

1                          
2  1             
3  1             
4  1 1            
5  1 1            
6  1 2 1           
7  1 2 1           
8  1 3 2 1          
9  1 3 3 1          

10  1 4 4 2 1         
11    4 5 3 1         
12    5 7 5 2 1        
13    4 8 6 3 1        
14    4 10 9 5 2 1       
15    3 11 11 7 3 1       
16    3 12 15 10 5 2 1      
17    2 12 17 13 7 3 1      
18    2 13 21 18 11 5 2 1     
19    1 12 23 22 14 7 3 1     
20     13 27 28 20 11 5 2 1    
21     11 28 33 25 15 7 3 1    
22     10 31 40 33 21 11 5 2 1   
23     8 31 45 40 27 15 7 3 1   
24     7 33 52 51 36 22 11 5 2 1
25      5 31 57 59 45 28 15 7 3 1

 
 
 
 
 
 
 
 
 

 
Table 10b: a = 3 

 a= 3 3 3 3 3 3 3 3 3 3 3 3 
 b= 10 10 10 10 10 10 10 10 10 10 10 10 

n k= 1 2 3 4 5 6 7 8 9 10 11 12 
1                          
2                
3  1             
4  1             
5  1             
6  1 1            
7  1 1            
8  1 2            
9  1 2 1           

10  1 3 1                
11    3 2           
12    4 3 1          
13    4 4 1          
14    4 5 2          
15    3 7 3 1         
16    3 8 5 1         
17    2 9 6 2         
18    2 10 9 3 1        
19    1 10 11 5 1        
20    1 10 14 7 2        
21     10 16 10 3 1       
22     9 19 13 5 1       
23     8 20 17 7 2       
24     7 23 21 11 3 1      
25      5 23 26 14 5 1         

 
 

Table 10c: a = 4 
 a= 4 4 4 4 4 4 4 4 4 4 4 4 
 b= 10 10 10 10 10 10 10 10 10 10 10 10 

n k= 1 2 3 4 5 6 7 8 9 10 11 12 
1                          
2                
3                
4  1             
5  1             
6  1             
7  1             
8  1 1            
9  1 1            

10  1 2                  
11    2            
12    3 1           
13    3 1           
14    4 2           
15    3 3           
16    3 4 1          
17    2 5 1          
18    2 7 2          
19    1 7 3          
20    1 8 5 1         
21     8 6 1         
22     8 9 2         
23     7 10 3         
24     7 13 5 1        
25      5 14 7 1             
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Table 10d: a = 5 
 a= 5 5 5 5 5 5 5 5 5 5 5 5 
 b= 10 10 10 10 10 10 10 10 10 10 10 10 

n k= 1 2 3 4 5 6 7 8 9 10 11 12 
1                          
2                
3                
4                
5  1             
6  1             
7  1             
8  1             
9  1             

10  1 1                  
11    1            
12    2            
13    2            
14    3            
15    3 1           
16    3 1           
17    2 2           
18    2 3           
19    1 4           
20    1 5 1          
21     6 1          
22     6 2          
23     6 3          
24     6 5          
25      5 6 1               

 
Table 10f: a = 7 

 a= 7 7 7 7 7 7 7 7 7 7 7 7 
 b= 10 10 10 10 10 10 10 10 10 10 10 10 

n k= 1 2 3 4 5 6 7 8 9 10 11 12 
1                          
2                
3                
4                
5                
6                
7  1             
8  1             
9  1             

10  1                    
11                
12                
13                
14    1            
15    1            
16    2            
17    2            
18    2            
19    1            
20    1            
21     1           
22     1           
23     2           
24     3           
25      3                   

 
Table 10h: a = 9 

 a= 9 9 9 9 9 9 9 9 9 9 9 9 
 b= 10 10 10 10 10 10 10 10 10 10 10 10 

n k= 1 2 3 4 5 6 7 8 9 10 11 12 
1                          
2                
3                
4                
5                
6                
7                
8                
9  1             

10  1                    
11                
12                
13                
14                
15                
16                
17                
18    1            
19    1            
20    1            
21                
22                
23                
24                
25                          

 

Table 10e: a = 6 
 a= 6 6 6 6 6 6 6 6 6 6 6 6 
 b= 10 10 10 10 10 10 10 10 10 10 10 10 

n k= 1 2 3 4 5 6 7 8 9 10 11 12 
1                          
2                
3                
4                
5                
6  1             
7  1             
8  1             
9  1             

10  1                    
11                
12    1            
13    1            
14    2            
15    2            
16    3            
17    2            
18    2 1           
19    1 1           
20     3           
21     3           
22     4           
23     4           
24     5 1          
25      4 1                 

 
Table 10g: a = 8 

 a= 8 8 8 8 8 8 8 8 8 8 8 8 
 b= 10 10 10 10 10 10 10 10 10 10 10 10 

n k= 1 2 3 4 5 6 7 8 9 10 11 12 
1                          
2                
3                
4                
5                
6                
7                
8  1             
9  1             

10  1                    
11                
12                
13                
14                
15                
16    1            
17    1            
18    2            
19    1            
20    1            
21                
22                
23                
24     1           
25      1                   

 
Table 10i: a = 10 

 a= 10 10 10 10 10 10 10 10 10 10 10 10 
 b= 10 10 10 10 10 10 10 10 10 10 10 10 

n k= 1 2 3 4 5 6 7 8 9 10 11 12 
1                          
2                
3                
4                
5                
6                
7                
8                
9                

10  1                    
11                
12                
13                
14                
15                
16                
17                
18                
19                
20    1            
21                
22                
23                
24                
25                          
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Conclusions 
 
This paper presents a unified algorithm (�RICs_RIPs�) that generates both restricted integer compositions and 
restricted integer partitions under the two most commonly imposed restrictions simultaneously � upper and lower 
bounds on the number of parts allowed, and concurrently, upper and lower bounds on the values of those parts (the 
algorithm can implement each constraint individually, or no constraints for the unrestricted case).  These two 
fundamental combinatorial objects are important for mathematical, statistical, and scientific applications, yet no 
other algorithms exist to generate either, let alone both, under these two common restrictions when applied 
simultaneously.  And while the basic connection between integer compositions and integer partitions superficially 
is obvious, algorithms that generate them, whether restricted or unrestricted, often are quite dissimilar.  The 
RICs_RIPs algorithm is a unifying exception to this � it is the first to provide an important algorithmic link 
between these two combinatorial objects due to its direct foundation on a very fundamental mathematical construct, 
namely, Pascal�s triangle and its (Fibonacci series) off-diagonals.  RICs_RIPs is recursive, and given its generality, 
it is reasonably fast with good time complexity.  Actual code implementing it in the most widely available 
statistical software programming language is included herein.  Finally, this paper also proposes a general, closed-
form solution to the previously open problem of counting the number of doubly-restricted integer compositions; its 
formulaic link to an analogous solution for counting doubly-restricted integer partitions is shown to mirror the 
previously unidentified algorithmic link between these two combinatorial objects. 
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Appendix A 
 
SAS® Code Implementing the RICs_Base Algorithm 
 
RICs_Base Algorithm written in SAS® (requires on Base SAS® module): 
 
/* code above macro */ 
/* code above macro */ 
/* code above macro */ 
 
 
%macro RICs_Base(comp_n=, file_dir=, logfile=); 
 
 
*** Valid values for user-specified macro variable comp_n of the macro RICs_Base (Restricted Integer Compositions - Base 
Case):   comp_n   - integers greater than 1 
***; 
 
*** save pre-macro SAS options to reinstitute after the macro run is completed.; 
 
 proc optsave; 
 run; 
 
  options  nosource 
           pagesize=max 
         MSYMTABMAX=max 
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           ls=256  
           nocenter  
           nodate 
        nonumber 
        nonotes 
        nomprint  
        nomlogic  
        ; 
 
*** verify that a valid file directory is specified for the output file.; 
 
   libname dir_chk "&file_dir."; 
   %if %sysfunc(libref(dir_chk)) ~= 0 %then %do; 
      skip 2; 
      %put The directory for the output file specified by the user in the RICs macro does not exist.  Please create it.; 
      skip 2; 
      %GOTO end_RICs; 
   %end; 
 
 
*** redirect the SAS log file for use as the user-specified output file.; 
 
   filename logprint "&file_dir.\&logfile."; 
   proc printto log=logprint new;  
   run; 
 
 
*** check to make sure the macro variable values passed by the user are valid.; 
 
   %let badval_not_integer=0; 
   %if &comp_n.= %then %let badval_not_integer=1; 
   %else %if %verify(&comp_n.,0123456789)>0 %then %let badval_not_integer=1; 
   %else %if %substr(&comp_n.,1,1)=0 %then %let badval_not_integer=1; 
   %if &badval_not_integer.=1 %then %do; 
     %put; 
     %put The user-specified value for the macro variable comp_n must be a positive integer.; 
     %put; 
      %GOTO end_RICs; 
   %end; 
 
   %if &comp_n.< 2 %then %do; 
      %put; 
      %put The user-specified value for the macro variable comp_n must be equal to or greater than 2.; 
      %put; 
      %GOTO end_RICs; 
   %end; 
 
 
   %macro celllabels; 
      %do nm=1 %to &num_off_diags; 
         level&nm. 
      %end; 
   %mend celllabels; 
   %macro cellinitialize; 
      %global comp_num; 
      %let comp_num = 0; 
      %do qp=1 %to &num_off_diags; 
        %global cell&qp.; 
         %let cell&qp. = ; 
      %end; 
   %mend cellinitialize; 
   %macro cellvals(currlevel=); 
      %do po=1 %to &currlevel.; 
         %cmpres(&&cell&po.) 
      %end; 
   %mend cellvals; 
 
 %macro Node2Node(nrow=, ncol=, level=); 
  %if &ncol.=0 %then %do; 
   %let binet_fibn = 
%sysfunc(round(%sysevalf(%sysevalf(1/%sysfunc(sqrt(5)))*%sysevalf(%sysevalf(%sysevalf(%sysevalf(1+%sysfunc(sqrt(5)))/2)**
%eval(&comp_n.-1))-%sysevalf(%sysevalf(%sysevalf(1-%sysfunc(sqrt(5)))/2)**%eval(&comp_n.-1)))))); 
   %put There are %cmpres(&binet_fibn.) integer compositions of %cmpres(&comp_n.) with all part values greater than 1.  
These are listed below.; 
       %put; 
       %put Comp.#   %cmpres(%celllabels); 
         %cellinitialize; 
   %let cell1 = %cmpres(&comp_n.); 
   %let comp_num = %eval(&comp_num.+1); 
   %put %cmpres(&comp_num.)        %cmpres(%cellvals(currlevel=&ih.)); 
  %end; 
  %else %do; 
   %let nxt_2_last = %eval(&ih.-1); 
   %if &ncol. = 1 %then %do ji=1 %to &nrow.; 
    %let cell&nxt_2_last. = %eval(&ji.+1); 
    %let cell&ih. = %eval(&nrow. + 2 - &ji.); 
        %let comp_num = %eval(&comp_num.+1); 
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        %put %cmpres(&comp_num.)        %cmpres(%cellvals(currlevel=&ih.)); 
   %end; 
   %else %do; 
    %let level1 = %eval(&level.+1); 
    %let cell&level1. = 2; 
    %Node2Node(nrow=%eval(&nrow.-1),ncol=%eval(&ncol.-1),level=%eval(&level.+1)); 
   %end; 
     %end; 
   %if &nrow.>1 & &level.>0 %then %do;    
   %let cell&level. = %eval(&&cell&level.+1); 
   %Node2Node(nrow=%eval(&nrow.-1),ncol=&ncol.,level=&level.); 
  %end; 
 %mend Node2Node; 
 
 %let num_off_diags = %sysfunc(floor(%sysevalf(&comp_n./2))); 
 %do ih=1 %to &num_off_diags.; 
  %Node2Node(nrow=%eval(&comp_n.-1-&ih.),ncol=%eval(&ih.-1),level=0); 
 %end; 
 
 
 %end_RICs: 
 
*** redirect the SAS log file back to its default.; 
   proc printto;  
   run; 
 
*** reinstitute the SAS options that were in place before the macro was called.; 
 proc optload; 
 run; 
 
%mend RICs_Base; 
 
 
 
%RICs_Base(comp_n=11,  
     file_dir=C:\RICs_root,  
     logfile=RICs_Base_n11.txt 
     ); 
 
 
 
/* code below macro */ 
/* code below macro */ 
/* code below macro */ 

 
 
 
Appendix B 
 
SAS® Code Implementing the RICs Algorithm 
 
RICs Algorithm written in SAS® (requires only Base SAS® module): 
 
/* code above macro */ 
/* code above macro */ 
/* code above macro */ 
 
 
%macro RICs(comp_n=, mink=, maxk=, minpart=, maxpart=, file_dir=, logfile=); 
 
 
*** Valid values for user-specified macro variables of the macro RICs (Restricted Integer Compositions): 
   comp_n   - 0 < integers (also referred to as 'n') 
   maxpart  - 0 < integers <= comp_n (also referred to as 'b') 
   minpart  - 0 < integers <= maxpart (also referred to as 'a') 
   maxk     - 0 < integers <= floor(comp_n/minpart) 
   mink     - ceiling(comp_n/maxpart) <= integers <= maxk 
   file_dir - an existing file directory, such as c:\homedir\user, where the output file is placed 
   logfile  - a filename, such as RICs_run2.txt, which names the output file 
***; 
 
 
*** save SAS options in effect before calling RICs to reinstitute after RICs is completed.; 
 
 proc optsave; 
 run; 
 
  options  nosource 
           pagesize=max 
         MSYMTABMAX=max 
           ls=256  
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           nocenter  
           nodate 
        nonumber 
        nonotes 
        nomprint  
        nomlogic  
        ; 
 
*** verify that a valid file directory is specified for the output file.; 
 
   libname dir_chk "&file_dir."; 
   %if %sysfunc(libref(dir_chk)) ~= 0 %then %do; 
      skip 2; 
      %put The directory for the output file specified by the user in the RICs macro does not exist.  Please create it.; 
      skip 2; 
      %GOTO end_RICs; 
   %end; 
 
 
*** redirect the SAS log file for use as the user-specified output file.; 
 
   filename logprint "&file_dir.\&logfile."; 
   proc printto log=logprint new;  
   run; 
 
 
*** check to make sure the macro variable values passed by the user are valid.; 
 
  %let stopprogram = 0; 
 
  %macro isBlank(param); 
     %sysevalf(%superq(param)=,boolean) 
  %mend isBlank; 
 
  %let badval_not_integer=0; 
  %if %isBlank(&comp_n.) %then %let badval_not_integer=1; 
  %else %if %verify(&comp_n.,0123456789)>0 %then %let badval_not_integer=1; 
  %else %if %substr(&comp_n.,1,1)=0 %then %let badval_not_integer=1; 
  %if &badval_not_integer.=1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable comp_n must be a positive integer.; 
   %put; 
   %let stopprogram = 1; 
  %end; 
 
  %let badval_not_integer=0; 
  %if %isBlank(&mink.) %then %let badval_not_integer=1; 
  %else %if %verify(&mink.,0123456789)>0 %then %let badval_not_integer=1; 
  %else %if %substr(&mink.,1,1)=0 %then %let badval_not_integer=1; 
  %if &badval_not_integer.=1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable mink must be a positive integer.; 
   %put; 
   %let stopprogram = 1; 
  %end; 
 
  %let badval_not_integer=0; 
  %if %isBlank(&maxk.) %then %let badval_not_integer=1; 
  %else %if %verify(&maxk.,0123456789)>0 %then %let badval_not_integer=1; 
  %else %if %substr(&maxk.,1,1)=0 %then %let badval_not_integer=1; 
  %if &badval_not_integer.=1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable maxk must be a positive integer.; 
   %put; 
   %let stopprogram = 1; 
  %end; 
 
  %let badval_not_integer=0; 
  %if %isBlank(&minpart.) %then %let badval_not_integer=1; 
  %else %if %verify(&minpart.,0123456789)>0 %then %let badval_not_integer=1; 
  %else %if %substr(&minpart.,1,1)=0 %then %let badval_not_integer=1; 
  %if &badval_not_integer.=1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable minpart must be a positive integer.; 
   %put; 
   %let stopprogram = 1; 
  %end; 
 
  %let badval_not_integer=0; 
  %if %isBlank(&maxpart.) %then %let badval_not_integer=1; 
  %else %if %verify(&maxpart.,0123456789)>0 %then %let badval_not_integer=1; 
  %else %if %substr(&maxpart.,1,1)=0 %then %let badval_not_integer=1; 
  %if &badval_not_integer.=1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable maxpart must be a positive integer.; 
   %put; 
   %let stopprogram = 1; 
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  %end; 
 
  %if &stopprogram. ~= 1 %then %do;  
   %if &minpart.<1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable minpart must be an integer greater than zero.; 
   %put; 
   %let stopprogram = 1; 
   %end; 
 
   %if &maxpart.< &minpart. %then %do; 
   %put; 
   %put The user-specified value for the macro variable minpart must be equal to or smaller than that specified for 
maxpart.; 
   %put; 
   %let stopprogram = 1; 
   %end; 
 
   %if &maxpart.<1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable maxpart must be an integer greater than zero.; 
   %put; 
   %let stopprogram = 1; 
   %end; 
 
   %if &comp_n.< &minpart. %then %do; 
   %put; 
   %put The user-specified value for the macro variable minpart must be equal to or smaller than that specified for 
comp_n.; 
   %put; 
   %let stopprogram = 1; 
   %end; 
 
   %if &maxk.< &mink. %then %do; 
   %put; 
   %put The user-specified value for the macro variable mink must be equal to or smaller than that specified for maxk.; 
   %put; 
   %let stopprogram = 1; 
   %end; 
 
   %if %sysevalf(%sysfunc(floor(%sysevalf(&comp_n./2)))< &mink., boolean) %then %do; 
   %put; 
   %put The user-specified value for the macro variable mink cannot be larger than that specified for comp_n divided by 
2, rounded down.; 
   %put; 
   %let stopprogram = 1; 
   %end; 
 
  %end; 
 
 
  %if &stopprogram.=1 %then %goto end_RICs; 
 
 
*** find the actual maximum # of parts that result after the user-specified composition restrictions are imposed, 
    in case it is not what the user specified in maxk.; 
 
 %let maxk_hold = 0; 
 %do zy=&maxk. %to &mink. %by -1; 
  %if %sysevalf((&comp_n./&zy.)>=&minpart. & (&comp_n./&zy.)<=&maxpart., boolean) %then %do; 
    %let maxk_hold = &zy.; 
    %let zy = &mink.; 
  %end; 
 %end; 
 
 %if &maxk_hold.=0 %then %do; 
    %put; 
    %put There are no restricted integer compositions of &comp_n. that satisfy the user-specified restrictions listed 
below:; 
     %put; 
    %put List all restricted integer compositions of integer n = %cmpres(&comp_n.); 
      %put with at least %cmpres(&mink.) parts and no more than %cmpres(&maxk.) parts; 
      %put and only part values within the range from %cmpres(&minpart.) through %cmpres(&maxpart.).; 
    %put; 
      %goto end_RICs; 
 %end; 
 
 %if &maxk_hold. ~= &maxk. %then %do; 
 %put; 
 %put The maximum value possible for maxk is floor(comp_n / minpart).  Because this is smaller than the user-specified 
value (%cmpres(&maxk.)),; 
   %put the value of maxk has reassigned to equal floor(comp_n / minpart) = %cmpres(&maxk_hold.).; 
 %put; 
 %let maxk = &maxk_hold.; 
 %end; 
 
 %let maxpart_hold = %sysfunc(min(&maxpart.,&comp_n.)); 
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 %if &maxpart_hold. ~= &maxpart. %then %do; 
 %put; 
 %put The user-specified value for the macro variable maxpart cannot be larger than that specified for comp_n, so 
maxpart has been set equal to comp_n.; 
 %put; 
 %let maxpart = &maxpart_hold.; 
 %end; 
 
 
*** define initialization and output/printing macros; 
 
   %macro celllabels; 
      %do nm=1 %to &maxk.; 
         level&nm. 
      %end; 
   %mend celllabels; 
    
   %macro cellinitialize; 
    %global comp_num; 
    %let comp_num = 0; 
      %do qp=1 %to &maxk.; 
     %global cell&qp.; 
         %let cell&qp. = ; 
      %end; 
   %mend cellinitialize; 
    
   %macro cellvals(currlevel=); 
      %do po=1 %to &currlevel.; 
         %cmpres(&&cell&po.) 
      %end; 
   %mend cellvals; 
 
 %put; 
 %put List all restricted integer compositions of integer n = %cmpres(&comp_n.); 
   %put with at least %cmpres(&mink.) part(s) and no more than %cmpres(&maxk.) part(s); 
   %put and only part values within the range from %cmpres(&minpart.) through %cmpres(&maxpart.).; 
 %put; 
 
 %put Comp.#   %cmpres(%celllabels); 
   %cellinitialize; 
 
 
*** define the main Node2Node macro that starts at each of the "Fibonacci" off-diagonals (unless minpart=1) and traces  
    composition paths through Pascals triangle;  
 
 %macro Node2Node(nrow=, ncol=, level=, cum_sum_parts=); 
  %if &ih.~=1 %then %do; 
         %if &ncol. = 1 %then %do; 
      %let nxt_2_last = %eval(&ih.-1); 
    %let low = %sysfunc(max(&minpart.,%eval(&comp_n. - &cum_sum_parts. - &maxpart.))); 
    %let high = %sysfunc(min(&maxpart.,%eval(&comp_n. - &cum_sum_parts. - &minpart.))); 
        %do ji=&low. %to &high.; 
         %let cell&nxt_2_last. = &ji.;  
         %let comp_num = %eval(&comp_num.+1); 
         %let cell&ih. = %eval(&comp_n. - &cum_sum_parts. - &ji.); 
         %put %cmpres(&comp_num.)        %cmpres(%cellvals(currlevel=&ih.)); 
    %end; 
   %end; 
   %else %do; 
    %let level1 = %eval(&level.+1); 
      %let cell&level1. = &minpart.; 
        %let cum_sum_parts1 = %eval(&cum_sum_parts.+ &minpart.);  
    %let toploop = %sysfunc(min(%eval(&maxpart.-&minpart.),%eval(&nrow.-&minpart.-&ncol.+1))); 
    %let avg_amt_left = %sysevalf((&comp_n.-&cum_sum_parts1.)/(&ih.-&level1.)); 
    %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level1. <= &maxpart., boolean) 
         %then %Node2Node(nrow=%eval(&nrow.- &minpart. + 1),ncol=%eval(&ncol.-
1),level=%eval(&level.+1),cum_sum_parts=&cum_sum_parts1.);    
    %else %do sr=1 %to &toploop.; 
         %let cell&level1. = %eval(&&cell&level1.+1); 
         %let cum_sum_parts1 = %eval(&cum_sum_parts1.+1); 
       %let avg_amt_left = %sysevalf((&comp_n.-&cum_sum_parts1.)/(&ih.-&level1.)); 
       %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level1. <= &maxpart., 
boolean) %then %do; 
      %let sr_use = &sr.; 
      %let sr = &toploop.; 
            %Node2Node(nrow=%eval(&nrow.-&minpart.+1-&sr_use.),ncol=%eval(&ncol.-
1),level=%eval(&level.+1),cum_sum_parts=&cum_sum_parts1.);    
     %end; 
    %end;  
   %end; 
     %end; 
  %else %do; 
   %let cell1 = %cmpres(&comp_n.); 
   %let comp_num = %eval(&comp_num.+1); 
   %put %cmpres(&comp_num.)        %cmpres(%cellvals(currlevel=1)); 
  %end; 
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     %if &nrow.>1 & &level.>0 %then %do;  
   %let cell&level. = %eval(&&cell&level.+1); 
   %let cum_sum_parts = %eval(&cum_sum_parts.+1); 
     %if &&cell&level.<&minpart. %then %do; 
      %let cum_sum_parts = %eval(&cum_sum_parts.+ &minpart. - &&cell&level.); 
      %let nrow = %eval(&nrow.- &minpart. + &&cell&level.); 
        %let cell&level. = &minpart.; 
     %end; 
 
   %let avg_amt_left = %sysevalf((&comp_n.-&cum_sum_parts.)/(&ih.-&level.)); 
   %let lowloop = %eval(&&cell&level.+1); 
   %let toploop = %sysfunc(min(%eval(&maxpart.-&&cell&level.),%eval(&nrow.-1-&ncol.))); 
   %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level. <= &maxpart., boolean) 
   %then %Node2Node(nrow=%eval(&nrow.-1),ncol=&ncol.,level=&level.,cum_sum_parts=&cum_sum_parts.); 
   %else %do vu=&lowloop. %to &toploop.; 
      %let cell&level. = %eval(&&cell&level.+1); 
      %let cum_sum_parts = %eval(&cum_sum_parts.+1); 
      %let avg_amt_left = %sysevalf((&comp_n.-&cum_sum_parts.)/(&ih.-&level.)); 
      %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level. <= &maxpart., boolean) 
%then %do; 
     %let vu_use = &vu.; 
     %let vu = &toploop.; 
         %Node2Node(nrow=%eval(&nrow.-1-&vu_use.),ncol=&ncol.,level=&level.,cum_sum_parts=&cum_sum_parts.); 
    %end; 
   %end; 
  %end; 
 %mend Node2Node; 
 
 
*** call Node2Node on each of the "Fibonacci" off-diagonals of Pascals triangle (or its horizontal row if minpart=1),  
    tracking the "path" of the composition in the triangle via its combinatoric representation: "rows" on top and 
"columns"  
  on the bottom of the "n-choose-k" representation of the triangle.; 
 
 %do ih=&mink. %to &maxk.; 
  %let rowdec=&ih.; 
    %if &minpart.=1 %then %let rowdec=0; 
  %let avg_amt_left = %sysevalf(&comp_n./&ih.); 
  %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart., boolean)  
  %then %Node2Node(nrow=%eval(&comp_n.-1-&rowdec.),ncol=%eval(&ih.-1),level=0,cum_sum_parts=0); 
 %end; 
 %put; 
 
 %end_RICs: 
 
 
*** redirect the SAS log file back to its default.; 
 
   proc printto;  
   run; 
 
*** reinstitute the SAS options that were in place before RICs was called.; 
 
 proc optload; 
 run; 
 
 
%mend RICs; 
 
 
%RICs(comp_n=11,  
   mink=1,  
   maxk=5,  
   minpart=2,  
   maxpart=4,  
   file_dir=C:\RICs_Dir,  
   logfile=RICs_n11_1k5_a2_b4.txt 
   ); 
 
/* code below RICs macro */ 
/* code below RICs macro */ 
/* code below RICs macro */ 
 

 
 
Appendix C 
 
SAS® Code Implementing the RICs_RIPs Algorithm 
 
RICs_RIPs Algorithm written in SAS® (requires only Base SAS® module): 
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/* code above macro */ 
/* code above macro */ 
/* code above macro */ 
 
 
%macro RICs_RIPs(comp_part=, part_n=, mink=, maxk=, minpart=, maxpart=, file_dir=, logfile=); 
 
 
*** save SAS options in effect before calling RICs_RIPs to reinstitute after RICs_RIPs is completed.; 
 
 proc optsave; 
 run; 
 
   options nosource 
           pagesize=max 
       MSYMTABMAX=max 
           ls=256  
           nocenter  
           nodate 
       nonumber 
       nonotes 
       nomprint  
       nomlogic  
       ; 
 
*** Valid values for user-specified macro variables of the macro RICs_RIPs (Restricted Integer Compositions/Partitions): 
 comp_part - comp or part (for composition or partition) 
   part_n    - 0 < integers (also referred to as 'n') 
   maxpart   - 0 < integers <= part_n (also referred to as 'b') 
   minpart   - 0 < integers <= maxpart (also referred to as 'a') 
   maxk      - 0 < integers <= floor(part_n/minpart) 
   mink      - ceiling(part_n/maxpart) <= positive integers <= maxk 
   file_dir  - an existing file directory, such as c:\homedir\user, where the output file is placed 
   logfile   - a filename, such as RICs_RIPs_run2.txt, which names the output file 
***; 
 
 
*** verify that a valid file directory is specified for the output file.; 
 
   libname dir_chk "&file_dir."; 
   %if %sysfunc(libref(dir_chk)) ~= 0 %then %do; 
      skip 2; 
      %put The directory for the output file specified by the user in the RICs_RIPs macro does not exist.  Please create 
it.; 
      skip 2; 
      %GOTO end_RICs_RIPs; 
   %end; 
 
 
*** redirect the SAS log file for use as the user-specified output file.; 
 
   filename logprint "&file_dir.\&logfile."; 
   proc printto log=logprint new;  
   run; 
 
 
*** check to make sure the macro variable values passed by the user are valid.; 
 
  %let stopprogram = 0; 
 
  %if %upcase(&comp_part.)~=COMP & %upcase(&comp_part.)~=PART %then %do; 
   %put; 
   %put The user-specified value for the macro variable comp_part must be 'COMP' (composition) or 'PART' (partition).; 
   %put; 
   %let stopprogram = 1; 
  %end; 
 
  %macro isBlank(param); 
     %sysevalf(%superq(param)=,boolean) 
  %mend isBlank; 
 
  %if %upcase(&comp_part.)=COMP %then %let comb_obj=composition; 
  %else %let comb_obj=partition; 
 
  %let badval_not_integer=0; 
  %if %isBlank(&part_n.) %then %let badval_not_integer=1; 
  %else %if %verify(&part_n.,0123456789)>0 %then %let badval_not_integer=1; 
  %else %if %substr(&part_n.,1,1)=0 %then %let badval_not_integer=1; 
  %if &badval_not_integer.=1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable part_n must be a positive integer.; 
   %put; 
   %let stopprogram = 1; 
  %end; 
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  %let badval_not_integer=0; 
  %if %isBlank(&mink.) %then %let badval_not_integer=1; 
  %else %if %verify(&mink.,0123456789)>0 %then %let badval_not_integer=1; 
  %else %if %substr(&mink.,1,1)=0 %then %let badval_not_integer=1; 
  %if &badval_not_integer.=1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable mink must be a positive integer.; 
   %put; 
   %let stopprogram = 1; 
  %end; 
 
  %let badval_not_integer=0; 
  %if %isBlank(&maxk.) %then %let badval_not_integer=1; 
  %else %if %verify(&maxk.,0123456789)>0 %then %let badval_not_integer=1; 
  %else %if %substr(&maxk.,1,1)=0 %then %let badval_not_integer=1; 
  %if &badval_not_integer.=1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable maxk must be a positive integer.; 
   %put; 
   %let stopprogram = 1; 
  %end; 
 
  %let badval_not_integer=0; 
  %if %isBlank(&minpart.) %then %let badval_not_integer=1; 
  %else %if %verify(&minpart.,0123456789)>0 %then %let badval_not_integer=1; 
  %else %if %substr(&minpart.,1,1)=0 %then %let badval_not_integer=1; 
  %if &badval_not_integer.=1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable minpart must be a positive integer.; 
   %put; 
   %let stopprogram = 1; 
  %end; 
 
  %let badval_not_integer=0; 
  %if %isBlank(&maxpart.) %then %let badval_not_integer=1; 
  %else %if %verify(&maxpart.,0123456789)>0 %then %let badval_not_integer=1; 
  %else %if %substr(&maxpart.,1,1)=0 %then %let badval_not_integer=1; 
  %if &badval_not_integer.=1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable maxpart must be a positive integer.; 
   %put; 
   %let stopprogram = 1; 
  %end; 
 
  %if &stopprogram. ~= 1 %then %do;  
   %if &minpart.<1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable minpart must be an integer greater than zero.; 
   %put; 
   %let stopprogram = 1; 
   %end; 
 
   %if &maxpart.< &minpart. %then %do; 
   %put; 
   %put The user-specified value for the macro variable minpart must be equal to or smaller than that specified for 
maxpart.; 
   %put; 
   %let stopprogram = 1; 
   %end; 
 
   %if &maxpart.<1 %then %do; 
   %put; 
   %put The user-specified value for the macro variable maxpart must be an integer greater than zero.; 
   %put; 
   %let stopprogram = 1; 
   %end; 
 
   %if &part_n.< &minpart. %then %do; 
   %put; 
   %put The user-specified value for the macro variable minpart must be equal to or smaller than that specified for 
part_n.; 
   %put; 
   %let stopprogram = 1; 
   %end; 
 
   %if &maxk.< &mink. %then %do; 
   %put; 
   %put The user-specified value for the macro variable mink must be equal to or smaller than that specified for maxk.; 
   %put; 
   %let stopprogram = 1; 
   %end; 
 
   %if %sysevalf(%sysfunc(floor(%sysevalf(&part_n./2)))< &mink., boolean) %then %do; 
   %put; 
   %put The user-specified value for the macro variable mink cannot be larger than that specified for part_n divided by 
2, rounded down.; 
   %put; 
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   %let stopprogram = 1; 
   %end; 
 
  %end; 
 
  %if &stopprogram.=1 %then %goto end_RICs_RIPs; 
 
 
*** find the actual maximum # of parts that result after the user-specified composition/partition restrictions are 
imposed, 
    in case it is not what the user specified in maxk.; 
 
 %let maxk_hold = 0; 
 %do zy=&maxk. %to &mink. %by -1; 
  %if %sysevalf((&part_n./&zy.)>=&minpart. & (&part_n./&zy.)<=&maxpart., boolean) %then %do; 
    %let maxk_hold = &zy.; 
    %let zy = &mink.; 
  %end; 
 %end; 
 
 %if &maxk_hold.=0 %then %do; 
    %put; 
    %put There are no integer %cmpres(&comb_obj.) of &part_n. that satisfy the user-specified restrictions listed 
below:; 
     %put; 
    %put List all integer %cmpres(&comb_obj.)s of integer n = %cmpres(&part_n.); 
      %put with at least %cmpres(&mink.) parts and no more than %cmpres(&maxk.) parts; 
      %put and only part values within the range from %cmpres(&minpart.) through %cmpres(&maxpart.).; 
    %put; 
      %goto end_RICs_RIPs; 
 %end; 
 
 %if &maxk_hold. ~= &maxk. %then %do; 
 %put; 
 %put The maximum value possible for maxk is floor(part_n / minpart).  Because this is smaller than the user-specified 
value (%cmpres(&maxk.)),; 
   %put the value of maxk has reassigned to equal floor(part_n / minpart) = %cmpres(&maxk_hold.).; 
 %put; 
 %let maxk = &maxk_hold.; 
 %end; 
 
 %let maxpart_hold = %sysfunc(min(&maxpart.,&part_n.)); 
 %if &maxpart_hold. ~= &maxpart. %then %do; 
 %put; 
 %put The user-specified value for the macro variable maxpart cannot be larger than that specified for part_n, so 
maxpart has been set equal to part_n.; 
 %put; 
 %let maxpart = &maxpart_hold.; 
 %end; 
 
 
*** define initialization and output/printing macros; 
 
   %macro celllabels; 
      %do nm=1 %to &maxk.; 
         level&nm. 
      %end; 
   %mend celllabels; 
    
   %macro cellinitialize; 
    %global part_num; 
    %let part_num = 0; 
      %do qp=1 %to &maxk.; 
     %global cell&qp.; 
         %let cell&qp. = ; 
      %end; 
   %mend cellinitialize; 
    
   %macro cellvals(currlevel=); 
      %do po=1 %to &currlevel.; 
         %cmpres(&&cell&po.) 
      %end; 
   %mend cellvals; 
 
 %put; 
 %put List all integer %cmpres(&comb_obj.)s of integer n = %cmpres(&part_n.); 
   %put with at least %cmpres(&mink.) part(s) and no more than %cmpres(&maxk.) part(s); 
   %put and only part values within the range from %cmpres(&minpart.) through %cmpres(&maxpart.).; 
 %put; 
 
   %if %upcase(&comp_part.)=COMP %then %put Comp.#   %cmpres(%celllabels); 
   %else %put Part.#   %cmpres(%celllabels); 
   %cellinitialize; 
 
 
*** define the main Node2Node macro that starts at each of the "Fibonacci" off-diagonals (unless minpart=1) and traces  
    composition/partition paths through Pascals triangle;  
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 %macro Node2Node(nrow=, ncol=, level=, cum_sum_parts=, minpart=); 
  %if &ih.~=1 %then %do; 
         %if &ncol. = 1 %then %do; 
      %let nxt_2_last = %eval(&ih.-1); 
    %let low = %sysfunc(max(&minpart.,%eval(&part_n. - &cum_sum_parts. - &maxpart.))); 
    %let high = %sysfunc(min(&maxpart.,%eval(&part_n. - &cum_sum_parts. - &minpart.))); 
    %if %upcase(&comp_part.)=PART %then %let high = %eval(&high.-%sysfunc(floor(%sysevalf((&high.-&low.+1)/2)))); 
       %do ji=&low. %to &high.; 
         %let cell&nxt_2_last. = &ji.;  
         %let part_num = %eval(&part_num.+1); 
         %let cell&ih. = %eval(&part_n. - &cum_sum_parts. - &ji.); 
         %put %cmpres(&part_num.)        %cmpres(%cellvals(currlevel=&ih.)); 
    %end; 
   %end; 
   %else %do; 
    %let level1 = %eval(&level.+1); 
      %let cell&level1. = &minpart.; 
        %let cum_sum_parts1 = %eval(&cum_sum_parts.+ &minpart.);  
            %let minpart1 = &minpart.; 
    %let toploop = %sysfunc(min(%eval(&maxpart.-&minpart.),%eval(&nrow.-&minpart.-&ncol.+1))); 
    %let avg_amt_left = %sysevalf((&part_n.-&cum_sum_parts1.)/(&ih.-&level1.)); 
    %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level1. <= &maxpart., boolean) 
         %then %Node2Node(nrow=%eval(&nrow.- &minpart. + 1),ncol=%eval(&ncol.-
1),level=%eval(&level.+1),cum_sum_parts=&cum_sum_parts1., minpart=&minpart.);    
    %else %do sr=1 %to &toploop.; 
         %let cell&level1. = %eval(&&cell&level1.+1); 
       %if %upcase(&comp_part.)=PART %then %let minpart1 = %eval(&minpart1.+1); 
         %let cum_sum_parts1 = %eval(&cum_sum_parts1.+1); 
       %let avg_amt_left = %sysevalf((&part_n.-&cum_sum_parts1.)/(&ih.-&level1.)); 
       %if %sysevalf(&avg_amt_left. >= &minpart1. & &avg_amt_left. <= &maxpart. & &&cell&level1. <= &maxpart., 
boolean) %then %do; 
      %let sr_use = &sr.; 
      %let sr = &toploop.; 
            %Node2Node(nrow=%eval(&nrow.-&minpart1.+1-&sr_use.),ncol=%eval(&ncol.-
1),level=%eval(&level.+1),cum_sum_parts=&cum_sum_parts1.,minpart=&minpart1.);    
     %end; 
    %end;  
   %end; 
     %end; 
  %else %do; 
   %let cell1 = %cmpres(&part_n.); 
   %let part_num = %eval(&part_num.+1); 
   %put %cmpres(&part_num.)        %cmpres(%cellvals(currlevel=1)); 
  %end; 
 
     %if &nrow.>1 & &level.>0 %then %do;  
   %let cell&level. = %eval(&&cell&level.+1); 
     %if %upcase(&comp_part.)=PART %then %let minpart = %eval(&minpart.+1); 
   %let cum_sum_parts = %eval(&cum_sum_parts.+1); 
     %if &&cell&level.<&minpart. %then %do; 
      %let cum_sum_parts = %eval(&cum_sum_parts.+ &minpart. - &&cell&level.); 
      %let nrow = %eval(&nrow.- &minpart. + &&cell&level.); 
        %let cell&level. = &minpart.; 
     %end; 
 
   %let avg_amt_left = %sysevalf((&part_n.-&cum_sum_parts.)/(&ih.-&level.)); 
   %let lowloop = %eval(&&cell&level.+1); 
   %let toploop = %sysfunc(min(%eval(&maxpart.-&&cell&level.),%eval(&nrow.-1-&ncol.))); 
   %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level. <= &maxpart., boolean) 
   %then %Node2Node(nrow=%eval(&nrow.-1),ncol=&ncol.,level=&level.,cum_sum_parts=&cum_sum_parts.,minpart=&minpart.); 
   %else %do vu=&lowloop. %to &toploop.; 
      %let cell&level. = %eval(&&cell&level.+1); 
      %if %upcase(&comp_part.)=PART %then %let minpart = %eval(&minpart.+1); 
      %let cum_sum_parts = %eval(&cum_sum_parts.+1); 
      %let avg_amt_left = %sysevalf((&part_n.-&cum_sum_parts.)/(&ih.-&level.)); 
      %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level. <= &maxpart., boolean) 
%then %do; 
     %let vu_use = &vu.; 
     %let vu = &toploop.; 
         %Node2Node(nrow=%eval(&nrow.-1-
&vu_use.),ncol=&ncol.,level=&level.,cum_sum_parts=&cum_sum_parts.,minpart=&minpart.); 
    %end; 
   %end; 
  %end; 
 %mend Node2Node; 
 
 
*** call Node2Node on each of the "Fibonacci" off-diagonals of Pascals triangle (or its horizontal row if minpart=1),  
    tracking the "path" of the composition/partition in the triangle via its combinatoric representation: "rows" on top 
and "columns"  
  on the bottom of the "n-choose-k" representation of the triangle.; 
 
 %do ih=&mink. %to &maxk.; 
  %let rowdec=&ih.; 
    %if &minpart.=1 %then %let rowdec=0; 
  %let avg_amt_left = %sysevalf(&part_n./&ih.); 
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  %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart., boolean)  
  %then %Node2Node(nrow=%eval(&part_n.-1-&rowdec.),ncol=%eval(&ih.-1),level=0,cum_sum_parts=0,minpart=&minpart.); 
 %end; 
 %put; 
 
 %end_RICs_RIPs: 
 
 
*** redirect the SAS log file back to its default.; 
 
   proc printto;  
   run; 
 
*** reinstitute the SAS options that were in place before RICs_RIPs was called.; 
 
 proc optload; 
 run; 
 
 
%mend RICs_RIPs; 
 
%RICs_RIPs(comp_part=part,  
     part_n=11,  
     mink=2,  
     maxk=5,  
     minpart=2,  
     maxpart=4,  
     file_dir=C:\RICs_Dir,  
     logfile=RIPs_n11_1k5_a2_b4.txt 
     ); 
 
 
 
 

Appendix D 
 
Mathematica® Code Implementing Counting Formulae for Doubly-Restricted Integer 
Compositions [formulae (2) and (4)] and Doubly-Restricted Integer Partitions [formulae (5) and 
(7)] 

(* Formula (2) *) 

 

(* Formula (4) *) 

 

(* Formula (5) *) 

 

(* Formula (7) *) 

 

abinputs = {{2, 3}, {3, 4}, {4, 5}, {2, 4}, {2, 5}, {4, 5}, {4, 6}, {4, 7}, {4, 8}, {4, 9}, {4, 10}, {4, 11}, {4, 12}}; 

(* Table 4 *) 
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TableForm[ Table[sol = ncomp[ n, abinputs[[col,1]], abinputs[[col,2]]];  If[sol>0, sol, ""], {n, 1, 25}, col, 1, Length[abinputs]}]]] 

(* Table 5 *) 

TableForm[ Table[sol = ncompk[ n, k, 2, 5]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]] 

(* Table 6 *) 

TableForm[ Table[sol = ncompk[ n, k, 3, 7]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 6}]] 

(* Table 9 *) 

TableForm[ Table[sol = npart[n, a, 10]; If[sol>0, sol, ""], {n, 1, 25}, {a, 10, 2, -1}]] 

(* Table 10a *) 

TableForm[ Table[sol = npartk[n, k, 2, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]] 

(* Table 10b *) 

TableForm[ Table[sol = npartk[n, k, 3, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]] 

(* Table 10c *) 

TableForm[ Table[sol = npartk[n, k, 4, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]] 

(* Table 10d *) 

TableForm[ Table[sol = npartk[n, k, 5, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]] 

(* Table 10e *) 

TableForm[ Table[sol = npartk[n, k, 6, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]] 

(* Table 10f *) 

TableForm[ Table[sol = npartk[n, k, 7, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]] 

(* Table 10g *) 

TableForm[ Table[sol = npartk[n, k, 8, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]] 

(* Table 10h *) 

TableForm[ Table[sol = npartk[n, k, 9, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]] 

(* Table 10i *) 

TableForm[ Table[sol = npartk[n, k, 10, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]] 


