
Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 1 of 36

A Unified Approach to Algorithms Generating
Unrestricted and Restricted Integer Compositions and Integer Partitions

John Douglas (J.D.) Opdyke*

Abstract

An original algorithm is presented that generates both restricted integer compositions and restricted integer
partitions that can be constrained simultaneously by a) upper and lower bounds on the number of summands
(�parts�) allowed, and b) upper and lower bounds on the values of those parts. The algorithm can implement each
constraint individually, or no constraints to generate unrestricted sets of integer compositions or partitions. The
algorithm is recursive, based directly on very fundamental mathematical constructs, and given its generality,
reasonably fast with good time complexity. A general, closed form solution to the open problem of counting the
number of integer compositions doubly restricted in this manner also is presented; its formulaic link to an
analogous solution for counting doubly-restricted integer partitions is shown to mirror the algorithmic link between
these two objects.

Mathematics Subject Classifications: 05A07, 11P82, 11Y16, 11Y55
Keywords: Integer Compositions, Integer Partitions, Bounded Compositions, Bounded Partitions, Pascal�s triangle, Fibonacci

© 2008 by John Douglas Opdyke. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted
without explicit permission provided that full credit, including © notice, is given to the source.

Introduction

A list of integers greater than zero that sum to the positive integer n is an integer partition of n. The set of all such
lists is the set of all integer partitions of n. For example, for n=4, the set of integer partitions includes the lists 1 1 1
1, 1 1 2, 2 2, 1 3, and 4. When the ordering of the summands (�parts�) matters, these become the integer
compositions of n: 1 1 1 1, 2 1 1, 1 2 1, 1 1 2 , 2 2, 3 1, 1 3, and 4. A number of algorithms exist for generating all
compositions, and other, quite distinct algorithms exist for generating all partitions. Knuth (1997) is widely known
and used for compositions, and others include Ehrlich (1973), Klingsberg (1982), Ruskey (2003), Arndt (2008), and
Stojmenovic (2008). For partitions the list is extensive, but a sample includes several presented in Knuth (1997),
two developed in Zoghbi & Stojmenivc (1998), which have been the state of the art, and several that have been
developed more recently in Yamanaka et al. (2007), including versions that generate restricted integer partitions as
well.

When the set of either integer compositions or integer partitions is �restricted,� it includes only a subset of the lists
that satisfy some restricting conditions. The most common such restrictions include constraining a) the number of
parts allowed in any of the lists, and/or b) the values of those parts (other restrictions include constraining the
compositions or partitions to fixed numbers of distinct parts, restricting the values of only the leading and trailing
parts, identifying only those compositions or partitions containing a particular part or excluding a particular part,
forcing consecutive parts to sum to specific values, etc). For example, the set of restricted integer compositions of
n=4 that have at least one part and no more than two parts, and parts with values within the range of 2 to 4,
includes: 2 2, and 4.

Both restricted integer compositions and restricted integer partitions are fundamental combinatorial objects
essential in many mathematical, statistical, and scientific applications, including, respectively, an extensive number
of combinatorial problems, efficient enumeration of restricted and unrestricted sample spaces, and atomic
behavioral problems in physics. Yet no general algorithm exists to generate either when the two abovementioned

* J.D. Opdyke is President of DataMineIt, a statistical data mining consultancy. He also is serving as the Quantitative Director
of Correlation Ventures, a venture capital firm. Email: JDOpdyke@DataMineIt.com, JDO@CorrelationVC.com, Website:
http://www.DataMineIt.com. The author is grateful to Toyo Johnson for her belief in the �Christmas tree� that is Pascal�s
triangle, and to Dean �Gordy� Fairchild, PhD, Director, American Express, work for whom motivated inquiry into this topic.

mailto:JDOpdyke@DataMineIt.com
mailto:JDO@CorrelationVC.com
http://www.datamineit.com/

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 1 of 36

A Unified Approach to Algorithms Generating
Unrestricted and Restricted Integer Compositions and Integer Partitions

John Douglas (J.D.) Opdyke*

Abstract

An original algorithm is presented that generates both restricted integer compositions and restricted integer
partitions that can be constrained simultaneously by a) upper and lower bounds on the number of summands
(�parts�) allowed, and b) upper and lower bounds on the values of those parts. The algorithm can implement each
constraint individually, or no constraints to generate unrestricted sets of integer compositions or partitions. The
algorithm is recursive, based directly on very fundamental mathematical constructs, and given its generality,
reasonably fast with good time complexity. A general, closed form solution to the open problem of counting the
number of integer compositions doubly restricted in this manner also is presented; its formulaic link to an
analogous solution for counting doubly-restricted integer partitions is shown to mirror the algorithmic link between
these two objects.

Mathematics Subject Classifications: 05A07, 11P82, 11Y16, 11Y55
Keywords: Integer Compositions, Integer Partitions, Bounded Compositions, Bounded Partitions, Pascal�s triangle, Fibonacci

© 2008 by John Douglas Opdyke. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted
without explicit permission provided that full credit, including © notice, is given to the source.

Introduction

A list of integers greater than zero that sum to the positive integer n is an integer partition of n. The set of all such
lists is the set of all integer partitions of n. For example, for n=4, the set of integer partitions includes the lists 1 1 1
1, 1 1 2, 2 2, 1 3, and 4. When the ordering of the summands (�parts�) matters, these become the integer
compositions of n: 1 1 1 1, 2 1 1, 1 2 1, 1 1 2 , 2 2, 3 1, 1 3, and 4. A number of algorithms exist for generating all
compositions, and other, quite distinct algorithms exist for generating all partitions. Knuth (1997) is widely known
and used for compositions, and others include Ehrlich (1973), Klingsberg (1982), Ruskey (2003), Arndt (2008), and
Stojmenovic (2008). For partitions the list is extensive, but a sample includes several presented in Knuth (1997),
two developed in Zoghbi & Stojmenivc (1998), which have been the state of the art, and several that have been
developed more recently in Yamanaka et al. (2007), including versions that generate restricted integer partitions as
well.

When the set of either integer compositions or integer partitions is �restricted,� it includes only a subset of the lists
that satisfy some restricting conditions. The most common such restrictions include constraining a) the number of
parts allowed in any of the lists, and/or b) the values of those parts (other restrictions include constraining the
compositions or partitions to fixed numbers of distinct parts, restricting the values of only the leading and trailing
parts, identifying only those compositions or partitions containing a particular part or excluding a particular part,
forcing consecutive parts to sum to specific values, etc). For example, the set of restricted integer compositions of
n=4 that have at least one part and no more than two parts, and parts with values within the range of 2 to 4,
includes: 2 2, and 4.

Both restricted integer compositions and restricted integer partitions are fundamental combinatorial objects
essential in many mathematical, statistical, and scientific applications, including, respectively, an extensive number
of combinatorial problems, efficient enumeration of restricted and unrestricted sample spaces, and atomic
behavioral problems in physics. Yet no general algorithm exists to generate either when the two abovementioned

* J.D. Opdyke is President of DataMineIt, a statistical data mining consultancy. He also is serving as the Quantitative Director
of Correlation Ventures, a venture capital firm. Email: JDOpdyke@DataMineIt.com, JDO@CorrelationVC.com, Website:
http://www.DataMineIt.com. The author is grateful to Toyo Johnson for her belief in the �Christmas tree� that is Pascal�s
triangle, and to Dean �Gordy� Fairchild, PhD, Director, American Express, work for whom motivated inquiry into this topic.

mailto:JDOpdyke@DataMineIt.com
mailto:JDO@CorrelationVC.com
http://www.datamineit.com/

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 2 of 36

restrictions are applied concurrently. The only similar algorithm for restricted integer compositions appears to be
that of Walsh (2000), which restricts individual part values with maximum values, but not minimum values, too
(neither does it allow only a minimum value to be specified without a maximum value). It also does not explicitly
allow the user to restrict the number of parts allowed. For restricted integer partitions, White (1970b) presents an
algorithm with only a lower value bound, and no bounds on the number of parts generated. Ruskey (2003), Knuth
(1974, 1994), and Yamanaka (2007) present algorithms that concurrently allow an upper bound on the number of
parts and an upper value bound, but not lower bounds, too (neither do they allow only a lower bound to be specified
without a maximum value bound). This paper develops a unified algorithm that does both: simultaneously restricts
both integer compositions and integer partitions with upper and lower bounds both the number of parts allowed, as
well as the values of those parts. No other algorithm can make this claim. It also generates the unrestricted cases
and singly-restricted cases of both objects as well. The algorithm, �RICs_RIPs� (Restricted Integer Compositions,
Restricted Integer Partitions), is based on the (Fibonacci series) off-diagonals of Pascal�s triangle and composition
and partition �paths� found in the triangle via its representation as ordered binomial coefficients. RICs_RIPs is
recursive and, given its generality, reasonably fast with good time complexity (approximately ()kΟ per
composition/partition, where k = # parts). This paper also provides a general, closed form solution to the open
problem of counting the number of integer compositions doubly restricted in this manner; its formulaic link to an
analogous solution for counting integer partitions is shown to mirror the previously unidentified algorithmic link
between these two objects. I initially focus below on restricted integer compositions, and return to partitions later
in the paper.

Background

Algorithms for generating all integer compositions of n are well known (see above), as is the formula for counting

the number of integer compositions of () ()1, 2 nn c n −= (see Andrews, 1998). For a specific number of parts k,

() 1
,

1
n

c n k
k

− 
=  − 

, and summing every k up to n gives () ()1

1 1

1
, 2

1

n n
n

k k

n
c n k

k
−

= =

− 
= = − ∑ ∑ , the total number of compositions.

Following Kimberling�s (2001) notation, if we restrict the values of those compositions by a minimum value of �a�
and a maximum value of �b� for

(), , ,c n k a b , then with b=∞ (in practice, b=n) we have () () 1
, , , , ,0,

1
n ka k

c n k a c n ka k
k

− + − ∞ = − ∞ = − 
. With a=2,

()
2

1
1

, , 2,
n

n
k

c n k F
  

−
=

∞ =∑ (see Grimaldi, 2000), where nF is the well known Fibonacci series defined by

1 2n n nF F F− −= + where F0 = 0 and F1 = 1. Put differently, ()1 | all parts > 1nF c n− = , or equivalently

()1 | all parts > 1nF c n= + . Note that when a=3, ()2 1 | all parts > 2nF c n= + , where 1 32 2 2n n nF F F− −= + ,

and when a=4, ()3 1 | all parts > 3nF c n= + , where 1 43 3 3n n nF F F− −= + , and so on (with F#n<a = 0 and F#a =
1; see Andrews, 1998; for a=3, 4, and 5, these are series A078012, A017898, and A017899, respectively, in Sloan�s
Online Encyclopedia of Integer Sequences). These �Fibonacci-shifted� relationships and their growth rates are
shown in Table 1.

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 3 of 36

Table 1: Counts of Integer Compositions with Minimum-Valued Parts

Asymptotic
Growth Rate →

2.0
 ()1 5 2 1.61803φ = + = 1.46557124

1.38028287

1.32474227

n all parts (a=1) all parts > 1 (a=2) all parts > 2 (a=3) all parts > 3 (a=4) all parts > 4 (a=5)

1 1 0 0 0 0
2 2 1 0 0 0
3 4 1 1 0 0
4 8 2 1 1 0
5 16 3 1 1 1
6 32 5 2 1 1
7 64 8 3 1 1
8 128 13 4 2 1
9 256 21 6 3 1

10 512 34 9 4 2
11 1,024 55 13 5 3
12 2,048 89 19 7 4
13 4,096 144 28 10 5

14 8,192 233 41 14 6

15 16,384 377 60 19 8
16 32,768 610 88 26 11
17 65,536 987 129 36 15
18 131,072 1,597 189 50 20
19 262,144 2,584 277 69 26
20 524,288 4,181 406 95 34

One of the many other places the ubiquitous Fibonacci series appears is as the sum of the off-diagonals of Pascal�s
triangle (see Figure 1 below).

Figure 1: Off-Diagonals of Pascal�s Triangle Sum to Fibonacci Series

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

 1 8 28 56 70 56 28 8 1
 1 9 36 84 126 126 84 36 9 1

1
1
2
3
5
8

13
21
34
55

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 4 of 36

What is less well known is that the off-diagonals themselves are the number of integer compositions of n with k
parts when a=2, that is, (), , 2,c n k ∞ (see Kimberling, 2002; in fact, the entire Triangle represents the number of
compositions of n with k parts, as shown in Chinn and Heubach (2003)). However, Pascal�s triangle not only
allows one to count the number of compositions of n with a=2, but also provides the structure for generating these
restricted integer compositions via composition �paths� that can be traced efficiently through the triangle. A
mathematical construct that allows for the efficient identification of restricted integer compositions is important
because, as a comparison of the growth rates of columns 2 vs. 3 through 6 in Table 1 shows, generating all integer
compositions of n, and then deleting those with any parts=1 (or any parts<a), would be extremely computationally
wasteful and expensive, not to mention runtime prohibitive for large n. So it is necessary to use an algorithm that
efficiently and directly identifies the restricted integer compositions of n for specified a and b (and k). We begin
with RICs_Base, the special �base case� of a=2 (and b=∞, or in practice, b=n), and easily modify RICs_Base to
the more general algorithm �RICs� to accommodate any specified values of k, a and b simultaneously.

The RICs_Base Algorithm � the �Base Case� of a=2

For any positive integer n ≥ 2, with a=2 (and b=n), ()max 2k n=    (more generally, max(k) = n a   , and when b ≤
n, min(k) = n b  ), and this is the number of off-diagonals for n = (row# + 2) in the �row-column,� ordered

binomial coefficient representation of Pascal�s triangle in Figure 2 below (each #
#

row
column
 
 
 

 is an �r-choose-c�

binomial coefficient, where r=row# and c=column#, and ()
!

! !
r r
c c r c
 

= =  − 
 the value of the node in the triangle as

shown in Figure 1).

Figure 2: (Ordered) Binomial Coefficient Representation of Pascal�s Triangle

()
() ()

() () ()
() () () ()

() () () () ()
() () () () () ()

() () () () () () ()
() () () () () () () ()

() () () () () () () () ()
() () () () () () () () () ()

0
0

1 1
0 1

2 2 2
0 1 2

3 3 3 3
0 1 2 3

4 4 4 4 4
0 1 2 3 4

5 5 5 5 5
0 1 2 3 5

6 6 6 6 6 6
0 1 2 4 5 6

7 7 7 7 7 7 7
0 1 3 4 5 6 7

8 8 8 8 8 8 8 8
0 2 3 4 5 6 7 8

9 9 9 9 9 9 9 9 9

1 2 3 4 5 6 7 8 9

5
4

6
3

7
2

8
1

9
0

 n = 11 = (9 + 2) = (row# + 2)
()max 11 2 5 off-diagonalsk n a= = =      

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 5 of 36

With a=2 (and b=n), the RICs_Base algorithm loops max(k) times and generates all restricted integer compositions
corresponding to each value of k on each loop. The movement of the algorithm through the triangle can be
described as follows:

Description of RICs_Base:

Start at the leftmost off-diagonal Node of the Triangle corresponding to the specified n. For the first off-diagonal
(where Column# = 0), simply output n. Otherwise proceed with the steps below for each off-diagonal.

1) Initialize and keep track of Row# and Column# for each call to the subroutine that moves from Node to Node

through the Triangle.

Let �Cell� be an array that will contain the composition parts.

Let �Level� = current Row# minus initial off-diagonal Row#. Level tracks how many �left turns� deep into the
triangle we move up and away from the off-diagonal. Level #1 represents the first slot containing the first part
of each of the compositions; Level #2 represents the second slot, etc. There are max(k) Levels in RICs_Base.

Initialize Level = 0. Keep track of Level for each call to the subroutine that moves from Node to Node through
the Triangle.

2) Always move towards the top of the triangle

Always turn to the Left Node first

For every Left turn:
a) Level ← Level + 1
b) Cell[Level] ← 2
c) Column# ← (Column# - 1)
d) Row# ← (Row# � 1)

Once away from the off-diagonal, recursively call the Node-to-Node subroutine with the Row#, Column#, and
Level values associated with the Node to the Right of the current Node (that is, recursively turn to the Right
Node)

For every Right turn:
e) Cell[Level] ← (Cell[Level]+1)
f) Row# ← (Row# � 1)

3) If Column# = 1, then enter an output loop (looping from j = 1 to Row#) that fills in the last two Cell values

(with the values of (j+1) and (row + 2 � j), respectively) and outputs the entire composition (i.e. all values of
Cell that have been filled in)

Pseudo code implementing RICs_Base is presented below.

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 6 of 36

BEGIN RICs_Base(n)

Define Subroutine Node2Node(row, col, level)
 if col ≠ 0 then do
 if Col = 1 then for j=1 to row do

 Cell[i-1] ← (j+1)
 Cell[i] ← (row + 2 - j)
 Print Cell[1] through Cell[i]

 endo
else do
 Cell[Level+1] ← 2

 Node2Node (row ← row � 1, col ← col � 1, Level ← Level+1)
 endo
 endo
 else Print n
 if Level > 0 & row > 1 then do

Cell[Level] ← Cell[Level]+1
 Node2Node (row ← row � 1, col ← col, Level ← Level)
 endo
End Node2Node

for i = 1 to floor(n/2) do
 Node2Node (row ← (n � 1 � i), col ← (i � 1), level ← 0)
endo

END RICs_Base

CALL RICs_Base(n ← 11)

Actual computer code that implements the RICs_Base algorithm in SAS® can be found in Appendix A (SAS® is the
largest privately owned software firm in the world, and with over 44,000 user sites, the SAS® platform is
ubiquitous. Only the Base SAS® module is needed to run the code presented in this paper. C++ code, too, will be
made available on the author�s website at http://www.DataMineIt.com). An example of its output for n=11 can be
seen in Table 2 below. The total number of restricted integer compositions is, as expected,

() 1 1011, unrestricted, 2, 55nc n k a b F F−= = = = ∞ = = = . The corresponding paths RICs_Base traces through
Pascal�s triangle (only for k=3 to maintain visual clarity) are shown in Figure 3 below. Each path is numbered and
the corresponding compositions are identified in Table 2.

http://www.datamineit.com/

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 7 of 36

Table 2: All Restricted Integer Compositions of n = 11 with parts > 1 (i.e. a=2, b=∞)

 Output from RICs_Base (n=11)

Composition.# Level1 Level2 Level3 Level4 Level5
1 11
2 2 9
3 3 8
4 4 7
5 5 6
6 6 5
7 7 4
8 8 3
9 9 2

10 2 2 7
11 2 3 6
12 2 4 5
13 2 5 4
14 2 6 3
15 2 7 2
16 3 2 6
17 3 3 5
18 3 4 4
19 3 5 3
20 3 6 2
21 4 2 5
22 4 3 4
23 4 4 3
24 4 5 2
25 5 2 4
26 5 3 3
27 5 4 2
28 6 2 3
29 6 3 2
30 7 2 2
31 2 2 2 5
32 2 2 3 4
33 2 2 4 3
34 2 2 5 2
35 2 3 2 4
36 2 3 3 3
37 2 3 4 2
38 2 4 2 3
39 2 4 3 2
40 2 5 2 2
41 3 2 2 4
42 3 2 3 3
43 3 2 4 2
44 3 3 2 3
45 3 3 3 2
46 3 4 2 2
47 4 2 2 3
48 4 2 3 2
49 4 3 2 2
50 5 2 2 2
51 2 2 2 2 3
52 2 2 2 3 2
53 2 2 3 2 2
54 2 3 2 2 2
55 3 2 2 2 2

→ Path 6

→ Path 1

→ Path 2

→ Path 3

→ Path 4

→ Path 5

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Ge

Figure 3: Composition Paths Traced by RICs_Base(n=11, k=3)

()
() ()

() () ()
() () () ()

() () () () ()
() () () () () ()

() () () () () () ()
() (

() ()
() () (

0
0

1 1
0 1

2 2 2
0 1 2

3 3 3 3
0 1 2 3

4 4 4 4 4
0 1 2 3 4

5 5 5 5 5
0 1 2 3 5

6 6 6 6 6 6
0 1 2 4 5 6

7
0

8
0

9
1

5
4

6
3

8
1

9
0

The RICs_Base algorithm is eff
identified once and only once by
is (almost always) true of the RI
generally.

But first, note that for the case of
can be used if the entire row of ro
same manner. This is easily inco
that is, to generate both restricted
ignored) and n b k n a≤ ≤      ).

The RICs Algorithm � the G

The �Base Case� RICs algorithm
and k with only two additional r
diagonals, and follows the same
satisfied: i) a ≤ Cell[Level] ≤ b, a
the parts already assigned in Ce
restrictions are trivially satisfied
program loop on the Node2Nod
algorithm from running on a us
k n b<    simply are ignored).
mink=2, maxk=5, a=2, and b=4, a
for k=3 to maintain visual clarity)

3

4

5

6

X
P1
nerating R

)
()

)

7
1

8
2

9
2

icient in
 a uniqu
Cs algo

 a=1 (an
w# = (n
rporated
 and unr

eneral

 for a=2
ules. R
 paths
nd ii) a

ll[]) / (th
because
e subro
er-missp
Table 3
nd Figu
.
P2
estri

()

()9
3

7
2

 tha
e pat
rithm

d b=
 � 1)
 into
estri

Cas

 and
ICs
exce
 ≤ av
e nu

 thes
utine
ecif
 sho
re 4
P

cted In

()8
3

t eve
h in t
, wh

∞), th
, rath
 RIC
cted

e of a

 b=∞
uses
pt th
erage
mbe
e val
 (wh

ied v
ws th
 show
P

tege

()

()

7
3

9
4

ry r
he T
ich g

at is
er th
s bel
integ

ny

 (RI
the s
at it
 am

r of
ues
en R
alue
e e
s th
P

r Com

()8
4

estri
rian
ene

, the
an th
ow t
er co

a, b

Cs_B
ame
only
ount
parts
simp
ule
of k

xamp
e cor
P

positions and Restricted Integer Partitions Page 8 of 36

() () () ()
() () () ()

() () () () ()

7 7 7 7
4 5 6 7

8 8 8 8
5 6 7 8

9 9 9 9 9
5 6 7 8 9

cted integer composition for n (with a=2 and b=∞) is
gle, and no extra steps are necessary or taken. This also
rates restricted integer compositions for any a, b, and k

 completely unrestricted case, the RICs algorithm still
e off-diagonal of row# = (n � 2), is traversed in the

o increase its range of application to any value of a �
mpositions (of course, where 1 ≤ a ≤ b ≤ n (b>n is

, and k

ase above) is easily generalized for any values of a, b,
 structure of Pascal�s triangle, loops on each of its off-
 continues up any specific path if two conditions are
 left ≤ b, where �average amount left� = (n � the sum of
 yet to be assigned in that path). The mink and maxk
ly become the low and high values, respectively, of the
ii) is applied to the off-diagonal node, it prevents the

n a>    , which is not possible; misspecified values of
le of all the restricted integer compositions of n=11,

responding paths RICs traces through the Triangle (only

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Inte

Table 3: All Restricted Integer Compositions of n = 11 with mink=2, maxk=5, a=2, b=4

Composition.# Level1 Level2 Level3 Level4 Level5
1 3 4 4
2 4 3 4
3 4 4 3
4 2 2 3 4
5 2 2 4 3
6 2 3 2 4
7 2 3 3 3
8 2 3 4 2
9 2 4 2 3

10 2 4 3 2
11 3 2 2 4
12 3 2 3 3
13 3 2 4 2
14 3 3 2 3
15 3 3 3 2
16 3 4 2 2
17 4 2 2 3
18 4 2 3 2
19 4 3 2 2
20 2 2 2 2 3
21 2 2 2 3 2
22 2 2 3 2 2
23 2 3 2 2 2
24 3 2 2 2 2

Figure 4: Composition Paths Traced by RICs(n=11, k=3, a=2, b=4)

()
(()

()
() (

() ()
() () (

() () ()
() () () (

() () () ()
() () () () (

0
0

1 1
0 1

2

3 3
0 1

4 4
0 1

5 5 5
0 1 2

6 6 6
0 1 2

7 7 7
0 1 3

8 8 8
0 2 3

9 9 9 9
1 2 3 4

7
2

8
1

9
0

RICs remains efficient in the same sense that RICs_
restricted integer composition once and only once,
words, it does not proceed up any left-path to the
composition that satisfies the specified values of min
Rule i) is not satisfied immediately upon turning rig
turns along the same Level (from Cell[Level]=a to ei
comes first) to know whether it needs to make any m

→ Path 1
→ Path 2

2

)
X
() ()2 2

1 2
3 3
0
X
) () ()

() () ()
) () () ()
() () () ()

2 3
4 4 4
2 3 4

5 5
3 5

6 6 6
4 5 6

5
4

6
3
P1
P

ger Compositions and Restricted Integer Partitions Page 9 of 36

) () () () ()
() () () () ()

) () () () () ()

7 7 7 7
4 5 6 7

8 8 8 8 8
4 5 6 7 8

9 9 9 9 9
5 6 7 8 9

Base is efficient in that it still uniquely identifies every valid
and takes no unnecessary �exploratory� left turns. In other
 next Level unless it contains at least one restricted integer
k, maxk, a, and b (Rule ii) ensures this). However, whenever
ht (which is fairly rare), RICs must make �exploratory� right
ther b, or a+[Row# � Col#] � the end of the Level � whichever
ore left turns further up into the Triangle (an example of this is

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 10 of 36

RICs(n=12, k=3, a=3, b=4) � upon RICs� first right turn, Cell[Level]=3, which is not valid, so another right turn
must be made to check to see whether Cell[Level]+1=4 is valid, and it is, leading to the composition 4 4 4). SAS®
code implementing the general case of RICs can be found in Appendix B, and pseudo code is presented below.

BEGIN RICs(n, mink, maxk, a, b)

Define Subroutine Node2Node(row, col, level, cum_sum_parts)
 if col ≠ 0 then do
 if col = 1 then for j = max[a, (n � cum_sum_parts � b)] to min[b, (n � cum_sum_parts � a)] do
 Cell[i � 1] ← j
 Cell[i] ← (n � cum_sum_parts � j)
 Print Cell[1] through Cell[i]
 endo
 else do
 Cell[Level+1] ← a
 cum_sum_parts_temp ← cum_sum_parts + a
 if (a≤ [(n � cum_sum_parts_temp)/(i � Level � 1)] ≤b & Cell[Level+1] ≤b) then
 Node2Node (row ← row�a+1, col ← col�1, Level ← Level+1, cum_sum_parts ← cum_sum_parts_temp)
 else for q=1 to min[(b � a), (row � a) � (col � 1)] do
 Cell[Level+1] ← Cell[Level+1] + 1
 cum_sum_parts_temp ← cum_sum_parts_temp + 1
 if (a≤ [(n � cum_sum_parts_temp)/(i � Level � 1)] ≤b & Cell[Level+1] ≤b) then do
 q2 ← q
 q ← min[(b � a), (row � a) � (col � 1)]
 Node2Node (row←row�a+1�q2, col←col�1, Level←Level+1, cum_sum_parts←cum_sum_parts_temp)
 endo
 endo
 endo
 endo
 else Print n
 if Level > 0 & row > 1 then do
 Cell[Level] ← Cell[Level]+1
 cum_sum_parts ← cum_sum_parts + 1
 if Cell[Level]<a then do
 cum_sum_parts ← cum_sum_parts + (a � Cell[Level])
 Cell[Level] ← a
 row ← row � (a � Cell[Level])
 endo
 toploop ← min[(b � Cell[Level]), (row � 1 � col)]
 if (a≤ [(n � cum_sum_parts)/(i � Level)] ≤b & Cell[Level] ≤b) then
 Node2Node (row←row � 1, col←col, Level← Level, cum_sum_parts ← cum_sum_parts)
 else for p=1 to toploop do
 Cell[Level] ← Cell[Level]+1
 cum_sum_parts ← cum_sum_parts + 1
 if (a≤ [(n � cum_sum_parts)/(i � Level)] ≤b & Cell[Level] ≤b) then do
 p2 ← p
 p ← toploop
 Node2Node (row←row � p2, col←col, Level← Level, cum_sum_parts ← cum_sum_parts)
 endo
 endo
 endo
End Node2Node

rowdec ← 0
for i = mink to maxk do
 if a≠1 then rowdec ← i
 if (a≤ (n/i) ≤b) then Node2Node (row ← n�1�rowdec, col ← i�1, level ← 0, cum_sum_parts ← 0)
endo

END RICs

CALL RICs(n←11, mink←2, maxk←5, a←2, b←4)

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 11 of 36

Note that Rule ii) is applied at the off-diagonal nodes as well, in the main loop on the Node2Node subroutine, so
that if no restricted integer compositions of, say, k=2 exist for n=11, a=2, and b=4 (which is true), then even if
mink=2 is specified, Node2Node is not called on the second off-diagonal, which corresponds to k=2.

Also note that the algorithm assigns a value of Cell[Level] = a (instead of 2 as in RICs_Base) for every left turn so
that RICs immediately �jumps� to the node to the right along the same Level where Cell[Level] = a, while
incrementing Cum_Sum_Parts (the sum of the parts already assigned to Cell[]) accordingly. This efficiently
eliminates unnecessary checks of Rules i) and ii) at every Node on a Level. But along a given Level, RICs still
must explicitly check whether Rule ii) is satisfied for every value of Cell[Level] = a through either b, or a+(Row# �
Col#) � the end of the Level � whichever comes first. In this sense, whenever Rule i) is not satisfied immediately
upon turning right (or after a right �jump�), which is rare, RICs must make additional �exploratory� right turns on
the same Level to know whether it needs to make any further left turns deeper up into the Triangle.

A final note on the efficiency of RICs: for this general case valid for any values for a and b (and k), the endpoints of
the output loop in RICs are defined exactly by:

Low value = max[a, (n � sum of the parts already assigned � b)]
High value = min[b, (n � sum of the parts already assigned � a)]

so no unnecessary looping is performed in the output loop.

Counting the Number of Restricted Integer Compositions � the General Case

Although for b=∞ (in practice, b=n), both () () 1
, , , , ,0,

1
n ka k

c n k a c n ka k
k

− + − ∞ = − ∞ = − 
 and

()
1

1
, ,

1

n a

k

n ka k
c n a

k

  

=

− + − 
∞ =  − ∑ are well known, to the best of this author�s knowledge (and that of C. Kimberling via

email correspondence, 07/24/08), no closed-form solutions exist for (), , ,c n k a b and (), ,c n a b generally, that is,
for any a, b, and k, (of course, where 1 ≤ a ≤ b ≤ n (b>n is ignored) and n b k n a≤ ≤      ) and they remain open
problems. Some related results include Heubach and Mansour�s (2004) presentation of the generating function for
the number of compositions of n with k parts in the set A. They use the generating function to solve for some
examples of specifically defined A, but do not solve for A generally as defined by an arbitrary range (that is, A
including all positive integers x such that a ≤ x ≤ b, which is what is needed here). Chinn and Heubach (2003)
present recursions for counting the number of compositions with k parts that exclude a particular part x, but it is not
obvious how this can be utilized to solve the complement of the general case of a ≤ x ≤ b by excluding entire sets of

parts where x < a and x> b (i.e. by solving for c cA , where A A = ∪ !). Conversely, Knopfmacher and Mays
(1996) identified a convenient recursive relationship for counting the number of compositions of n that contain at

least one part = x, but again, some of those compositions counted by () ()12 | one or more parts = n c n x− − will
include compositions with, for example, one or more parts = x+1, and if (x+1)<b, we cannot double count these

compositions when subtracting both counts from ()12 n− in
() () ()()12 | one or more parts = | one or more parts = 1n c n x c n x− − − + .

All of these results come tantalizingly close to a general solution, but the results of RICs in Table 4 below reveals a
very simple recursion as a solution to (), ,c n a b (zeros are excluded from all Tables of counts to enhance visual
clarity):

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 12 of 36

For n ≤ b, b has no effect on the outcome, so () ()
1

1
, , , ,

1

n a

k

n ka k
c n a b c n a

k

  

=

− + − 
= ∞ =  − ∑

 (1)

but for n > b, () ()
()

()
, , , ,

n a

i n b

c n a b c i a b
−

= −

= ∑

(1) can be combined into a single formula:

() () ()
()

()

max 1,

, , , ,
n a

i n b

c n a b I n b c i a b
−

= −  

= ≤ + ∑ (2)

where the indicator function I() = 1 if n ≤ b, and I() = 0 otherwise, and 1 ≤ a ≤ b ≤ n (b > n is ignored).

Table 4: Counts of Restricted Integer Compositions for Specified Values of n, a, and b: (), ,c n a b

 a= 2 3 4 2 2 4 4 4 4 4 4 4 4

n b= 3 4 5 4 5 5 6 7 8 9 10 11 12

1
2 1 1 1
3 1 1 1 1
4 1 1 1 2 2 1 1 1 1 1 1 1 1
5 2 1 2 3 1 1 1 1 1 1 1 1
6 2 1 4 4 1 1 1 1 1 1 1
7 3 2 5 7 1 1 1 1 1 1
8 4 1 1 8 10 1 1 1 2 2 2 2 2
9 5 1 2 11 16 2 2 2 2 3 3 3 3

10 7 3 1 17 24 1 3 3 3 3 4 4 4
11 9 3 24 37 2 4 4 4 4 5 5
12 12 2 1 36 57 1 2 4 6 6 6 6 7
13 16 4 3 52 87 3 3 5 7 9 9 9 9
14 21 6 3 77 134 3 6 7 9 11 13 13 13
15 28 5 1 112 205 1 7 10 12 14 16 18 18
16 37 6 1 165 315 1 7 13 17 19 21 23 25
17 49 10 4 241 483 4 7 16 22 27 29 31 33
18 65 11 6 354 741 6 11 20 29 36 41 43 45
19 86 11 4 518 1,137 4 16 26 38 47 55 60 62

20 114 16 2 760 1,744 2 20 35 51 63 73 81 86

21 151 21 5 1,113 2,676 5 21 46 67 86 98 109 117

22 200 22 10 1,632 4,105 10 25 59 89 116 135 148 159

23 265 27 10 2,391 6,298 10 34 75 118 154 184 203 217

24 351 37 6 3,505 9,662 6 47 97 157 206 248 278 298

25 465 43 7 5,136 14,823 7 57 127 207 278 333 378 408

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 13 of 36

We can see a similar recursion for (), , ,c n k a b in Tables 5 and 6 below, such that:

() ()
()

()

max 1,

, , , , 1, ,
n a

i n b

c n k a b c i k a b
−

= −  

= −∑ (3)

where c(i,0,a,b) = 1, 1 ≤ a ≤ b ≤ n (b > n is ignored), and n b k n a≤ ≤       .

Table 5: Counts of Restricted Integer Compositions for Specified Values of n, k, a=2, b=5: (), , ,c n k a b

 a= 2 2 2 2 2 2 2 2 2 2 2 2
 b= 5 5 5 5 5 5 5 5 5 5 5 5

n k= 1 2 3 4 5 6 7 8 9 10 11 12

1
2 1
3 1
4 1 1
5 1 2
6 3 1
7 4 3
8 3 6 1
9 2 10 4

10 1 12 10 1
11 12 20 5
12 10 31 15 1
13 6 40 35 6
14 3 44 65 21 1
15 1 40 101 56 7
16 31 135 120 28 1
17 20 155 216 84 8
18 10 155 336 203 36 1
19 4 135 456 413 120 9

20 1 101 546 728 322 45 1

21 65 580 1,128 728 165 10

22 35 546 1,554 1,428 486 55 1

23 15 456 1,918 2,472 1,206 220 11

24 5 336 2,128 3,823 2,598 705 66 1

25 1 216 2,128 5,328 4,950 1,902 286 12

So a solution to the problem of counting the number of compositions simultaneously restricted both in the number
of parts allowed, and the values of those parts, i.e. (),min max , ,c n k k k a b≤ ≤ , is simply

() ()
()

()max

min max 1,

,min max , , , 1, ,
n ak

k k i n b

c n k k k a b c i k a b
−

= = −  

 
 ≤ ≤ = − 
 
 

∑ ∑ (4)

where c(i,0,a,b) = 1, 1 ≤ a ≤ b ≤ n (b > n is ignored), and n b k n a≤ ≤       (Mathematica® code for generating all
Tables of counts contained herein is provided in Appendix D).

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 14 of 36

Formulae (2), (3), and (4) mirror the analogous solutions for counting doubly-restricted integer partitions presented
later in the paper. Although their recursive nature makes these formulae less convenient than, say, a simple
combinatoric equation or sum, they still provide closed form solutions to problems which had none before, and
their calculation is not onerous. Derivation of straightforward combinatoric equivalents of each is the topic of
continuing research.

Table 6: Counts of Restricted Integer Compositions for Specified Values of n, k, a=3, b=7: (), , ,c n k a b

 a= 3 3 3 3 3 3
 b= 7 7 7 7 7 7

n k= 1 2 3 4 5 6

1
2
3 1
4 1
5 1
6 1 1
7 1 2
8 3
9 4 1

10 5 3
11 4 6
12 3 10 1
13 2 15 4
14 1 18 10
15 19 20 1
16 18 35 5
17 15 52 15

18 10 68 35 1

19 6 80 70 6

20 3 85 121 21

21 1 80 185 56

22 68 255 126

23 52 320 246
24 35 365 426

25 20 381 666

Time Complexity of RICs

If k is not explicitly bounded by the RICs user then an estimate of the time complexity of RICs is

()
()

()
 , 1, ,

n a n a

k n b i n b

k c i k a b
−  

= = −  

  
  Ο −  
  

  
∑ ∑i to calculate (), ,c n a b compositions (if k is explicitly bounded by the RICs

user then for (),min max , ,c n k k k a b≤ ≤ this estimate is ()
()

()max

min

 , 1, ,
n ak

k k i n b

k c i k a b
−

= = −

  
  Ο −  
  

  
∑ ∑i). This estimate

assumes that ()RICsΟ is a function of only two parameters: 1) the number of compositions that exist given the
specified values of a and b (and mink and maxk), and 2) the number of parts in each of these compositions. Of

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 15 of 36

course, the algorithm does need to enforce Rules i) and ii) before calling the Node2Node subroutine, and it also
occasionally must make exploratory �right turns� (on a given Level) before calling Node2Node to decide whether
to turn left, deeper up into the Triangle, so on the one hand this may be an underestimate of the magnitude of

()RICsΟ . On the other hand, this may be an overestimate in that the number of times Node2Node is called for a
given composition is rarely as large as k � 1, because most �paths,� up to the output loop, contain many
compositions, with only the last two parts changing via the output loop; in other words, only when there exists a
single composition for a given k will it be necessary to call Node2Node the full k � 1 times, as assumed by this
estimate of ()RICsΟ (for example, compare Path 1 vs. Path 6 in Table 2). Graphs 1 and 2 below plot the relative
runtime (real and cpu) for the algorithm by the relative number of steps as estimated by

()
()

()
 , 1, ,

n a n a

k n b i n b

k c i k a b
−  

= = −  

  
  Ο −  
  

  
∑ ∑i , and a relationship that is very close to linear with unit slope is evident for

both real and cpu runtimes. For cpu time, the slight increase in slope for larger values of (), ,c n a b (here the

largest is () (), , 25, 2, 46,386c n a b c n a b n= = = = =) indicates that this approximation may still be

underestimating RICs� time complexity slightly, at least for moderate to large values of (), ,c n a b . But for most
practical applications, especially those focused on real runtimes, this appears to be a good approximation of

()RICsΟ . I compare ()RICsΟ to composition growth rates in Table 7 below. Note in column 5 that
() ()RICs , ,c n a bΟ is simply the weighted average number of parts per composition, or average k for a given

(), ,c n a b . So to the extent that this overall estimate of ()RICsΟ is accurate as shown in Graphs 1 and 2, the
asymptotic time complexity of RICs per composition is simply ~ ()kΟ .

Relative Runtimes (Real and CPU) by Relative Approximation of ()RICsΟ
Graph 1 Graph 2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Relative Values of Calculated Estimate of ()RICsΟ

R
el

at
iv

e
R

un
tim

es
 -

R
ea

l

R
el

at
iv

e
R

un
tim

es
 -

C
PU

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 16 of 36

Table 7: Counts of (Un)restricted Integer Compositions vs. ()()RICs , , 2, 5n k unrestricted a bΟ = = =

n

Unrestricted
Integer Compositions

() ()12 nc n −=

Restricted
Integer Compositions

(), ,c n a b ()RICsΟ
() ()RICs , ,c n a bΟ

= average k () ()1RICs 2 n−Ο

1 1 0 0
2 2 1 1 1.000 0.500
3 4 1 1 1.000 0.250
4 8 2 3 1.500 0.375
5 16 3 5 1.667 0.313
6 32 4 9 2.250 0.281
7 64 7 17 2.429 0.266
8 128 10 28 2.800 0.219
9 256 16 50 3.125 0.195

10 512 24 83 3.458 0.162
11 1,024 37 141 3.811 0.138
12 2,048 57 235 4.123 0.115
13 4,096 87 389 4.471 0.095

14 8,192 134 643 4.799 0.078

15 16,384 205 1,053 5.137 0.064
16 32,768 315 1,723 5.470 0.053
17 65,536 483 2,803 5.803 0.043
18 131,072 741 4,549 6.139 0.035
19 262,144 1,137 7,359 6.472 0.028
20 524,288 1,744 11,872 6.807 0.023
21 1,048,576 2,676 19,110 7.141 0.018
22 2,097,152 4,105 30,688 7.476 0.015
23 4,194,304 6,298 49,188 7.810 0.012
24 8,388,608 9,662 78,691 8.144 0.009
25 16,777,216 14,823 125,681 8.479 0.007

Potential Disadvantages of RICs

RICs obviously is not loopless, a characteristic which would allow it to achieve theoretically minimal time
complexity. Nor is it iterative, but rather, it is recursive, a quality some consider a disadvantage relative to iterative
algorithms, mostly on the basis of ease of manipulation and/or understanding (see Strojmenovic, 2008). However,
some believe the opposite in many cases, since some computers actually provide a speed premium to recursive
algorithms. Also, given the binomial coefficient representation of Pascal�s triangle that is the foundational structure
of the algorithm, RICs should lend itself to an iterative implementation, with iteration based on the row numbers
and column numbers of the Triangle. To avoid recursion, the row numbers and column numbers would have to be
updated dynamically. Completing a non-recursive version of RICs is the topic of continuing research.

A potentially more valid criticism of RICs (depending on the reason for its usage) is that the order of the restricted
integer compositions it generates is neither lexicographic nor antilexicographic. The implementation of RICs in
Appendix B is lexicographic for each value of k, and it easily can be modified to be antilexicographic for each
value of k, but it is neither across all values of k, that is, it is not (anti)lexicographic across all of the restricted
integer compositions generated. This may not matter to the user of RICs depending on his or her objectives, but if
one of these two common orderings is required, then an additional sort of the compositions generated by RICs is
required.

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 17 of 36

Advantages of RICs

RICs is flexible, allowing any combination of ranges of values for a) the number of parts allowed, and b) the values
of those parts, to be specified simultaneously. No other algorithm in the literature known to this author can make
this claim. RICs also is reasonably fast, mainly because it uniquely identifies each valid restricted integer
composition once and only once, and with minor exceptions, takes no unnecessary steps �looking for� these valid
compositions. On modern computers, even for moderately large n, RICs runs in only seconds. For all practical
purposes, its time complexity, based on empirical observation, appears to be approximately the product of the
number of compositions generated, and the number of parts in these compositions. Per composition, this
approximate time complexity is simply ~ ()kΟ . Finally, RICs is based on very fundamental and well understood
mathematical constructs, namely, Pascal�s triangle and its (Fibonacci series) off-diagonals, the fundamental
properties of which lend a generality to the algorithm that allows it, with only minor modifications, to generate
restricted integer partitions as well, as shown below.

From RICs to RIPs: Generating Restricted Integer Partitions

While several algorithms exist to count the number of restricted integer partitions under very general conditions
(Beyer and Swinehart, 1973, Sanchis and Squire, 1996, Uppuluri and Carpenter, 2006, and White, 1970a), none
known to this author actually generate restricted integer partitions under the two most common restrictions, applied
concurrently. Yet starting with RICs, only two minor modifications are required to create the �RIPs� algorithm to
efficiently generate restricted integer partitions under the same two restrictions: upper and lower bounds on the
number of parts allowed, and upper and lower bounds on the values of those parts. The two additional rules are: a)
for each right turn on a Level of the triangle, increment the value of �a,� the minimum part value, by one; and b) in
the output loop, decrease the high loop value by half the distance to the low value: high ← high � ceiling((high �
low)/2). The former restriction prevents a different ordering of the same partition from being generated at the lower
Levels, and the latter restriction prevents the same from occurring at the two highest Levels whose Cell[] values are
assigned in the output loop. Pseudo-code that implements either RICs or RIPs (i.e. the �RICs_RIPs� algorithm),
depending on a user-specified parameter, is provided below, with differences from RICs highlighted in red. SAS®
code for RICs_RIPs is provided in Appendix C (RICs_RIPs will be made available on the author�s website in C++
code as well). Its time complexity (see Graphs 3 and 4 below) and (dis)advantages are the same as those of RICs
above, and Table 8 below can be compared to Table 3 above, as it presents the output from RIPs instead of RICs
under the same specified parameter values of n, mink, maxk, a and b.

While facially the similarities between integer partitions and integer compositions are obvious, algorithms
presented in the literature to generate these two combinatorial objects, whether restricted or unrestricted, often are
quite dissimilar. RICs_RIPs is a unifying exception to this. Basing this algorithm on such a fundamental
mathematical construct as Pascal�s triangle provides an important algorithmic link between these two combinatorial
objects not previously identified in the literature, and one that warrants further study. This link is readily apparent
when comparing (2), (3), and (4) above to the formulae presented below, (5), (6), and (7), for counting doubly-
restricted integer partitions.

Table 8: All Restricted Integer Partitions of n = 11 with mink=2, maxk=5, a=2, b=4

Partition # Level1 Level2 Level3 Level4 Level5
1 3 4 4
2 2 2 3 4
3 2 3 3 3
4 2 2 2 2 3

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 18 of 36

BEGIN RICs_RIPs(comp_part, n, mink, maxk, a, b)

Define Subroutine Node2Node(row, col, level, cum_sum_parts, a)
 if col ≠ 0 then do
 high ← min[b, (n � cum_sum_parts � a)]
 if comp_part = part then high ← high � floor((high � low + 1)/2)
 if col = 1 then for j = max[a, (n � cum_sum_parts � b)] to high do
 Cell[i � 1] ← j
 Cell[i] ← (n � cum_sum_parts � j)
 Print Cell[1] through Cell[i]
 endo
 else do
 Cell[Level+1] ← a
 cum_sum_parts_temp ← cum_sum_parts + a
 if (a≤ [(n � cum_sum_parts_temp)/(i � Level � 1)] ≤b & Cell[Level+1] ≤b) then
 Node2Node (row ← row�a+1, col ← col�1, Level ← Level+1, cum_sum_parts ← cum_sum_parts_temp, a ← a)
 else for q=1 to min[(b � a), (row � a) � (col � 1)] do
 Cell[Level+1] ← Cell[Level+1] + 1
 if comp_part = part then a ← a + 1
 cum_sum_parts_temp ← cum_sum_parts_temp + 1
 if (a≤ [(n � cum_sum_parts_temp)/(i � Level � 1)] ≤b & Cell[Level+1] ≤b) then do
 q2 ← q
 q ← min[(b � a), (row � a) � (col � 1)]
 Node2Node (row←row�a+1�q2, col←col�1, Level←Level+1, cum_sum_parts←cum_sum_parts_temp, a ← a)
 endo
 endo
 endo
 endo
 else Print n
 if Level > 0 & row > 1 then do
 Cell[Level] ← Cell[Level]+1
 if comp_part = part then a ← a + 1
 cum_sum_parts ← cum_sum_parts + 1
 if Cell[Level]<a then do
 cum_sum_parts ← cum_sum_parts + (a � Cell[Level])
 Cell[Level] ← a
 row ← row � (a � Cell[Level])
 endo
 toploop ← min[(b � Cell[Level]), (row � 1 � col)]
 if (a≤ [(n � cum_sum_parts)/(i � Level)] ≤b & Cell[Level] ≤b) then
 Node2Node (row←row � 1, col←col, Level← Level, cum_sum_parts ← cum_sum_parts, a ← a)
 else for p=1 to toploop do
 Cell[Level] ← Cell[Level]+1
 if comp_part = part then a ← a + 1
 cum_sum_parts ← cum_sum_parts + 1
 if (a≤ [(n � cum_sum_parts)/(i � Level)] ≤b & Cell[Level] ≤b) then do
 p2 ← p
 p ← toploop
 Node2Node (row←row � p2, col←col, Level← Level, cum_sum_parts ← cum_sum_parts, a ← a)
 endo
 endo
 endo
End Node2Node

rowdec ← 0
for i = mink to maxk do
 if a≠1 then rowdec ← i
 if (a≤ (n/i) ≤b) then Node2Node (row ← n�1�rowdec, col ← i�1, level ← 0, cum_sum_parts ← 0, a ← a)
endo

END RICs_RIPs

CALL RICs_RIPs(comp_part←part, n←11, mink←2, maxk←5, a←2, b←4)

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 19 of 36

Counting the Number of Restricted Integer Partitions � the General Case

As previously mentioned, several algorithms exist to count the number of restricted integer partitions under very
general conditions, but none present the specific formula for counting the number of doubly-restricted integer
partitions with both upper and lower bounds. Andrews (1998) presents the general result from which (5), (6), and
(7) below can be derived, but for these specific formulae, Ruskey (2003) comes closest when presenting a formula
(4) for counting the number of doubly restricted integer partitions with only an upper bound on the part values (and
exactly k parts):

() ()
()

1

min , 2

max 1,

, , , 1,
n b

k

b n b k

i

p n k b p n b k i
−

−

− − +

  =     

= − −∑ (4)

(4) is similar to the recursion shown below in (6) that places both upper and lower bounds on part values for a
specific k, but first the case with no restrictions on the number of parts, k, is shown in (5):

() () ()
()

()

max 1,

, , , ,
n a

i n b

p n a b I n b p i n i b
−

= −  

= ≤ + −∑ where 1 ≤ a ≤ b ≤ n (b > n is ignored). (5)

Table 9 contains results based on (5). Note that when (5) is compared to (2), we can see that the term for the
minimum part value (�a�) in the summation is decremented for each value i of the n parameter, as is done explicitly
in the RICs_RIPs generation algorithm. Otherwise, the two formulae are identical, which is an intriguing finding.
For a specific number of parts, k, the formula for partitions below (6) shares the same similarity with the analogous
formula for compositions, (3):

() ()
()

()

max 1,

, , , , 1, ,
n a

i n b

p n k a b p i k n i b
−

= −  

= − −∑ (6)

where p(i,0,a,b) = 1, 1 ≤ a ≤ b ≤ n (b > n is ignored), and n b k n a≤ ≤       .

Tables 10a-10i below show results based on (6). Finally, (7) shows the doubly-restricted formula for partitions that
is analogous to (4) for compositions:

() ()
()

()max

min max 1,

,min max , , , 1, ,
n ak

k k i n b

p n k k k a b p i k n i b
−

= = −  

 
 ≤ ≤ = − − 
 
 

∑ ∑ (7)

where p(i,0,a,b) = 1, 1 ≤ a ≤ b ≤ n (b > n is ignored), and n b k n a≤ ≤       .

Note that the columns of Tables 9 and 10a-10i will be recognized as the coefficients of the Gaussian polynomials,
or the q-analogs of the binomial coefficient (see Koepf, 1998). This is not surprising given that the ordered
binomial coefficients of Pascal�s triangle form the basis of the algorithm, and this directly leads us to see (5), (6),
and (7) as specific results of the general solution for counting restricted integer partitions presented in Andrews
(1998). However, the specific, easily interpretable (and programmable) form of equations (5), (6), and (7) has not
been presented previously, which is probably why their important link to the completely original, analogous
solutions of (2), (3), and (4) for compositions have been missed until now. Consequently, they are worth presenting

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 20 of 36

in this first paper to unify the approach to generating (un)restricted integer compositions and (un)restricted integer
partitions.

Relative Runtimes (Real and CPU) by Relative Approximation of ()RIPsΟ
Graph 3 Graph 4

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Relative Values of Calculated Estimate of ()RIPsΟ

Table 9: Counts of Restricted Integer Partitions for Specified Values of n, a, and b:

 a= 10 9 8 7 6 5 4 3 2

n b= 10 10 10 10 10 10 10 10 10

1
2 1
3 1 1
4 1 1 2
5 1 1 1 2
6 1 1 1 2 4
7 1 1 1 1 2 4
8 1 1 1 1 2 3 7
9 1 1 1 1 1 2 4 8

10 1 1 1 1 1 2 3 5 12
11 1 2 5 13
12 1 2 4 8 20
13 1 2 4 9 22
14 1 2 3 6 11 31
15 1 2 4 6 14 36
16 1 2 3 4 8 17 48
17 1 2 2 4 8 19 55
18 1 2 2 3 5 11 25 73
19 1 1 1 2 5 11 28 83
20 1 1 1 1 3 7 15 34 107
21 1 3 7 15 40 123
22 1 4 8 19 47 154
23 2 4 9 20 54 177
24 1 3 6 11 26 66 220
25 1 3 5 12 27 74 251

R
el

at
iv

e
R

un
tim

es
 -

R
ea

l

R
el

at
iv

e
R

un
tim

es
 -

C
PU

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 21 of 36

Tables 10a-10i: Counts of Restricted Integer Partitions for Specified Values of n, k, a, and b:
10a: (a = 2)

 a= 2 2 2 2 2 2 2 2 2 2 2 2
 b= 10 10 10 10 10 10 10 10 10 10 10 10

n k= 1 2 3 4 5 6 7 8 9 10 11 12

1
2 1
3 1
4 1 1
5 1 1
6 1 2 1
7 1 2 1
8 1 3 2 1
9 1 3 3 1

10 1 4 4 2 1
11 4 5 3 1
12 5 7 5 2 1
13 4 8 6 3 1
14 4 10 9 5 2 1
15 3 11 11 7 3 1
16 3 12 15 10 5 2 1
17 2 12 17 13 7 3 1
18 2 13 21 18 11 5 2 1
19 1 12 23 22 14 7 3 1
20 13 27 28 20 11 5 2 1
21 11 28 33 25 15 7 3 1
22 10 31 40 33 21 11 5 2 1
23 8 31 45 40 27 15 7 3 1
24 7 33 52 51 36 22 11 5 2 1
25 5 31 57 59 45 28 15 7 3 1

Table 10b: a = 3

 a= 3 3 3 3 3 3 3 3 3 3 3 3
 b= 10 10 10 10 10 10 10 10 10 10 10 10

n k= 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3 1
4 1
5 1
6 1 1
7 1 1
8 1 2
9 1 2 1

10 1 3 1
11 3 2
12 4 3 1
13 4 4 1
14 4 5 2
15 3 7 3 1
16 3 8 5 1
17 2 9 6 2
18 2 10 9 3 1
19 1 10 11 5 1
20 1 10 14 7 2
21 10 16 10 3 1
22 9 19 13 5 1
23 8 20 17 7 2
24 7 23 21 11 3 1
25 5 23 26 14 5 1

Table 10c: a = 4
 a= 4 4 4 4 4 4 4 4 4 4 4 4
 b= 10 10 10 10 10 10 10 10 10 10 10 10

n k= 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4 1
5 1
6 1
7 1
8 1 1
9 1 1

10 1 2
11 2
12 3 1
13 3 1
14 4 2
15 3 3
16 3 4 1
17 2 5 1
18 2 7 2
19 1 7 3
20 1 8 5 1
21 8 6 1
22 8 9 2
23 7 10 3
24 7 13 5 1
25 5 14 7 1

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 22 of 36

Table 10d: a = 5
 a= 5 5 5 5 5 5 5 5 5 5 5 5
 b= 10 10 10 10 10 10 10 10 10 10 10 10

n k= 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5 1
6 1
7 1
8 1
9 1

10 1 1
11 1
12 2
13 2
14 3
15 3 1
16 3 1
17 2 2
18 2 3
19 1 4
20 1 5 1
21 6 1
22 6 2
23 6 3
24 6 5
25 5 6 1

Table 10f: a = 7

 a= 7 7 7 7 7 7 7 7 7 7 7 7
 b= 10 10 10 10 10 10 10 10 10 10 10 10

n k= 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7 1
8 1
9 1

10 1
11
12
13
14 1
15 1
16 2
17 2
18 2
19 1
20 1
21 1
22 1
23 2
24 3
25 3

Table 10h: a = 9

 a= 9 9 9 9 9 9 9 9 9 9 9 9
 b= 10 10 10 10 10 10 10 10 10 10 10 10

n k= 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7
8
9 1

10 1
11
12
13
14
15
16
17
18 1
19 1
20 1
21
22
23
24
25

Table 10e: a = 6
 a= 6 6 6 6 6 6 6 6 6 6 6 6
 b= 10 10 10 10 10 10 10 10 10 10 10 10

n k= 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6 1
7 1
8 1
9 1

10 1
11
12 1
13 1
14 2
15 2
16 3
17 2
18 2 1
19 1 1
20 3
21 3
22 4
23 4
24 5 1
25 4 1

Table 10g: a = 8

 a= 8 8 8 8 8 8 8 8 8 8 8 8
 b= 10 10 10 10 10 10 10 10 10 10 10 10

n k= 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7
8 1
9 1

10 1
11
12
13
14
15
16 1
17 1
18 2
19 1
20 1
21
22
23
24 1
25 1

Table 10i: a = 10

 a= 10 10 10 10 10 10 10 10 10 10 10 10
 b= 10 10 10 10 10 10 10 10 10 10 10 10

n k= 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7
8
9

10 1
11
12
13
14
15
16
17
18
19
20 1
21
22
23
24
25

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 23 of 36

Conclusions

This paper presents a unified algorithm (�RICs_RIPs�) that generates both restricted integer compositions and
restricted integer partitions under the two most commonly imposed restrictions simultaneously � upper and lower
bounds on the number of parts allowed, and concurrently, upper and lower bounds on the values of those parts (the
algorithm can implement each constraint individually, or no constraints for the unrestricted case). These two
fundamental combinatorial objects are important for mathematical, statistical, and scientific applications, yet no
other algorithms exist to generate either, let alone both, under these two common restrictions when applied
simultaneously. And while the basic connection between integer compositions and integer partitions superficially
is obvious, algorithms that generate them, whether restricted or unrestricted, often are quite dissimilar. The
RICs_RIPs algorithm is a unifying exception to this � it is the first to provide an important algorithmic link
between these two combinatorial objects due to its direct foundation on a very fundamental mathematical construct,
namely, Pascal�s triangle and its (Fibonacci series) off-diagonals. RICs_RIPs is recursive, and given its generality,
it is reasonably fast with good time complexity. Actual code implementing it in the most widely available
statistical software programming language is included herein. Finally, this paper also proposes a general, closed-
form solution to the previously open problem of counting the number of doubly-restricted integer compositions; its
formulaic link to an analogous solution for counting doubly-restricted integer partitions is shown to mirror the
previously unidentified algorithmic link between these two combinatorial objects.

References

Andrews, G. (1998), The Theory of Partitions, Cambridge University Press, Cambridge, UK.

Beyer, T. and Swinehart, D. (1973), Algorithm 448: Number of Multiply-Restricted Partitions, Communications of

the ACM, Vol.16 (6), 379.

Chinn, P. and Heubach, S. (2003), Compositions of n with No Occurrence of k, Congressus Numerantium, 164, 33-

51.

Ehrlich, G. (1973), Loopless Algorithms for Generating Permutations, Combinations, and Other Combinatorial

Configurations, Journal of the ACM, Vol.20, 500-513.

Grimaldi, R. (2001), Compositions Without the Summand 1, Congressus Numerantium, 152, 33-43.

Heubach, S. and Mansour, T. (2004), Compositions of n with Parts in a Set, Congressus Numerantium, 168, 127-

143.

Kimberling, C. (2008), email correspondence with author J.D. Opdyke, July 12, 2008 and July 24, 2008.

Kimberling, C. (2002), Path-Counting and Fibonacci Numbers, The Fibonacci Quarterly, Vol. 40(4).

Kimberling, C. (2001), Enumeration of Paths, Compositions of Integers, and Fibonacci Numbers, The Fibonacci

Quarterly, Vol. 39(5).

Klingsberg, P. (1982), A Gray Code for Compositions, Journal of Algorithms, Vol.3, 41-44.

Koepf, W. (1998), Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function

Identities, Braunschweig, Germany: Vieweg.

Knuth, D. and Szwarcfiter, J. (1974), A Structured Program to Generate All Topological Sorting Arrangements,
Information Processing Letters, 2, 153-157.

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 24 of 36

Knuth, D. (1994), The Stanford Graphbase, ACM Press, New York, New York, and Addison-Wesley, Reading,

MA.

Knuth, D. (1997), The Art of Computer Programming, Addison-Wesley, Reading, MA.

Ruskey, F. (2003), Combinatorial Generation, Working Version (1j-CSC 425/520).

Sanchis, L. and Squire, M. (1996), Parallel Algorithms for Counting and Randomly Generating Integer Partitions,

Journal of Parallel and Distributed Computing, Vol.34 (1), 29-35.

Sloan, N.J.A. (2008), editor, The Online Encyclopedia of Integer Sequences,

http://www.research.att.com/~njas/sequences

Stojmenovic, I. (2008), Generating All and Random Instances of a Combinatorial Object, in Handbook of Applied

Algorithms: Solving Scientific, Engineering and Practical Problems, Nayak, A. and Stojmenovic, I., eds., John
Wiley & Sons, Inc.

Uppuluri, V. and Carpenter, J. (2006), A Problem of Restricted Partitions, Naval Research Logistics Quarterly,

Vol.21 (1), 201-205.

Walsh, T. (2000), Loop-Free Sequencing of Bounded Integer Compositions, Journal of Combinatorial

Mathematics and Combinatorial Computing, Vol.33, 323-345.

White, J. (1970), Algorithm 373: Number of Doubly Restricted Partitions[A1], Communications of the ACM,

Vol.13(2), 120.

White, J. (1970), Algorithm 374: Restricted Partition Generator[A1], Communications of the ACM, Vol.13(2), 120.

Yamanaka, K., et al. (2007), Constant Time Generation of Integer Partitions, IEICE Transaction Fundamentals,

Vol.E90�A, No.5, May.

Appendix A

SAS® Code Implementing the RICs_Base Algorithm

RICs_Base Algorithm written in SAS® (requires on Base SAS® module):

/* code above macro */
/* code above macro */
/* code above macro */

%macro RICs_Base(comp_n=, file_dir=, logfile=);

*** Valid values for user-specified macro variable comp_n of the macro RICs_Base (Restricted Integer Compositions - Base
Case): comp_n - integers greater than 1
***;

*** save pre-macro SAS options to reinstitute after the macro run is completed.;

 proc optsave;
 run;

 options nosource
 pagesize=max
 MSYMTABMAX=max

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 25 of 36

 ls=256
 nocenter
 nodate
 nonumber
 nonotes
 nomprint
 nomlogic
 ;

*** verify that a valid file directory is specified for the output file.;

 libname dir_chk "&file_dir.";
 %if %sysfunc(libref(dir_chk)) ~= 0 %then %do;
 skip 2;
 %put The directory for the output file specified by the user in the RICs macro does not exist. Please create it.;
 skip 2;
 %GOTO end_RICs;
 %end;

*** redirect the SAS log file for use as the user-specified output file.;

 filename logprint "&file_dir.\&logfile.";
 proc printto log=logprint new;
 run;

*** check to make sure the macro variable values passed by the user are valid.;

 %let badval_not_integer=0;
 %if &comp_n.= %then %let badval_not_integer=1;
 %else %if %verify(&comp_n.,0123456789)>0 %then %let badval_not_integer=1;
 %else %if %substr(&comp_n.,1,1)=0 %then %let badval_not_integer=1;
 %if &badval_not_integer.=1 %then %do;
 %put;
 %put The user-specified value for the macro variable comp_n must be a positive integer.;
 %put;
 %GOTO end_RICs;
 %end;

 %if &comp_n.< 2 %then %do;
 %put;
 %put The user-specified value for the macro variable comp_n must be equal to or greater than 2.;
 %put;
 %GOTO end_RICs;
 %end;

 %macro celllabels;
 %do nm=1 %to &num_off_diags;
 level&nm.
 %end;
 %mend celllabels;
 %macro cellinitialize;
 %global comp_num;
 %let comp_num = 0;
 %do qp=1 %to &num_off_diags;
 %global cell&qp.;
 %let cell&qp. = ;
 %end;
 %mend cellinitialize;
 %macro cellvals(currlevel=);
 %do po=1 %to &currlevel.;
 %cmpres(&&cell&po.)
 %end;
 %mend cellvals;

 %macro Node2Node(nrow=, ncol=, level=);
 %if &ncol.=0 %then %do;
 %let binet_fibn =
%sysfunc(round(%sysevalf(%sysevalf(1/%sysfunc(sqrt(5)))*%sysevalf(%sysevalf(%sysevalf(%sysevalf(1+%sysfunc(sqrt(5)))/2)**
%eval(&comp_n.-1))-%sysevalf(%sysevalf(%sysevalf(1-%sysfunc(sqrt(5)))/2)**%eval(&comp_n.-1))))));
 %put There are %cmpres(&binet_fibn.) integer compositions of %cmpres(&comp_n.) with all part values greater than 1.
These are listed below.;
 %put;
 %put Comp.# %cmpres(%celllabels);
 %cellinitialize;
 %let cell1 = %cmpres(&comp_n.);
 %let comp_num = %eval(&comp_num.+1);
 %put %cmpres(&comp_num.) %cmpres(%cellvals(currlevel=&ih.));
 %end;
 %else %do;
 %let nxt_2_last = %eval(&ih.-1);
 %if &ncol. = 1 %then %do ji=1 %to &nrow.;
 %let cell&nxt_2_last. = %eval(&ji.+1);
 %let cell&ih. = %eval(&nrow. + 2 - &ji.);
 %let comp_num = %eval(&comp_num.+1);

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 26 of 36

 %put %cmpres(&comp_num.) %cmpres(%cellvals(currlevel=&ih.));
 %end;
 %else %do;
 %let level1 = %eval(&level.+1);
 %let cell&level1. = 2;
 %Node2Node(nrow=%eval(&nrow.-1),ncol=%eval(&ncol.-1),level=%eval(&level.+1));
 %end;
 %end;
 %if &nrow.>1 & &level.>0 %then %do;
 %let cell&level. = %eval(&&cell&level.+1);
 %Node2Node(nrow=%eval(&nrow.-1),ncol=&ncol.,level=&level.);
 %end;
 %mend Node2Node;

 %let num_off_diags = %sysfunc(floor(%sysevalf(&comp_n./2)));
 %do ih=1 %to &num_off_diags.;
 %Node2Node(nrow=%eval(&comp_n.-1-&ih.),ncol=%eval(&ih.-1),level=0);
 %end;

 %end_RICs:

*** redirect the SAS log file back to its default.;
 proc printto;
 run;

*** reinstitute the SAS options that were in place before the macro was called.;
 proc optload;
 run;

%mend RICs_Base;

%RICs_Base(comp_n=11,
 file_dir=C:\RICs_root,
 logfile=RICs_Base_n11.txt
);

/* code below macro */
/* code below macro */
/* code below macro */

Appendix B

SAS® Code Implementing the RICs Algorithm

RICs Algorithm written in SAS® (requires only Base SAS® module):

/* code above macro */
/* code above macro */
/* code above macro */

%macro RICs(comp_n=, mink=, maxk=, minpart=, maxpart=, file_dir=, logfile=);

*** Valid values for user-specified macro variables of the macro RICs (Restricted Integer Compositions):
 comp_n - 0 < integers (also referred to as 'n')
 maxpart - 0 < integers <= comp_n (also referred to as 'b')
 minpart - 0 < integers <= maxpart (also referred to as 'a')
 maxk - 0 < integers <= floor(comp_n/minpart)
 mink - ceiling(comp_n/maxpart) <= integers <= maxk
 file_dir - an existing file directory, such as c:\homedir\user, where the output file is placed
 logfile - a filename, such as RICs_run2.txt, which names the output file
***;

*** save SAS options in effect before calling RICs to reinstitute after RICs is completed.;

 proc optsave;
 run;

 options nosource
 pagesize=max
 MSYMTABMAX=max
 ls=256

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 27 of 36

 nocenter
 nodate
 nonumber
 nonotes
 nomprint
 nomlogic
 ;

*** verify that a valid file directory is specified for the output file.;

 libname dir_chk "&file_dir.";
 %if %sysfunc(libref(dir_chk)) ~= 0 %then %do;
 skip 2;
 %put The directory for the output file specified by the user in the RICs macro does not exist. Please create it.;
 skip 2;
 %GOTO end_RICs;
 %end;

*** redirect the SAS log file for use as the user-specified output file.;

 filename logprint "&file_dir.\&logfile.";
 proc printto log=logprint new;
 run;

*** check to make sure the macro variable values passed by the user are valid.;

 %let stopprogram = 0;

 %macro isBlank(param);
 %sysevalf(%superq(param)=,boolean)
 %mend isBlank;

 %let badval_not_integer=0;
 %if %isBlank(&comp_n.) %then %let badval_not_integer=1;
 %else %if %verify(&comp_n.,0123456789)>0 %then %let badval_not_integer=1;
 %else %if %substr(&comp_n.,1,1)=0 %then %let badval_not_integer=1;
 %if &badval_not_integer.=1 %then %do;
 %put;
 %put The user-specified value for the macro variable comp_n must be a positive integer.;
 %put;
 %let stopprogram = 1;
 %end;

 %let badval_not_integer=0;
 %if %isBlank(&mink.) %then %let badval_not_integer=1;
 %else %if %verify(&mink.,0123456789)>0 %then %let badval_not_integer=1;
 %else %if %substr(&mink.,1,1)=0 %then %let badval_not_integer=1;
 %if &badval_not_integer.=1 %then %do;
 %put;
 %put The user-specified value for the macro variable mink must be a positive integer.;
 %put;
 %let stopprogram = 1;
 %end;

 %let badval_not_integer=0;
 %if %isBlank(&maxk.) %then %let badval_not_integer=1;
 %else %if %verify(&maxk.,0123456789)>0 %then %let badval_not_integer=1;
 %else %if %substr(&maxk.,1,1)=0 %then %let badval_not_integer=1;
 %if &badval_not_integer.=1 %then %do;
 %put;
 %put The user-specified value for the macro variable maxk must be a positive integer.;
 %put;
 %let stopprogram = 1;
 %end;

 %let badval_not_integer=0;
 %if %isBlank(&minpart.) %then %let badval_not_integer=1;
 %else %if %verify(&minpart.,0123456789)>0 %then %let badval_not_integer=1;
 %else %if %substr(&minpart.,1,1)=0 %then %let badval_not_integer=1;
 %if &badval_not_integer.=1 %then %do;
 %put;
 %put The user-specified value for the macro variable minpart must be a positive integer.;
 %put;
 %let stopprogram = 1;
 %end;

 %let badval_not_integer=0;
 %if %isBlank(&maxpart.) %then %let badval_not_integer=1;
 %else %if %verify(&maxpart.,0123456789)>0 %then %let badval_not_integer=1;
 %else %if %substr(&maxpart.,1,1)=0 %then %let badval_not_integer=1;
 %if &badval_not_integer.=1 %then %do;
 %put;
 %put The user-specified value for the macro variable maxpart must be a positive integer.;
 %put;
 %let stopprogram = 1;

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 28 of 36

 %end;

 %if &stopprogram. ~= 1 %then %do;
 %if &minpart.<1 %then %do;
 %put;
 %put The user-specified value for the macro variable minpart must be an integer greater than zero.;
 %put;
 %let stopprogram = 1;
 %end;

 %if &maxpart.< &minpart. %then %do;
 %put;
 %put The user-specified value for the macro variable minpart must be equal to or smaller than that specified for
maxpart.;
 %put;
 %let stopprogram = 1;
 %end;

 %if &maxpart.<1 %then %do;
 %put;
 %put The user-specified value for the macro variable maxpart must be an integer greater than zero.;
 %put;
 %let stopprogram = 1;
 %end;

 %if &comp_n.< &minpart. %then %do;
 %put;
 %put The user-specified value for the macro variable minpart must be equal to or smaller than that specified for
comp_n.;
 %put;
 %let stopprogram = 1;
 %end;

 %if &maxk.< &mink. %then %do;
 %put;
 %put The user-specified value for the macro variable mink must be equal to or smaller than that specified for maxk.;
 %put;
 %let stopprogram = 1;
 %end;

 %if %sysevalf(%sysfunc(floor(%sysevalf(&comp_n./2)))< &mink., boolean) %then %do;
 %put;
 %put The user-specified value for the macro variable mink cannot be larger than that specified for comp_n divided by
2, rounded down.;
 %put;
 %let stopprogram = 1;
 %end;

 %end;

 %if &stopprogram.=1 %then %goto end_RICs;

*** find the actual maximum # of parts that result after the user-specified composition restrictions are imposed,
 in case it is not what the user specified in maxk.;

 %let maxk_hold = 0;
 %do zy=&maxk. %to &mink. %by -1;
 %if %sysevalf((&comp_n./&zy.)>=&minpart. & (&comp_n./&zy.)<=&maxpart., boolean) %then %do;
 %let maxk_hold = &zy.;
 %let zy = &mink.;
 %end;
 %end;

 %if &maxk_hold.=0 %then %do;
 %put;
 %put There are no restricted integer compositions of &comp_n. that satisfy the user-specified restrictions listed
below:;
 %put;
 %put List all restricted integer compositions of integer n = %cmpres(&comp_n.);
 %put with at least %cmpres(&mink.) parts and no more than %cmpres(&maxk.) parts;
 %put and only part values within the range from %cmpres(&minpart.) through %cmpres(&maxpart.).;
 %put;
 %goto end_RICs;
 %end;

 %if &maxk_hold. ~= &maxk. %then %do;
 %put;
 %put The maximum value possible for maxk is floor(comp_n / minpart). Because this is smaller than the user-specified
value (%cmpres(&maxk.)),;
 %put the value of maxk has reassigned to equal floor(comp_n / minpart) = %cmpres(&maxk_hold.).;
 %put;
 %let maxk = &maxk_hold.;
 %end;

 %let maxpart_hold = %sysfunc(min(&maxpart.,&comp_n.));

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 29 of 36

 %if &maxpart_hold. ~= &maxpart. %then %do;
 %put;
 %put The user-specified value for the macro variable maxpart cannot be larger than that specified for comp_n, so
maxpart has been set equal to comp_n.;
 %put;
 %let maxpart = &maxpart_hold.;
 %end;

*** define initialization and output/printing macros;

 %macro celllabels;
 %do nm=1 %to &maxk.;
 level&nm.
 %end;
 %mend celllabels;

 %macro cellinitialize;
 %global comp_num;
 %let comp_num = 0;
 %do qp=1 %to &maxk.;
 %global cell&qp.;
 %let cell&qp. = ;
 %end;
 %mend cellinitialize;

 %macro cellvals(currlevel=);
 %do po=1 %to &currlevel.;
 %cmpres(&&cell&po.)
 %end;
 %mend cellvals;

 %put;
 %put List all restricted integer compositions of integer n = %cmpres(&comp_n.);
 %put with at least %cmpres(&mink.) part(s) and no more than %cmpres(&maxk.) part(s);
 %put and only part values within the range from %cmpres(&minpart.) through %cmpres(&maxpart.).;
 %put;

 %put Comp.# %cmpres(%celllabels);
 %cellinitialize;

*** define the main Node2Node macro that starts at each of the "Fibonacci" off-diagonals (unless minpart=1) and traces
 composition paths through Pascals triangle;

 %macro Node2Node(nrow=, ncol=, level=, cum_sum_parts=);
 %if &ih.~=1 %then %do;
 %if &ncol. = 1 %then %do;
 %let nxt_2_last = %eval(&ih.-1);
 %let low = %sysfunc(max(&minpart.,%eval(&comp_n. - &cum_sum_parts. - &maxpart.)));
 %let high = %sysfunc(min(&maxpart.,%eval(&comp_n. - &cum_sum_parts. - &minpart.)));
 %do ji=&low. %to &high.;
 %let cell&nxt_2_last. = &ji.;
 %let comp_num = %eval(&comp_num.+1);
 %let cell&ih. = %eval(&comp_n. - &cum_sum_parts. - &ji.);
 %put %cmpres(&comp_num.) %cmpres(%cellvals(currlevel=&ih.));
 %end;
 %end;
 %else %do;
 %let level1 = %eval(&level.+1);
 %let cell&level1. = &minpart.;
 %let cum_sum_parts1 = %eval(&cum_sum_parts.+ &minpart.);
 %let toploop = %sysfunc(min(%eval(&maxpart.-&minpart.),%eval(&nrow.-&minpart.-&ncol.+1)));
 %let avg_amt_left = %sysevalf((&comp_n.-&cum_sum_parts1.)/(&ih.-&level1.));
 %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level1. <= &maxpart., boolean)
 %then %Node2Node(nrow=%eval(&nrow.- &minpart. + 1),ncol=%eval(&ncol.-
1),level=%eval(&level.+1),cum_sum_parts=&cum_sum_parts1.);
 %else %do sr=1 %to &toploop.;
 %let cell&level1. = %eval(&&cell&level1.+1);
 %let cum_sum_parts1 = %eval(&cum_sum_parts1.+1);
 %let avg_amt_left = %sysevalf((&comp_n.-&cum_sum_parts1.)/(&ih.-&level1.));
 %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level1. <= &maxpart.,
boolean) %then %do;
 %let sr_use = &sr.;
 %let sr = &toploop.;
 %Node2Node(nrow=%eval(&nrow.-&minpart.+1-&sr_use.),ncol=%eval(&ncol.-
1),level=%eval(&level.+1),cum_sum_parts=&cum_sum_parts1.);
 %end;
 %end;
 %end;
 %end;
 %else %do;
 %let cell1 = %cmpres(&comp_n.);
 %let comp_num = %eval(&comp_num.+1);
 %put %cmpres(&comp_num.) %cmpres(%cellvals(currlevel=1));
 %end;

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 30 of 36

 %if &nrow.>1 & &level.>0 %then %do;
 %let cell&level. = %eval(&&cell&level.+1);
 %let cum_sum_parts = %eval(&cum_sum_parts.+1);
 %if &&cell&level.<&minpart. %then %do;
 %let cum_sum_parts = %eval(&cum_sum_parts.+ &minpart. - &&cell&level.);
 %let nrow = %eval(&nrow.- &minpart. + &&cell&level.);
 %let cell&level. = &minpart.;
 %end;

 %let avg_amt_left = %sysevalf((&comp_n.-&cum_sum_parts.)/(&ih.-&level.));
 %let lowloop = %eval(&&cell&level.+1);
 %let toploop = %sysfunc(min(%eval(&maxpart.-&&cell&level.),%eval(&nrow.-1-&ncol.)));
 %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level. <= &maxpart., boolean)
 %then %Node2Node(nrow=%eval(&nrow.-1),ncol=&ncol.,level=&level.,cum_sum_parts=&cum_sum_parts.);
 %else %do vu=&lowloop. %to &toploop.;
 %let cell&level. = %eval(&&cell&level.+1);
 %let cum_sum_parts = %eval(&cum_sum_parts.+1);
 %let avg_amt_left = %sysevalf((&comp_n.-&cum_sum_parts.)/(&ih.-&level.));
 %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level. <= &maxpart., boolean)
%then %do;
 %let vu_use = &vu.;
 %let vu = &toploop.;
 %Node2Node(nrow=%eval(&nrow.-1-&vu_use.),ncol=&ncol.,level=&level.,cum_sum_parts=&cum_sum_parts.);
 %end;
 %end;
 %end;
 %mend Node2Node;

*** call Node2Node on each of the "Fibonacci" off-diagonals of Pascals triangle (or its horizontal row if minpart=1),
 tracking the "path" of the composition in the triangle via its combinatoric representation: "rows" on top and
"columns"
 on the bottom of the "n-choose-k" representation of the triangle.;

 %do ih=&mink. %to &maxk.;
 %let rowdec=&ih.;
 %if &minpart.=1 %then %let rowdec=0;
 %let avg_amt_left = %sysevalf(&comp_n./&ih.);
 %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart., boolean)
 %then %Node2Node(nrow=%eval(&comp_n.-1-&rowdec.),ncol=%eval(&ih.-1),level=0,cum_sum_parts=0);
 %end;
 %put;

 %end_RICs:

*** redirect the SAS log file back to its default.;

 proc printto;
 run;

*** reinstitute the SAS options that were in place before RICs was called.;

 proc optload;
 run;

%mend RICs;

%RICs(comp_n=11,
 mink=1,
 maxk=5,
 minpart=2,
 maxpart=4,
 file_dir=C:\RICs_Dir,
 logfile=RICs_n11_1k5_a2_b4.txt
);

/* code below RICs macro */
/* code below RICs macro */
/* code below RICs macro */

Appendix C

SAS® Code Implementing the RICs_RIPs Algorithm

RICs_RIPs Algorithm written in SAS® (requires only Base SAS® module):

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 31 of 36

/* code above macro */
/* code above macro */
/* code above macro */

%macro RICs_RIPs(comp_part=, part_n=, mink=, maxk=, minpart=, maxpart=, file_dir=, logfile=);

*** save SAS options in effect before calling RICs_RIPs to reinstitute after RICs_RIPs is completed.;

 proc optsave;
 run;

 options nosource
 pagesize=max
 MSYMTABMAX=max
 ls=256
 nocenter
 nodate
 nonumber
 nonotes
 nomprint
 nomlogic
 ;

*** Valid values for user-specified macro variables of the macro RICs_RIPs (Restricted Integer Compositions/Partitions):
 comp_part - comp or part (for composition or partition)
 part_n - 0 < integers (also referred to as 'n')
 maxpart - 0 < integers <= part_n (also referred to as 'b')
 minpart - 0 < integers <= maxpart (also referred to as 'a')
 maxk - 0 < integers <= floor(part_n/minpart)
 mink - ceiling(part_n/maxpart) <= positive integers <= maxk
 file_dir - an existing file directory, such as c:\homedir\user, where the output file is placed
 logfile - a filename, such as RICs_RIPs_run2.txt, which names the output file
***;

*** verify that a valid file directory is specified for the output file.;

 libname dir_chk "&file_dir.";
 %if %sysfunc(libref(dir_chk)) ~= 0 %then %do;
 skip 2;
 %put The directory for the output file specified by the user in the RICs_RIPs macro does not exist. Please create
it.;
 skip 2;
 %GOTO end_RICs_RIPs;
 %end;

*** redirect the SAS log file for use as the user-specified output file.;

 filename logprint "&file_dir.\&logfile.";
 proc printto log=logprint new;
 run;

*** check to make sure the macro variable values passed by the user are valid.;

 %let stopprogram = 0;

 %if %upcase(&comp_part.)~=COMP & %upcase(&comp_part.)~=PART %then %do;
 %put;
 %put The user-specified value for the macro variable comp_part must be 'COMP' (composition) or 'PART' (partition).;
 %put;
 %let stopprogram = 1;
 %end;

 %macro isBlank(param);
 %sysevalf(%superq(param)=,boolean)
 %mend isBlank;

 %if %upcase(&comp_part.)=COMP %then %let comb_obj=composition;
 %else %let comb_obj=partition;

 %let badval_not_integer=0;
 %if %isBlank(&part_n.) %then %let badval_not_integer=1;
 %else %if %verify(&part_n.,0123456789)>0 %then %let badval_not_integer=1;
 %else %if %substr(&part_n.,1,1)=0 %then %let badval_not_integer=1;
 %if &badval_not_integer.=1 %then %do;
 %put;
 %put The user-specified value for the macro variable part_n must be a positive integer.;
 %put;
 %let stopprogram = 1;
 %end;

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 32 of 36

 %let badval_not_integer=0;
 %if %isBlank(&mink.) %then %let badval_not_integer=1;
 %else %if %verify(&mink.,0123456789)>0 %then %let badval_not_integer=1;
 %else %if %substr(&mink.,1,1)=0 %then %let badval_not_integer=1;
 %if &badval_not_integer.=1 %then %do;
 %put;
 %put The user-specified value for the macro variable mink must be a positive integer.;
 %put;
 %let stopprogram = 1;
 %end;

 %let badval_not_integer=0;
 %if %isBlank(&maxk.) %then %let badval_not_integer=1;
 %else %if %verify(&maxk.,0123456789)>0 %then %let badval_not_integer=1;
 %else %if %substr(&maxk.,1,1)=0 %then %let badval_not_integer=1;
 %if &badval_not_integer.=1 %then %do;
 %put;
 %put The user-specified value for the macro variable maxk must be a positive integer.;
 %put;
 %let stopprogram = 1;
 %end;

 %let badval_not_integer=0;
 %if %isBlank(&minpart.) %then %let badval_not_integer=1;
 %else %if %verify(&minpart.,0123456789)>0 %then %let badval_not_integer=1;
 %else %if %substr(&minpart.,1,1)=0 %then %let badval_not_integer=1;
 %if &badval_not_integer.=1 %then %do;
 %put;
 %put The user-specified value for the macro variable minpart must be a positive integer.;
 %put;
 %let stopprogram = 1;
 %end;

 %let badval_not_integer=0;
 %if %isBlank(&maxpart.) %then %let badval_not_integer=1;
 %else %if %verify(&maxpart.,0123456789)>0 %then %let badval_not_integer=1;
 %else %if %substr(&maxpart.,1,1)=0 %then %let badval_not_integer=1;
 %if &badval_not_integer.=1 %then %do;
 %put;
 %put The user-specified value for the macro variable maxpart must be a positive integer.;
 %put;
 %let stopprogram = 1;
 %end;

 %if &stopprogram. ~= 1 %then %do;
 %if &minpart.<1 %then %do;
 %put;
 %put The user-specified value for the macro variable minpart must be an integer greater than zero.;
 %put;
 %let stopprogram = 1;
 %end;

 %if &maxpart.< &minpart. %then %do;
 %put;
 %put The user-specified value for the macro variable minpart must be equal to or smaller than that specified for
maxpart.;
 %put;
 %let stopprogram = 1;
 %end;

 %if &maxpart.<1 %then %do;
 %put;
 %put The user-specified value for the macro variable maxpart must be an integer greater than zero.;
 %put;
 %let stopprogram = 1;
 %end;

 %if &part_n.< &minpart. %then %do;
 %put;
 %put The user-specified value for the macro variable minpart must be equal to or smaller than that specified for
part_n.;
 %put;
 %let stopprogram = 1;
 %end;

 %if &maxk.< &mink. %then %do;
 %put;
 %put The user-specified value for the macro variable mink must be equal to or smaller than that specified for maxk.;
 %put;
 %let stopprogram = 1;
 %end;

 %if %sysevalf(%sysfunc(floor(%sysevalf(&part_n./2)))< &mink., boolean) %then %do;
 %put;
 %put The user-specified value for the macro variable mink cannot be larger than that specified for part_n divided by
2, rounded down.;
 %put;

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 33 of 36

 %let stopprogram = 1;
 %end;

 %end;

 %if &stopprogram.=1 %then %goto end_RICs_RIPs;

*** find the actual maximum # of parts that result after the user-specified composition/partition restrictions are
imposed,
 in case it is not what the user specified in maxk.;

 %let maxk_hold = 0;
 %do zy=&maxk. %to &mink. %by -1;
 %if %sysevalf((&part_n./&zy.)>=&minpart. & (&part_n./&zy.)<=&maxpart., boolean) %then %do;
 %let maxk_hold = &zy.;
 %let zy = &mink.;
 %end;
 %end;

 %if &maxk_hold.=0 %then %do;
 %put;
 %put There are no integer %cmpres(&comb_obj.) of &part_n. that satisfy the user-specified restrictions listed
below:;
 %put;
 %put List all integer %cmpres(&comb_obj.)s of integer n = %cmpres(&part_n.);
 %put with at least %cmpres(&mink.) parts and no more than %cmpres(&maxk.) parts;
 %put and only part values within the range from %cmpres(&minpart.) through %cmpres(&maxpart.).;
 %put;
 %goto end_RICs_RIPs;
 %end;

 %if &maxk_hold. ~= &maxk. %then %do;
 %put;
 %put The maximum value possible for maxk is floor(part_n / minpart). Because this is smaller than the user-specified
value (%cmpres(&maxk.)),;
 %put the value of maxk has reassigned to equal floor(part_n / minpart) = %cmpres(&maxk_hold.).;
 %put;
 %let maxk = &maxk_hold.;
 %end;

 %let maxpart_hold = %sysfunc(min(&maxpart.,&part_n.));
 %if &maxpart_hold. ~= &maxpart. %then %do;
 %put;
 %put The user-specified value for the macro variable maxpart cannot be larger than that specified for part_n, so
maxpart has been set equal to part_n.;
 %put;
 %let maxpart = &maxpart_hold.;
 %end;

*** define initialization and output/printing macros;

 %macro celllabels;
 %do nm=1 %to &maxk.;
 level&nm.
 %end;
 %mend celllabels;

 %macro cellinitialize;
 %global part_num;
 %let part_num = 0;
 %do qp=1 %to &maxk.;
 %global cell&qp.;
 %let cell&qp. = ;
 %end;
 %mend cellinitialize;

 %macro cellvals(currlevel=);
 %do po=1 %to &currlevel.;
 %cmpres(&&cell&po.)
 %end;
 %mend cellvals;

 %put;
 %put List all integer %cmpres(&comb_obj.)s of integer n = %cmpres(&part_n.);
 %put with at least %cmpres(&mink.) part(s) and no more than %cmpres(&maxk.) part(s);
 %put and only part values within the range from %cmpres(&minpart.) through %cmpres(&maxpart.).;
 %put;

 %if %upcase(&comp_part.)=COMP %then %put Comp.# %cmpres(%celllabels);
 %else %put Part.# %cmpres(%celllabels);
 %cellinitialize;

*** define the main Node2Node macro that starts at each of the "Fibonacci" off-diagonals (unless minpart=1) and traces
 composition/partition paths through Pascals triangle;

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 34 of 36

 %macro Node2Node(nrow=, ncol=, level=, cum_sum_parts=, minpart=);
 %if &ih.~=1 %then %do;
 %if &ncol. = 1 %then %do;
 %let nxt_2_last = %eval(&ih.-1);
 %let low = %sysfunc(max(&minpart.,%eval(&part_n. - &cum_sum_parts. - &maxpart.)));
 %let high = %sysfunc(min(&maxpart.,%eval(&part_n. - &cum_sum_parts. - &minpart.)));
 %if %upcase(&comp_part.)=PART %then %let high = %eval(&high.-%sysfunc(floor(%sysevalf((&high.-&low.+1)/2))));
 %do ji=&low. %to &high.;
 %let cell&nxt_2_last. = &ji.;
 %let part_num = %eval(&part_num.+1);
 %let cell&ih. = %eval(&part_n. - &cum_sum_parts. - &ji.);
 %put %cmpres(&part_num.) %cmpres(%cellvals(currlevel=&ih.));
 %end;
 %end;
 %else %do;
 %let level1 = %eval(&level.+1);
 %let cell&level1. = &minpart.;
 %let cum_sum_parts1 = %eval(&cum_sum_parts.+ &minpart.);
 %let minpart1 = &minpart.;
 %let toploop = %sysfunc(min(%eval(&maxpart.-&minpart.),%eval(&nrow.-&minpart.-&ncol.+1)));
 %let avg_amt_left = %sysevalf((&part_n.-&cum_sum_parts1.)/(&ih.-&level1.));
 %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level1. <= &maxpart., boolean)
 %then %Node2Node(nrow=%eval(&nrow.- &minpart. + 1),ncol=%eval(&ncol.-
1),level=%eval(&level.+1),cum_sum_parts=&cum_sum_parts1., minpart=&minpart.);
 %else %do sr=1 %to &toploop.;
 %let cell&level1. = %eval(&&cell&level1.+1);
 %if %upcase(&comp_part.)=PART %then %let minpart1 = %eval(&minpart1.+1);
 %let cum_sum_parts1 = %eval(&cum_sum_parts1.+1);
 %let avg_amt_left = %sysevalf((&part_n.-&cum_sum_parts1.)/(&ih.-&level1.));
 %if %sysevalf(&avg_amt_left. >= &minpart1. & &avg_amt_left. <= &maxpart. & &&cell&level1. <= &maxpart.,
boolean) %then %do;
 %let sr_use = &sr.;
 %let sr = &toploop.;
 %Node2Node(nrow=%eval(&nrow.-&minpart1.+1-&sr_use.),ncol=%eval(&ncol.-
1),level=%eval(&level.+1),cum_sum_parts=&cum_sum_parts1.,minpart=&minpart1.);
 %end;
 %end;
 %end;
 %end;
 %else %do;
 %let cell1 = %cmpres(&part_n.);
 %let part_num = %eval(&part_num.+1);
 %put %cmpres(&part_num.) %cmpres(%cellvals(currlevel=1));
 %end;

 %if &nrow.>1 & &level.>0 %then %do;
 %let cell&level. = %eval(&&cell&level.+1);
 %if %upcase(&comp_part.)=PART %then %let minpart = %eval(&minpart.+1);
 %let cum_sum_parts = %eval(&cum_sum_parts.+1);
 %if &&cell&level.<&minpart. %then %do;
 %let cum_sum_parts = %eval(&cum_sum_parts.+ &minpart. - &&cell&level.);
 %let nrow = %eval(&nrow.- &minpart. + &&cell&level.);
 %let cell&level. = &minpart.;
 %end;

 %let avg_amt_left = %sysevalf((&part_n.-&cum_sum_parts.)/(&ih.-&level.));
 %let lowloop = %eval(&&cell&level.+1);
 %let toploop = %sysfunc(min(%eval(&maxpart.-&&cell&level.),%eval(&nrow.-1-&ncol.)));
 %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level. <= &maxpart., boolean)
 %then %Node2Node(nrow=%eval(&nrow.-1),ncol=&ncol.,level=&level.,cum_sum_parts=&cum_sum_parts.,minpart=&minpart.);
 %else %do vu=&lowloop. %to &toploop.;
 %let cell&level. = %eval(&&cell&level.+1);
 %if %upcase(&comp_part.)=PART %then %let minpart = %eval(&minpart.+1);
 %let cum_sum_parts = %eval(&cum_sum_parts.+1);
 %let avg_amt_left = %sysevalf((&part_n.-&cum_sum_parts.)/(&ih.-&level.));
 %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart. & &&cell&level. <= &maxpart., boolean)
%then %do;
 %let vu_use = &vu.;
 %let vu = &toploop.;
 %Node2Node(nrow=%eval(&nrow.-1-
&vu_use.),ncol=&ncol.,level=&level.,cum_sum_parts=&cum_sum_parts.,minpart=&minpart.);
 %end;
 %end;
 %end;
 %mend Node2Node;

*** call Node2Node on each of the "Fibonacci" off-diagonals of Pascals triangle (or its horizontal row if minpart=1),
 tracking the "path" of the composition/partition in the triangle via its combinatoric representation: "rows" on top
and "columns"
 on the bottom of the "n-choose-k" representation of the triangle.;

 %do ih=&mink. %to &maxk.;
 %let rowdec=&ih.;
 %if &minpart.=1 %then %let rowdec=0;
 %let avg_amt_left = %sysevalf(&part_n./&ih.);

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 35 of 36

 %if %sysevalf(&avg_amt_left. >= &minpart. & &avg_amt_left. <= &maxpart., boolean)
 %then %Node2Node(nrow=%eval(&part_n.-1-&rowdec.),ncol=%eval(&ih.-1),level=0,cum_sum_parts=0,minpart=&minpart.);
 %end;
 %put;

 %end_RICs_RIPs:

*** redirect the SAS log file back to its default.;

 proc printto;
 run;

*** reinstitute the SAS options that were in place before RICs_RIPs was called.;

 proc optload;
 run;

%mend RICs_RIPs;

%RICs_RIPs(comp_part=part,
 part_n=11,
 mink=2,
 maxk=5,
 minpart=2,
 maxpart=4,
 file_dir=C:\RICs_Dir,
 logfile=RIPs_n11_1k5_a2_b4.txt
);

Appendix D

Mathematica® Code Implementing Counting Formulae for Doubly-Restricted Integer
Compositions [formulae (2) and (4)] and Doubly-Restricted Integer Partitions [formulae (5) and
(7)]

(* Formula (2) *)

(* Formula (4) *)

(* Formula (5) *)

(* Formula (7) *)

abinputs = {{2, 3}, {3, 4}, {4, 5}, {2, 4}, {2, 5}, {4, 5}, {4, 6}, {4, 7}, {4, 8}, {4, 9}, {4, 10}, {4, 11}, {4, 12}};

(* Table 4 *)

Forthcoming � Journal of Mathematical Modelling and Algorithms

©2008 J.D. Opdyke Algorithms Generating Restricted Integer Compositions and Restricted Integer Partitions Page 36 of 36

TableForm[Table[sol = ncomp[n, abinputs[[col,1]], abinputs[[col,2]]]; If[sol>0, sol, ""], {n, 1, 25}, col, 1, Length[abinputs]}]]]

(* Table 5 *)

TableForm[Table[sol = ncompk[n, k, 2, 5]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]]

(* Table 6 *)

TableForm[Table[sol = ncompk[n, k, 3, 7]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 6}]]

(* Table 9 *)

TableForm[Table[sol = npart[n, a, 10]; If[sol>0, sol, ""], {n, 1, 25}, {a, 10, 2, -1}]]

(* Table 10a *)

TableForm[Table[sol = npartk[n, k, 2, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]]

(* Table 10b *)

TableForm[Table[sol = npartk[n, k, 3, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]]

(* Table 10c *)

TableForm[Table[sol = npartk[n, k, 4, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]]

(* Table 10d *)

TableForm[Table[sol = npartk[n, k, 5, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]]

(* Table 10e *)

TableForm[Table[sol = npartk[n, k, 6, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]]

(* Table 10f *)

TableForm[Table[sol = npartk[n, k, 7, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]]

(* Table 10g *)

TableForm[Table[sol = npartk[n, k, 8, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]]

(* Table 10h *)

TableForm[Table[sol = npartk[n, k, 9, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]]

(* Table 10i *)

TableForm[Table[sol = npartk[n, k, 10, 10]; If[sol>0, sol, ""], {n, 1, 25}, {k, 1, 12}]]

