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1. Purpose: Why Use the Influence Function in OpRisk Severity Modeling? 
a) Better Statistical Estimation of the Capital Distribution via Better Severity Estimation 
b) Capital Planning based on Exact Sensitivity Curves 

2. Background: 
a) The Influence Function Defined, and B-Robustness Defined 
b) The Empirical Influence Function: EIF and IF 
c) MLE Examples: LogNormal, LogGamma, and GPD Severity Distributions, and each truncated 

3. Using IF to Choose Severity Estimator for a “Better” Capital Distribution: 
a) More Stable Over Time – More Robust to Extreme Tail Events 

i. Examples by Severity Distribution: OBRE vs. MLE 
b) Estimated with Greater Efficiency, i.e. More Precision, Less Variability 
c) Estimated with Less Bias vis-à-vis the effects of Jensen’s Inequality 

4. Using IF’s Exact Sensitivity Curves for Capital Planning:  
a) Prospectively:  exact impact on capital of 

i. potential new tail events 
ii. a change in a current loss amount or a dropped loss 

b) Retrospectively:  exact attribution analysis of previous changes in capital requirements from 
            quarter to quarter 

c) Examples by Severity Distribution 

5. Summary and Conclusions 
6. Appendices and References 
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Operational Risk 
 Basel II/III 
  Advanced Measurement Approach 
   Risk Measurement & Capital Quantification 
    Loss Distribution Approach 
     Frequency Distribution 

    Severity Distribution* (by far the main driver of the 
                           aggregate loss distribution) 

 

1. Why Use the IF in OpRisk Severity Modeling? 

* For purposes of this presentation, potential dependence between the frequency and severity distributions is ignored. See Ergashev (2008). 

Specific Objectives:  

1) Use the Influence Function (IF) to Develop and/or Select Estimators that yield 
an estimated capital distribution that is i) more robust to extreme tail events, 
ii) less variable, and iii) less biased vis-à-vis Jensen’s inequality. 

2) THEN,  based on 1), Use IF to Generate Exact Capital Sensitivity Curves for 
Capital Planning.  These show the EXACT impact on capital of additional (or 
dropped) losses. 
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2a. The Influence Function (IF) Defined 

• The IF can be used to demonstrate the “influence” that a data point of “contamination”* 
which deviates from the assumed severity distribution has on the estimated parameter: 
 

 

 
 

where 

•      is the distribution that is the assumed source of the data sample 

•      is a statistical functional, that is, a statistic defined by the distribution that is the 
(assumed) source of the data sample.  For example, the statistical functional for the 
mean is 

•      is a particular point of evaluation, and the points being evaulated are those that 
deviate from the assumed    . 

•        is the probability measure that puts mass 1 at the point    . 

( )
( ){ } ( ) ( ) ( )

0 0

1
| , lim lim

xT F T F T F T F
IF x T F ε

ε ε

ε εδ

ε ε→ →

 − + −  −
 = =  
     

xδ

x

F

x

T

( ) ( ) ( )T F udF u uf u du= =∫ ∫

F

* The terms “contamination,” “statistical contamination,” and “arbitrary deviation” are used synonymously to mean data points that come from a 
distribution other than that assumed by the statistical model.  They are not necessarily related to issues of data quality per se. 
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•        is simply the distribution that includes some proportion of the data,    , that is an 
arbitrary deviation away from the assumed distribution,    . So the Influence Function is 
simply the difference between the value of the statistical functional INCLUDING this 
arbitrary deviation in the data, vs. EXCLUDING the arbitrary deviation (the difference is 
then scaled by    ). 

• So the IF is defined by three things: an estimator       , an assumed distribution/model     , 
and a deviation from this distribution,     (     obviously can represent more than one data 
point as     is a proportion of the data sample, but it is easier conceptually to view     as a 
single data point whereby                 : when this is combined with use of the empirical 
distribution,     , this is, in fact, the Empirical Influence Function (EIF) – see below).  

• Simply put, the IF shows how, in the limit (asymptotically as              , so as               ), an 
estimator’s value changes as a function of    , the value of arbitrary deviations away 
from the assumed statistical model,     .  In other words, the IF is the functional 
derivative of the estimator with respect to the distribution. 

( )
( ){ } ( ) ( ) ( )

0 0

1
| , lim lim

xT F T F T F T F
IF x T F ε

ε ε

ε εδ

ε ε→ →

 − + −  −
 = =  
     

Fε
F

ε

ε

0ε → n → ∞

T F
x x

F
x

ε
1 nε =

x

2a. The Influence Function (IF) Defined 

F̂
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• B-Robustness, arguably the most common definition of statistical robustness of an 
estimator, is based on the IF, and oftentimes the motivation for its derivation.  

• If IF is bounded as     becomes arbitrarily large/small, the estimator is said to be “B-
robust”§; if IF is not bounded and the estimator’s values become arbitrarily large as 
deviations from the model become arbitrarily large/small, the estimator is NOT B-robust. 

• The Gross Error Sensitivity (GES) measures the worst case (approximate) influence that 
an arbitrary deviation can have on the value of an estimator.  If GES is finite, an 
estimator is B-robust; if it is infinite, it is not B-robust. 

 

 

• Comparing IFs of two estimators of location – the mean and the median – effectively 
demonstrates the concept of B-robustness. 

§ “B” comes from “bias,” because if IF is bounded, so, too, must be the bias of the estimator is bounded (if any). 

( ) ( )* , sup ; ,GES T F IF x T F
x

γ= =

x

2a. The Influence Function (IF) Defined 

• Note that IF is a special case of the Gâteaux derivative, but its existence requires even 
weaker conditions (see Hampel et al., 1986, and Huber, 1977), so its use is valid under a 
very wide range of application (including the relevant OpRisk severity distributions).   
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IF mean

IF median

 

 

 

 

 

Graph 1: Influence Functions of the Mean and the Median 

X – point of evaluation 
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Bounded! 

Bounded! 

• Because the IF of the mean is unbounded, a single arbitrarily large (small) data point 
can render the mean meaninglessly large (small), but that is not true of the median. 

• The IF of the mean is derived mathematically below (see Hampel et al., 1986, pp.108-109  
for a similar derivation for the median). 

2a. The Influence Function (IF) Defined 
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Derivation of IF of the Mean:  
Assuming            , the standard normal distribution: F = Φ

( ){ } ( )
0

1
lim

xT F T F

ε

ε εδ

ε→

 − + −
 =
  

( ){ }( ) ( )
0

1
lim

xud u ud u

ε

ε εδ

ε→

 − Φ + − Φ
 =
  

∫ ∫

( ) ( ) ( ) ( )
0

1
lim

xud u ud u ud u

ε

ε ε δ

ε→

 − Φ + − Φ
 =
  

∫ ∫ ∫

0
lim

x
ε

ε
ε→

 =    ( ) 0ud uΦ =∫ ( ); ,IF x T F x=

F ≠ Φ ( ) 0,udF u ≠∫ ( )
0

| , lim
xIF x T F x

ε

εµ ε µ
ε→

− + = = −  

, because so 

Or if and  then 

( ) ( ) ( )
0

| , lim
T F T F

IF x T F ε

ε ε→

 −
=  

  

( ) ( ) ( )T F udF u uf u du= =∫ ∫
The statistical functional of the mean is defined by 

, so… 

2a. The Influence Function (IF) Defined 
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• Empirical Influence Function: The EIF naturally corresponds with the IF, and is given by 
 
 
 
 
 
 
 

• EIF is simply the IF based on the empirical distribution. 

• In practice, EIF is used as a plot of the difference between the values of the estimator 
based on the sample with and without the contaminated data point, x, as a function of x.  
The difference between the two estimator values is scaled by             .  Even for relatively 
small sample sizes, EIF ≈ IF, so when samples of data are generated from a given 
distribution, F, the EIF can serve as an easily implemented verification that the 
calculations underlying the IF (which sometimes can be quite involved) are right.  
However, IF always is needed to establish definitively the relationship between the 
estimated parameter and x, for all relevant x. 

2b. The Empirical Influence Function (EIF) Defined 

( ) ( ){ } ( )
0

ˆ ˆ1
ˆ; , lim

xT F T F
EIF x T F

ε

ε εδ

ε→

 − + −
 =  
  

1 nε =
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Below are derived the IFs of the parameters of Six Severity Distributions: 

• LogNormal 

• LogGamma 

• Generalized Pareto Distribution (GPD) 

• Truncated LogNormal 

• Truncated LogGamma 

• Truncated GPD 

2c. The Influence Function Derived:  MLE Examples 
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• MLEs belong to the class of “M-estimators,” so called because they generalize 
“M”aximum likelihood estimation.  Broad classes of estimators have the same form of IF 
(see Hampel et al. ,1986), so all M-estimators conveniently share the same form of IF.  

• M-estimators are consistent and asymptotically normal. 

• M-estimators are defined as any estimator                                         that satisfies 
 

                                           or                                      where                                             
 
 
if the derivative of        exists, and           is defined on                 . 

 So for MLE: 

 
                                                                                          

( )
1

, min!
n

i n
i nT

X Tρ
=

=∑ ( )
1

, 0
n

i n
i

X Tϕ
=

=∑ ( ) ( ),
,

x
x

ρ θ
ϕ θ

θ
∂

=
∂

℘× Θρρ

( ) ( ), ln ,x f xρ θ θ = −  

( ) ( ) ( ) ( ), ,
, ,

x f x
x f xθ

ρ θ θ
ϕ θ θ

θθ
∂ ∂

= = −
∂∂

( ) ( ) ( )
( ) ( ) ( )

( )

22

22

22

, ,
,

, ,
,

,

f x f x
f x

x x
x

f x
θ

θ

θ θ
θ

θ θϕ θ ρ θ
ϕ θ

θ θ θ

 ∂ ∂
− ⋅ +  ∂ ∂∂ ∂   ′ = = =

∂ ∂   

(note that this is simply the negative of the score function) 

( )1, ,n n nT T X X= 

2c. The Influence Function Derived:  MLE Examples 
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• And for M-estimators, IF is defined as (assuming a nonzero denominator): 

 

                                                                      where a and b define the endpoints of support of the density  
                 (in this setting, typically a = 0 and b =       ). 

 So we can write 

 

 

 

 

 

 For the (left) truncated densities,                                              where H is the truncation threshold. 

 

 And so the above becomes: 
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2c. The Influence Function Derived:  MLE Examples 
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 IF of MLEs for (left) truncated densities: 

 

 

 

 

 

 

 

 

 

 

 And so the IF is 
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IF of MLEs for (left) truncated densities: 

 

 

 

  
Note that a and b are now H and (typically)      , respectively. 

As noted previously, we must account for (possible) dependence between the parameter 
estimates, and so we must use the matrix form of the IF defined below (see Stefanski & 
Boos (2002) and D.J. Dupuis (1998)): 

 

 

 
 

Where       is either      or     ,            is simply the Fisher Information, and        is now 
vectorized.  Parameter dependence exists when the off-diagonal terms are not zero. 
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Note that the off-diagonal cross-terms are the second-order partial derivatives:  

 

 

and 
      for truncated and non-truncated 
       distributions, respectively 

 
 

With the above defintion, all that needs be done to derive IF for each severity distribution 
is the calculation of the first and second order derivatives of each density, as well as, for 
the (left) truncated cases, the first and second order derivatives of the cumulative 
distribution functions: that is, derive 

 

 

This “plug-n-play” approach makes derivation and use of the IFs corresponding to each 
severity distribution’s parameters considerably more convenient. 
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LogNormal Derivatives: 
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Inserting the derivations of  
 
into the Fisher Information for the LogNormal yields 
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which yields… 
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ln0  / 2 ln1
2

x x

xx

µ µ
σ σ

µ σσ µ
σσ σ

 −  −    −  = =  − −  − −    −    
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2c. The Influence Function Derived:  MLE Examples 

µ = 10.95 

σ = 1.75 

LogNormal: MLE IF  LogNormal: MLE IF vs. EIF  
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LogNormal Derivatives (for (left) Truncated case): 
Due to Leibniz’s Rule, these derivatives  
can be moved inside these integrals. 

( ) ( ) ( ) ( ) ( )20 0 0

; , ln
; , ; , ; ,

H H HF H y
f y dy f y dy f y dy

µ σ µ
µ σ µ σ µ σ

µ µ µ σ
 ∂ −∂ ∂

= = =  
∂ ∂ ∂   

∫ ∫ ∫

( ) ( ) ( )
( )( ) ( )

2

30 0 0

ln; , 1; , ; , ; ,
H H H yF H

f y dy f y dy f y dy
µµ σ

µ σ µ σ µ σ
σ σ σ σ σ

 −∂ ∂ ∂  = = = −
 ∂ ∂ ∂
  

∫ ∫ ∫

( ) ( ) ( )
( )( ) ( )

2
2 2 2

2 2 2 4 20 0 0

ln; , 1; , ; , ; ,
H H H yF H

f y dy f y dy f y dy
µµ σ

µ σ µ σ µ σ
µ µ µ σ σ

 −∂ ∂ ∂  = = = −
 ∂ ∂ ∂
  

∫ ∫ ∫

( ) ( ) ( )
( )( ) ( )( ) ( )

22 2
2 2 2

2 2 2 2 4 30 0 0

3 ln ln; , 1 1; , ; , ; ,
H H H y yF H

f y dy f y dy f y dy
µ µµ σ

µ σ µ σ µ σ
σ σ σ σ σ σ σ

   − −∂ ∂ ∂    = = = − + −
   ∂ ∂ ∂
      

∫ ∫ ∫

( ) ( ) ( ) ( ) ( )( ) ( )
2

2 30 0 0

ln; , ln 3; , ; , ; ,
H H H yF H y

f y dy f y dy f y dy
µµ σ µ

µ σ µ σ µ σ
µ σ µ σ µ σ σ σ σ

 − ∂ −∂ ∂  = = = −   ∂ ∂ ∂ ∂ ∂ ∂      
∫ ∫ ∫

( ) ( )
( )
; ,

; ,
1 ; ,

f x
g x

F H
µ σ

µ σ
µ σ

=
−

( ) ( )
( )

1 ; ,
; , 1

1 ; ,
F x

G x
F H

µ σ
µ σ

µ σ
−

= −
−
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For the (left) Truncated LogNormal, inserting the derivations of 

  
 
into the Fisher Information yields: 

( )

( ) ( ) ( )( ) ( ) ( )

( )

22

2 4 2
0 0

22

lnln 1 1 ; ,
1

1 ; ,

H H

H

yy
f y dy f y dy F H

dG y
F H

µ

µµ
µ σ

σ σ σϕ
µ σ µ σ

∞

− −
 + − ⋅ −   ∂   − = − +

∂  − 

∫ ∫
∫

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

; ; ; ; ; ; ; ; ; ;
, , , , , , , , ,  and 

f y f y f y f y f y F H F H F H F H F Hθ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

( )
( )

( )( ) ( )
2

4 2

3 ln1 1
1 ; ,H H

y
dG y f y dy

F H
σ

µϕ
σ σ σµ σ

∞ ∞ −∂
− = − ⋅ + +

∂  − 
∫ ∫

( )( ) ( ) ( )( ) ( )( ) ( ) ( )

( )

2 22 2 2

3 2 4 3
0 0

2

ln 3 ln ln1 1 1 1 ; ,

1 ; ,

H Hy y y
f y dy f y dy F H

F H

µ µ µ
µ σ

σ σ σ σ σ σ

µ σ

     − − −       − + − + − ⋅ −      
          +

 − 

∫ ∫

( ) ( )
( )

( )( ) ( )3
0

2 ln1
1 ; ,H H

y
dG y dF y f y dy

F H
µ σ

µϕ ϕ
σ µ σµ σ

∞ ∞ ∞ − −∂ ∂
− = − = − ⋅ +

∂ ∂  − 
∫ ∫ ∫

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )

( )

2 2

2 3 3 2 3
0 0 0 0

2

ln 2 ln lnln ln1 1 1 ; ,

1 ; ,

H H H Hy y yy y
f y dy f y dy f y dy f y dy F H

F H

µ µ µµ µ
µ σ

σ σ σ σ σ σ σ

µ σ

    − − − −   − −      × − + + ⋅ − ⋅ −                       +
 − 

∫ ∫ ∫ ∫

(non-zero off-diagonals indicate 
 parameter dependence) 

2c. The Influence Function Derived:  MLE Examples 



 
© J.D. Opdyke 

23 

And inserting the derivatives into the      function yields: 

 

 

 

 

 

The Influence Function 

 

 

 

 

is then calculated numerically, as it is for all the remaining severity distributions except for 
the LogGamma. 

2c. The Influence Function Derived:  MLE Examples 

( )
( )

( ) ( )
( ) ( )

( )
( ) ( )

( )

( )( )
( )( ) ( )

( )

20

2

2

32 0

3

ln
; ,

ln
, 1 ; ,,,

ln 1, , ; ,,
ln 1

1 ; ,

H

H

y
f y dy

x
f x F Hf xx

yx f x f y dyf x
x

F H

µ
θ

σ

µ
µ σ

σµ
θ σ µ σθρ θ µϕ µϕ µϕ ρ θ σ θ µ σθ σ σσ µ

σ σ µ σ

  −
  

 −    − −  ∂  − −     ∂ ∂  ∂  = = = =     −∂ ∂  ∂       −−     ∂  −   − − −   −    

∫

∫












( ) ( )
( ) ( )

( ) ( )

1 1

1

22 2

1

1 1 2

1 2

  
; ,

 

b b

a a
b b

a a

dK y dK y
IF x T A

dK y dK y

θ θ

θ
θ θ

θθ θ

ϕ ϕ
ϕθ θ

θ θ ϕ ϕϕ ϕ
θ θ

−

−

∂ ∂ 
− −   ∂ ∂ = =   ∂ ∂  − − 

∂ ∂  

∫ ∫

∫ ∫

θϕ
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2c. The Influence Function Derived:  MLE Examples 

µ = 10.95 

σ = 1.75 

Truncated LogNormal: MLE IF  Truncated LogNormal: MLE IF vs. EIF  
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• NOTE:  The effects of a data collection threshold on parameter estimation can be 
unexpected, and even counterintuitive, both in the magnitude of the effect, and its 
direction. 

• For the LogNormal, truncation causes not only a change in the shape, but also a change 
in the DIRECTION of    (x) as x increases.  Many would call this unexpected, if not 
counter-intuitive:  when arbitrary deviations INCREASE, what many consider the 
location parameter, μ, actually DECREASES (exp(μ) is actually the scale parameter of 
the distribution). 

• Note that this is not true for σ, which still increases as x increases, so truncation 
induces NEGATIVE covariance between the parameters. 

• Many have thought this finding, when it shows up in simulations, to be numeric 
instability in the convergence algorithms used to obtain MLE estimators, but as the IF 
shows, this is the right result.  And of course, neither the definition of the LogNormal 
density, nor that of the truncated LogNormal density, prohibits negative values for μ. 

• This is but one example of the ways in which the IF can provide definitive answers to 
difficult statistical questions about which simulation-based approaches can provide 
only speculation and musing. 
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LogGamma Distribution Derivatives: 

( )
( )( )( )

( )

1

1

log
; ,

aa

b

b x
f x a b

a x

−

+=
Γ

( ) ( ) ( )( ) ( ) ( )1; , ln ln ln ( ) ln ; ,af x a b b x digam a x f x a b
a b b b

 ∂   = + + − × −   ∂ ∂   

assuming 1 ;  0 ;  0x a b≤ < ∞ < <

( ) ( )
( ) ( )

( )

( )ln
1

ln 1

; , exp
xa

abF x a b y yb dy
a

−= −
Γ ∫

( ) ( ) ( )( ) ( ); , ln ln ln ( ) ; ,f x a b b x digam a f x a b
a
∂  = + − ∂

( ) ( ) ( ); , ln ; ,af x a b x f x a b
b b
∂  = − ∂  

( ) ( ) ( )( ) ( ) ( )
2 2

2 ; , ln ln ln ( ) ; ,f x a b b x digam a trigamma a f x a b
a

∂   = + − − ⋅  ∂  

( ) ( ) ( )( ) ( )( ) ( )
2 2

2 2

2 ln1
; , ln ; ,

a xa a
f x a b x f x a b

b b b

 −∂  = − + ⋅
∂   
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Inserting the derivations of  

 

into the Fisher Information for the LogGamma yields 

( ) ( ) ( ) ( ) ( )2 2 2

2 2
1 2 1 2 1 2

; ; ; ; ;
, , , ,  and 

f y f y f y f y f yθ θ θ θ θ
θ θ θ θ θ θ

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

( )
( ) ( )( ) ( )( )

( ) ( )
1 1 1

ln ln ln
( ) ( )a

b y digamma a
dF y f y dy trigamma a f y dy trigamma a

a a
ϕ∞ ∞ ∞∂ − − +∂

− = − = − = −
∂ ∂∫ ∫ ∫

( )
( )

( ) ( )2 2
1 1 1

ln
b

a y
a abdF y f y dy f y dy

b b b b
ϕ∞ ∞ ∞

 ∂ − + ∂  − = − = − = −
∂ ∂∫ ∫ ∫

( ) ( )
( ) ( )( ) ( )( )

( )
( )

( )
1 1 1 1 1

lnln ln ln 1 1a b

a yb y digamma a bdF y dF y f y dy f y dy dy
b a b a b b

ϕ ϕ∞ ∞ ∞ ∞ ∞
 ∂ − + ∂ − − +∂ ∂  − = − = − = − = − − =

∂ ∂ ∂ ∂∫ ∫ ∫ ∫ ∫
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which yields… 

( ) ( )
( ) ( )

( ) ( )

1 1

1

22 2

1

1 1 2

1 2

  
; ,

 

b b

a a
b b

a a

dK y dK y
IF x T A

dK y dK y

θ θ

θ
θ θ

θθ θ

ϕ ϕ
ϕθ θ

θ θ ϕ ϕϕ ϕ
θ θ

−

−

 ∂ ∂
− −   ∂ ∂ = = =  ∂ ∂  − − 

∂ ∂  

∫ ∫

∫ ∫

( ) ( ) ( )( ) ( )

( )

1

2

ln ln ln1/
1/  / ln

b x digamma atrigamma a b
ab a b x
b

−  − − + −  = =   − − +    

(non-zero off-diagonals indicate  
 parameter dependence) 

( ) ( ) ( )
( ) ( )( ) ( )

( )

2

2 2

ln ln ln/ 1/1
1/  / 1/ ln

b x digamma aa b b
ab trigamma aa b trigamma a b x
b

 − − + − −  = =   − −− ⋅ − − +    

( ) ( )( ) ( ) ( )

( )

( ) ( )( ) ( ) ( ) ( )

( )

2

2 2

2 2

1ln ln ln ln

1

1 ln ln ln ln

1

a ab x digamma a x
b b b

atrigamma a
b b

ab x digamma a trigamma a x
b b

atrigamma a
b b

   + − − −      
   −    =

   + − − −      
  −     
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2c. The Influence Function Derived:  MLE Examples 

a = 35.5 

b = 3.25 

LogGamma: MLE IF  LogGamma: MLE IF vs. EIF  
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2c. The Influence Function Derived:  MLE Examples 

a = 35.5 

b = 3.25 
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LogGamma Derivatives (for (left) Truncated Case): 
Due to Leibniz’s Rule, these derivatives can be moved inside these integrals. 
 

( ) ( ) ( )( ) ( ) ( )
1

; , 1 ln ln ln ( ) ln ; ,
HF H a b ab y digam a y f y a b dy

a b b b
∂    = + + − × −   ∂ ∂   

∫

( ) ( )
( )
; ,

; ,
1 ; ,

f x
g x

F H
µ σ

µ σ
µ σ

=
−

( ) ( )
( )

1 ; ,
; , 1

1 ; ,
F x

G x
F H

µ σ
µ σ

µ σ
−

= −
−

( ) ( ) ( )( ) ( )
1

; ,
ln ln ln ( ) ; ,

HF H a b
b y digam a f y a b dy

a
∂  = + − ∂ ∫

( ) ( ) ( )
1

; ,
ln ; ,

HF H a b a y f y a b dy
b b

∂  = − ∂  ∫

( ) ( ) ( )( ) ( ) ( )
2 2

2 1

; ,
ln ln ln ( ) ; ,

HF H a b
b y digam a trigamma a f y a b dy

a
∂   = + − − ⋅  ∂  ∫

( ) ( ) ( )( ) ( )( ) ( )
2

2

2 21

2 ln; , 1
ln ; ,

H a yF H a b a a
y f y a b dy

b b b

 ∂ −
 = − + ⋅ ⋅

∂   
∫
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For the (left) Truncated LogGamma, inserting the derivations of 

  

 
into the Fisher Information yields: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

; ; ; ; ; ; ; ; ; ;
, , , , , , , , ,  and 

f y f y f y f y f y F H F H F H F H F Hθ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )

2
2

1 1
2

ln ln ln 1 ; , ln ln ln

1 ; ,

H H

a

H

b x digamma a f x dx F H a b b x digamma a trigamma a f x dx
dG x trigamma a

a F H a b

ϕ∞

    + − + − ⋅ + − −     ∂   − = − +
∂  − 

∫ ∫
∫

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2
2

2
1 1

22

1 2 ln
ln 1 ; , ln

1 ; ,

H H

b

H

a a a ya y f x dx F H a b y f x dx
b b badG x

b b F H a b

ϕ∞

  −     − + − ⋅ − +       ∂   − = − +
∂  − 

∫ ∫
∫

( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )
1

2

11 ; , ; , 1 ; , ln ln ln ln
1

1 ; ,

H

a b

H H

aF H a b F H a b F H a b b x digamma a x f x dx
b b

dG x dG x
b a b F H a b

ϕ ϕ∞ ∞
     − ⋅ ⋅ + − ⋅ + − ⋅ −      ∂ ∂  − = − = +

∂ ∂  − 

∫
∫ ∫

( ) ( )( ) ( ) ( ) ( ) ( )

( )
1 1

2

ln ln ln ln

1 ; ,

H H ab x digamma a f x dx x f x dx
b

F H a b

 + − ⋅ − 
 +

 − 

∫ ∫

(non-zero off-diagonals  
 indicate parameter  
 dependence) 
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And inserting the derivatives into the      function yields: 

 

 

 

 

 

The Influence Function 

 

 

 

 

is then calculated numerically. 
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( )
( )

( ) ( )
( ) ( )

( ) ( )( )
( ) ( )( ) ( )

( )

( )
( ) ( )

( )

1

1

ln ln ln ( ) ; ,
, ln ln ln ( )

, 1 ; ,,
, , ln ; ,,

ln
1 ; ,

H

a
H

b

b y digam a f y a b dy
f x b y digam a

f x F Hx a a
ax b f x y f y a b dyf x a bb y

b F H

θ

θ
θ µ σρ θϕϕ ϕ ρ θ θ
θ

µ σ

  + −    ∂ − + − −  − −  ∂ ∂   ∂ = = = =     ∂ ∂ ∂     −    −     ∂  − − −   −  

∫

∫



( ) ( )
( ) ( )

( ) ( )

1 1

1

22 2

1

1 1 2

1 2

  
; ,

 

b b

a a
b b

a a

dK y dK y
IF x T A

dK y dK y

θ θ

θ
θ θ

θθ θ

ϕ ϕ
ϕθ θ

θ θ ϕ ϕϕ ϕ
θ θ

−

−

∂ ∂ 
− −   ∂ ∂ = =   ∂ ∂  − − 

∂ ∂  

∫ ∫

∫ ∫

θϕ
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2c. The Influence Function Derived:  MLE Examples 
Truncated LogGamma: MLE IF  Truncated LogGamma: MLE IF vs. EIF  

a = 35.5 

b = 3.25 
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Generalized Pareto Distribution (GPD) Derivatives: 
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Inserting derivations of  

 
into the Fisher Information for the GPD yields 
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And inserting the derivatives into the      function yields: 

 

 

 

 

 

The Influence Function 

 

 

 

 

is then calculated numerically. 
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Note that for the GPD specifically, Smith (1987)* conveniently simplifies the Fisher 
Information to yield  

 

 

 

This gives the exact same result, as shown in the graphs below, as the numerical 
implementation above, and provides further independent validation of the more general 
framework presented herein (which can be used with all commonly used severity 
distributions). 

 

*NOTE: Smith (1987) is the oldest publication of this result that I have been able to find.  
Ruckdeschel & Horbenko (2010) re-present it in the context of Operational Risk. 
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2c. The Influence Function Derived:  MLE Examples 

Ɛ = 0.875 

β = 57,500 

GPD: MLE IF  GPD: MLE IF vs. EIF  
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GPD Derivatives (for (left) Truncated Case): 
Due to Leibniz’s Rule, these derivatives can be moved inside these integrals. 
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For the (left) Truncated GPD, inserting the derivations of 

  
 
into the Fisher Information yields: 
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And inserting the derivatives into the      function yields: 

 

 

 

 

 

 

 

 

 

The Influence Function 

 

 
is then calculated numerically. 
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2c. The Influence Function Derived:  MLE Examples 

Ɛ = 0.875 

β = 57,500 

Truncated GPD: MLE IF  Truncated GPD: MLE IF vs. EIF  
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To restate, there are at least two major uses of the IF in this setting.   
 

1.The first is to compare graphs and derivations like those generated above to choose 
and/or develop estimators that satisfy specified criteria most relevant to the particular 
setting in which they’re being used.  For example, non-iid data may be endemic to some 
settings (like the OpRisk setting), thus indicating the need for (B-)robust estimators (like 
OBRE – see Appendix 1).  This is consistent with the ultimate goal of the OpRisk 
modeling exercise which is to generate a “better” estimated capital distribution, i.e. one 
that is i) more precise, ii) less biased, and iii) more robust to outlying loss events. 
 

2.The second use of the IF, which builds on the first, is to use the EXACT CHANGES IN 
PARAMETER VALUES resulting from additional, dropped, or changed loss values (“x” 
on all the graphs above) to generate EXACT CAPITAL SENSITIVITY CURVES, and then 
use these curves for more effective and precise capital planning.  This is treated in the 
sections below after a discussion of 1. 

3. Using IF to Inform the Choice of Severity Estimator 
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3a. Estimators for a “Better” Capital Distribution: 
      More Stability over Time – More Robustness to Extreme Tail Events 

LogNormal EIFs: MLE vs. OBRE 

µ = 10.95 σ = 1.75 
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µ = 10.95 

σ = 1.75 

Truncated LogNormal: MLE EIF  Truncated LogNormal: OBRE EIF  

3a. Estimators for a “Better” Capital Distribution: 
      More Stability over Time – More Robustness to Extreme Tail Events 
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LogGamma EIFs: MLE vs. OBRE 

a = 35.5 b = 3.25 

3a. Estimators for a “Better” Capital Distribution: 
      More Stability over Time – More Robustness to Extreme Tail Events 
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Truncated LogGamma: MLE EIF  Truncated LogGamma: OBRE EIF  

a = 35.5 

b = 3.25 

3a. Estimators for a “Better” Capital Distribution: 
      More Stability over Time – More Robustness to Extreme Tail Events 
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3a. Estimators for a “Better” Capital Distribution: 
      More Stability over Time – More Robustness to Extreme Tail Events 

GPD EIFs: MLE vs. OBRE 

Ɛ = 0.875 β = 57,500 
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Ɛ = 0.875 

β = 57,500 

Truncated GPD: MLE EIF  Truncated GPD: OBRE EIF  

3a. Estimators for a “Better” Capital Distribution: 
      More Stability over Time – More Robustness to Extreme Tail Events 



 
© J.D. Opdyke 

52 

• Note from the above derivations of their IFs, OBRE estimators have several 
potential advantages over their MLE counterparts.  Not only are they B-robust, 
by definition, but they also avoid the truncation-induced/truncation-augmented 
covariance between parameters as x increases.  The latter would appear to at 
least partially explain the extreme sensitivity of MLE estimators under 
truncation reported in the literature, which has perplexed some researchers. 

3a. Estimators for a “Better” Capital Distribution: 
      More Stability over Time – More Robustness to Extreme Tail Events 
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3b. Estimators for a “Better” Capital Distribution: 
      Estimated with Greater Efficiency, i.e. More Precision, Less Variability 

• Estimators that are B-robust must give up some efficiency to obtain their 
robustness.  However, this is only true under iid data.  When data are NOT iid, 
as is the rule for OpRisk severity data, robust estimators can even be MORE 
efficient than MLE. 

• The goal is to obtain an estimator that, under real world, non-iid conditions, is 
at least no less efficient than MLE, and hopefully even more efficient in its 
capital estimates (not just in the variability of its parameter values). 

• The results of the simulation study shown below (see Appendix 2 for details), 
which compares the capital estimates of MLE vs. OBRE, show that we can 
have our cake and eat it too: OBRE can generate capital estimates that are 
less biased than those of MLE (which is discussed in the next section) while 
maintaining efficiency comparable to that of MLE.  Given its superior 
robustness properties, a strong case can be made for its use in this setting 
over MLE because it is as good or better along all three major criteria – capital 
precision, capital accuracy, and capital robustness. 

• The IF directly informs the issue of the robustness of an estimator, and even 
can be used to define the asymptotic variance of the estimators via 2Var IF dF= ∫
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3b. Estimators for a “Better” Capital Distribution: 
      Estimated with Greater Efficiency, i.e. More Precision, Less Variability 
TABLE 1 0% Deviation 6% Deviation 6% Deviation 6% Deviation 

Distribution Both Tails (3% Each) Left Tail Right Tail 

LogN True SLA at 99.996%tile $170,317,921 $173,118,560 $165,323,008 $180,654,136 

MLE Mean $177,821,938 $184,864,199 $181,071,343 $186,460,684 

OBRE* Mean $170,989,770 $177,115,375 $173,710,961 $177,620,687 

MLE Mean %Difference from True 4.4% 6.8% 9.5% 3.2% 

OBRE* Mean %Difference from True 0.4% 2.3% 5.1% -1.7% 

MLE % within +/- 50% 80.0% 83.0% 80.0% 87.0% 

OBRE* % within +/- 50% 80.0% 84.0% 82.0% 86.0% 

MLE RMSE $79,516,780 $68,157,312 $66,129,189 $66,662,079 

OBRE* RMSE $79,571,542 $76,325,792 $70,325,414 $73,332,644 

TLogN True SLA at 99.996%tile $180,486,144 $183,180,240 $175,278,136 $190,682,320 

MLE Mean $201,471,561 $207,653,389 $203,560,697 $214,920,757 

OBRE* Mean $180,711,814 $191,912,540 $188,022,611 $196,549,866 

MLE Mean %Difference from True 11.6% 13.4% 16.1% 12.7% 

OBRE* Mean %Difference from True 0.1% 4.8% 7.3% 3.1% 

MLE % within +/- 50% 71.0% 73.0% 72.0% 74.0% 

OBRE* % within +/- 50% 72.0% 70.0% 71.0% 76.0% 

MLE RMSE $140,551,905 $109,436,060 $111,794,444 $118,952,011 

OBRE* RMSE $133,209,674 $110,730,346 $116,252,565 $129,840,945 

*NOTE: c = 2^(11/8) ≈ 2.59 
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3b. Estimators for a “Better” Capital Distribution: 
      Estimated with Greater Efficiency, i.e. More Precision, Less Variability 
TABLE 1 0% Deviation 6% Deviation 6% Deviation 6% Deviation 

Distribution Both Tails (3% Each) Left Tail Right Tail 

LogG True SLA at 99.996%tile $366,309,627 $370,407,112 $353,009,568 $387,304,656 

MLE Mean $415,025,578 $430,550,666 $420,202,603 $434,679,718 

OBRE* Mean $360,982,956 $383,677,976 $374,030,382 $385,136,237 

MLE Mean %Difference from True 13.3% 16.2% 19.0% 12.2% 

OBRE* Mean %Difference from True -1.5% 3.6% 6.0% -0.6% 

MLE % within +/- 50% 63.0% 75.0% 70.0% 78.0% 

OBRE* % within +/- 50% 59.0% 71.0% 72.0% 76.0% 

MLE RMSE $271,095,454 $243,734,467 $233,682,773 $244,208,780 

OBRE* RMSE $222,205,047 $258,303,584 $252,743,932 $252,990,317 

TLogG True SLA at 99.996%tile $388,391,019 $392,310,056 $374,657,472 $409,562,640 

MLE Mean $470,229,619 $470,391,969 $463,087,826 $479,560,215 

OBRE* Mean $407,008,482 $398,700,677 $389,956,403 $410,894,022 

MLE Mean %Difference from True 21.1% 19.9% 23.6% 17.1% 

OBRE* Mean %Difference from True 4.8% 1.6% 4.1% 0.3% 

MLE % within +/- 50% 63.0% 67.0% 66.0% 76.0% 

OBRE* % within +/- 50% 56.0% 60.0% 66.0% 67.0% 

MLE RMSE $360,712,711 $237,737,636 $270,317,853 $311,345,233 

OBRE* RMSE $273,966,583 $237,477,157 $237,181,395 $272,922,481 

*NOTE: c = 2^(19/8) ≈ 5.187 
             W ≥ 0.85 
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• As M-Class estimators, both MLE and OBRE are asymptotically unbiased under iid 
data.  However, for all right-skewed severity distributions, unbiased parameter 
estimates do NOT, UNDER THE LDA framework, yield unbiased capital estimates.  In 
fact, if left unadjusted, they yield BIASED CAPITAL ESTIMATES. 

• This is due to a 1906 analytic result by Jensen, known as “Jensen’s inequality,” which 
has been missed in the OpRisk literature to date (see Opdyke & Cavallo, 2012). 

• Because the inverse cdf is convex (and not concave), the effect of this bias is always 
upwards, that is, estimating larger capital requirements than necessary, and can be 
very large.  Its magnitude depends on three factors, all else equal: 

1.  thickness of the tail of the severity distribution (heavier tail       more bias) 

2.  size of the quantile (higher quantile        more bias) 

3.  variance and skewness of the estimator (either larger      more bias) 

3c. Estimators for a “Better” Capital Distribution: 
      Estimated with Less Bias vis-à-vis the effects of Jensen’s Inequality 

⇒

⇒
⇒
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3c. Estimators for a “Better” Capital Distribution: 
      Estimated with Less Bias vis-à-vis the effects of Jensen’s Inequality 

β̂

Graphical Display* of Jensen’s Inequality  
with Convex Function (right-skewed severity) 

*From Kennedy (1992), p.37. 
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• OBRE mitigates this bias to some degree, as seen in the mean capital 
estimates from Table 1 above, because its distribution generally is less 
skewed than that of MLE (even when its variance is comparable) due to its 
robustness (which we see in its IF).  

• Completely eliminating this bias, while simultaneously maintaining 
efficiency and robustness, is the topic of continuing research. 

• The main point here is to show how knowledge of the IFs of different 
estimators can help in the design and selection of estimators for “better” 
capital estimation (i.e. capital estimates that are less biased, more precise, 
and more robust to outlying events). 

3c. Estimators for a “Better” Capital Distribution: 
      Estimated with Less Bias vis-à-vis the effects of Jensen’s Inequality 
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Presenting “The Saga of the MLE Capital Scenarios”,  
a (Divine) Comedy of (Statistical) Errors…? 
 
(with apologies to Dante and Shakespeare) 
 

• Starring “the Absurd,” and  
“the Improved but Still Crazy,”  

• Featuring “That’s Just Wrong,”  
• with a Cameo Appearance from  

“Much More Reasonable” 
 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
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4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

The “Absurd”:  Act 1, Scene 1 
The “Absurd” enters as estimated capital exhibits counter-
intuitive asymptotic behavior, increasing by orders of 
magnitude exactly as a new loss DECREASES by orders of 
magnitude. 
 

In other words, small left-tail losses – not “low frequency, 
high severity” losses – are possibly the greatest source of 
quarter-to-quarter instability and variability in MLE-based 
capital requirements. 
 

How can this be??... 
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The “Absurd”: 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

Based on a Random Draw from LogNormal (µ=10.95, σ=1.75) where MLE   
 

$0 – no change in capital 

ˆ ˆ11.02,  1.59µ σ= =

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 
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The “Absurd”: 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

For MLE, a new loss of $10 
increases regulatory capital by over 
$20m, and economic capital by 
over $36m.  But a loss of about 
$250k increases capital by $0. 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

$0 – no change in capital 

$0 – no change in capital 
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ˆ ˆ11.02,  1.59µ σ= =

LogNormal 
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The “Absurd”: 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

WHY?  Check the MLE IF, which we derived 
previously as: 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

( )
( )

( )( )2 2

ln
; , ln

2

x
IF x T xθ

µ
θ µ σ

σ

 −
 

= − − 
 
 

The IF for the σ term becomes HUGE when x → 0+, so required capital also is going 
to become HUGE as it is based directly on the HUGE parameter estimate for σ.  
Even though the IF indicates that the parameter estimate for µ decreases 
monotonically as x decreases, it does so at a much slower rate so the effect of σ will 
dominate the effect that x has on capital. 

$0 – no change in capital 

ˆ ˆ11.02,  1.59µ σ= =

LogNormal 
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The “Absurd”: 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

Based on a Random Draw from LogGamma (a=35.5, b=3.25) where MLE   ˆâ 35.47,  b 3.31= =

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

$0 – no change in capital 
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The “Absurd”: 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

For MLE, a new loss of $10 
increases regulatory capital by over 
$380m, and economic capital by 
over $930m.  But a loss of about 
$175k increases capital by $0. 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

$0 – no change in capital 

$0 – no change in capital 
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LogGamma 
ˆâ 35.47,  b 3.31= =



 
© J.D. Opdyke 

66 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

The “Absurd”: 
WHY?  Check the MLE IF, which we derived 
previously as: 

$0 – no change in capital ( ) ( )( ) ( ) ( )

( )

( ) ( )( ) ( ) ( ) ( )

( )

2

2 2

2 2

1ln ln ln ln

1

1 ln ln ln ln

1

a ab x digamma a x
b b b

atrigamma a
b b

ab x digamma a trigamma a x
b b

atrigamma a
b b

   + − − −      
   −    =

   + − − −      
  −    

( ); ,IF x Tθ θ =

Here, -ln(x) in BOTH IF terms dominate the ln(ln(x)) terms, so ln(ln(x)) – ln(x), which 
inflects at x=exp(1), becomes a large negative number as x → 1+.  However, for the 
LogGamma smaller b uniformly INCREASES the quantiles of the distribution, while 
smaller a DECREASES them. The b term dominates, however, because of the 
relative size of the constants in both numerators, so capital increases without 
bound as x → 1+. 
 

LogGamma 
ˆâ 35.47,  b 3.31= =
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The “Improved, but still Crazy”:  Act 1, Scene 2 
 
Truncation partially mitigates the “Absurd” 
asymptotic behavior of estimated capital, but note 
that even a relatively low threshold (e.g. $10k) 
makes a MUCH more heavy-tailed severity 
distribution, with much higher capital requirements, 
all else equal. 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
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4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
LogNormal: MLE  Truncated LogNormal (H=10k): MLE  

LogGamma: MLE Truncated LogGamma (H=25k): MLE 
N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 
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4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
Truncated LogNormal (H=10k): MLE  Truncated LogGamma (H=25k): MLE 

For MLE, a new loss of $10,010 
increases regulatory capital by 
over $2.7m, and economic 
capital by over $4.8m. 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

For MLE, a new loss of 
$25,010 increases regulatory 
capital by over $14.5m, and 
economic capital by over 
$33.5m. 

note different scales 
not for comparison 
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• These extreme capital responses to small, left-tail losses are not just mathematical 
curiosities: they are possibly the largest source of quarter-to-quarter instability of MLE-
based capital requirements, because they are not as rare as “low frequency, high 
severity” losses.  The effects are still extreme even for losses within $4k of the lower 
threshold, losses that every bank has in its severity modeling loss event datasets. 

 

 

 

 

 

 

 

 

 
 

• All it takes is a couple of new losses near the threshold, or changes in the values of 
such existing losses, to induce dramatic variability and instability in MLE-based capital 
requirements from quarter to quarter. 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

Severity Threshold Parameter
Dist. H Names Parm 1 Parm 2 RC EC RC EC RC EC
LogN $0 µ, σ 10.953 1.749 $19.0 $33.3 $1.3 $2.4 $0.4 $0.8
LogN $10,000 µ, σ 10.954 1.750 $2.6 $4.2 $2.0 $3.6 $1.5 $2.4
LogN $25,000 µ, σ 10.917 1.749 $2.6 $4.8 $2.3 $4.2 $2.0 $3.6
LogG $0 α, β 35.484 3.252 $590.9 $1,469.8 $14.1 $34.1 $3.6 $9.2
LogG $10,000 α, β 35.513 3.263 $24.1 $62.2 $18.0 $43.1 $13.2 $33.5
LogG $25,000 α, β 35.410 3.252 $26.4 $67.0 $22.8 $57.4 $19.2 $57.4
GPD $0 ξ, β 0.8713 57,584 $27.9 $92.2 $24.0 $79.5 $20.4 $67.8
GPD $10,000 ξ, β 0.8825 57,484 $31.2 $95.6 $26.4 $95.5 $24.0 $76.4
GPD $25,000 ξ, β 0.8798 57,340 $38.4 $133.8 $36.0 $133.7 $31.2 $95.5

Change in Capital ($mill)
H + $10 loss H + $2k loss H + $4k loss
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The “That’s Just Wrong”:  Act 2, Scene 1 
 
Under very heavy-tailed severity distributions (e.g. 
GPD, even withOUT infinite mean), MLE is simply 
too sensitive to changes in loss values to pass the 
“cest” – the capital estimate smell test. 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 



$3m to $10m 

Based on a Random Draw from GPD (Ɛ = 0.875, β = 57,500) where MLE   
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4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

The “That’s Just Wrong”: 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

ˆ ˆ0.833,  60,895ξ β= =

$262.2m 

$82.4m 
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4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

• The above shows that under a GPD severity distribution (Ɛ = 
0.833, β = 60,895), if an anticipated loss of $3m is actually 
realized as a $10m loss, the regulatory capital based on MLE 
estimators increases by over $82m, and the economic capital 
increases by over $262m. 

• It is not hyperbole to say that when a $7m increase in a single 
loss increases economic capital by hundreds of millions of 
dollars in an otherwise correctly specified MLE/LDA model, 
the LDA framework, and/or the use of MLE as a tool to 
implement LDA, are failing, by any measure, to provide 
reasonable, stable, data-based capital estimates. 
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The “Much More Reasonable”:  Act 2, Scene 2 
 
While the IF can utilize many realistic examples that 
easily expose misleading inadequacies of LDA/MLE, 
there are many scenarios that WOULD pass most 
capital sensitivity smell tests and that many would 
deem much more reasonable. 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
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The “Much More Reasonable” : 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

Based on a Random Draw from Truncated LogNormal (µ=10.95, σ=1.75, H=10k) where MLE   
 ˆ ˆ11.16,  1.68µ σ= =

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 
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$47m 

$28m 
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4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

• Under a Truncated LogNormal severity distribution (µ=11.16, σ=1.68, H=10k), a 
new $50m loss increases regulatory capital, based on MLE estimators, by 
$28m, and economic capital by $47m.  This capital effect would not fall into 
most practitioners’ “Absurd,” “Still Crazy,” or “That’s Just Wrong” buckets. 

• NOTE:  If we completely drop a loss, say, due to a litigation that 
unexpectedly settled very favorably for the bank, we can modify the EIF to 
answer a slightly different question: how much does capital change if this 
loss was never included?  The answer is just the negative EIF. 

( )
( ) ( )( )( ) 1

0

ˆ ˆ
| , lim

n nT F T F
EIF x T F

ε

ε ε
−

→

  − −   − =  
 
 
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4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 
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The “Much More Reasonable”: 

–$47m 

–$28m 

ˆ ˆ11.16,  1.68µ σ= =
Based on a Random Draw from Truncated LogNormal (µ=10.95, σ=1.75, H=10k) where MLE   
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4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

• NOTE:  While all the above examples are prospective, focusing on current or 
possible future events, the IF can be used retrospectively as well for exact 
attribution analysis of capital changes due to specific losses in previous 
quarters.  “But for” analyses can be constructed based on the exact affect on 
capital associated with each additional single loss event that occurred in a given 
quarter.  This is an effective way to identify “the culprits:” specific losses that 
have caused grossly disproportionate changes in capital. 

• NOTE: Preliminary results of OBRE-based capital estimates show fairly 
successful mitigation of MLE’s extreme asymptotic behavior under new, small 
losses in the left tail, but TOO much robustness in the other direction, with 
estimates of capital requirements flattening off under very large right-tail losses.  
Effective utilization of OBRE’s robustness tuning parameter may provide a 
solution, and this is currently being researched.  But the point for this 
presentation is that the IF is the objective metric by which i) definitive 
assessments can be made not only of a single estimator across the entire 
domain of possible loss events, but also ii) comparative assessments can be 
made ACROSS estimators. 
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4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

• Bottom Line:  The capital estimate is essentially a high quantile estimate of 
the severity distribution.  When using a fully parametric model to estimate 
high quantiles, the slightest deviation from parametric assumptions can 
change the quantile estimates in very dramatic and sometimes unanticipated 
ways.  This is especially true when using non-robust estimators like MLE. 

• Moral of “The Saga of the Capital Scenarios”:  Given this bottom line, how 
could one NOT use the IF in capital planning?!  Both to inform the choice of 
estimator given the characteristics of the data at hand, AND to gauge the 
EXACT impact of specific loss events that may be, or are, imminent? 
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MLE - LogN (µ = 10.95, σ = 1.75) 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
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N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
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MLE – Truncated LogN (µ = 10.95, σ = 1.75, H=10k) Y-AXIS NOT SCALED Y-AXIS SCALED 
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N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
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MLE – Truncated LogN (µ = 10.95, σ = 1.75, H=25k) Y-AXIS NOT SCALED Y-AXIS SCALED 
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N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 

C
ap

ita
l R

eq
ui

re
m

en
ts

 
C

ap
ita

l R
eq

ui
re

m
en

ts
 

MLE - LogG (a = 35.5, b = 3.25) Y-AXIS NOT SCALED Y-AXIS SCALED 
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N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
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MLE – Truncated LogG (a = 35.5, b = 3.25, H=10k) Y-AXIS NOT SCALED Y-AXIS SCALED 
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N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
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MLE – Truncated LogG (a = 35.5, b = 3.25, H=25k) Y-AXIS NOT SCALED Y-AXIS SCALED 
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N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
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MLE – GPD (Ɛ = 0.875, β = 57,500) Y-AXIS NOT SCALED Y-AXIS SCALED 
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N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

4. Using IF’s Exact Capital Sensitivity Curves for Better Planning 
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MLE – Truncated GPD (Ɛ = 0.875, β = 57,500) Y-AXIS NOT SCALED, H=10k Y-AXIS NOT SCALED, H=25k 
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5. Summary and Conclusions 

• The Influence Function (IF) is an extremely useful analytical tool in the 
Operational Risk severity modeling and capital estimation setting. 

• The IF provides the EXACT behavior of virtually any estimator when losses are 
added, dropped, or changed.   

• This provides great insight into severity estimator choice and development, 
which should be motivated almost exclusively by the need for an estimated 
capital distribution that is i) more precise, ii) less biased, and iii) more robust to 
extreme tail events over time. 

• Once an estimator is selected, the IF’s provision of EXACT CHANGES IN THE 
ESTIMATOR directly yields the EXACT CHANGES IN CAPITAL under new losses, 
with no (additional) estimation error (beyond that associated with severity and 
frequency parameter estimation). 

• These EXACT CAPITAL SENSITIVITY CURVES allow for more accurate and more 
certain capital planning prospectively, under a wide range of hypothetical future 
scenarios, as well as retrospectively, for exact attribution and but-for analyses. 
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6. Appendix 1:  OBRE Defined and Computed 

OBRE Defined: 
The Optimally Bias-Robust Estimator (OBRE) is provided for a given sample of data as 
the value      of      that solves (1): 

( ),

1
; 0

n
A a
c i

i
xϕ θ

=

=∑ ( ) ( ) ( ) ( ) ( ), ; ; ;A a
c cx A s x a W xϕ θ θ θ θ θ = ⋅ − ⋅ 

( )
( ) ( ) ( )

; min 1;
;

c
cW x

A s x a
θ

θ θ θ

 
 =  

 ⋅ −   

θ̂ θ

where 
and 

and A and a respectively are a  
dim(θ) x dim(θ) matrix and a  
dim(θ)-dimensional vector  
determined by the equations: 

( ) ( ), ,; ; TA a A a
c cE x x Iϕ θ ϕ θ ⋅ = 

               is simply the score function,                    , so OBRE is 
defined in terms of a weighted standardized scores function, where                             
are the weights.  c is a tuning parameter,                              , regulating 
from very robust to MLE, respectively. 

( );s x θ

((2) – ensures bounded IF) 

((3) – ensures Fisher consistency) 

(1) (1.a) 

(1.b) 

( ), ; 0A a
cE xϕ θ  = 

( ) ( ) ( ); ; ;s x f x f xθ θ θ θ = ∂ ∂ 
( );cW x θ

( )dim cθ ≤ ≤ ∞
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OBRE Defined: 
 

• The weights make OBRE robust, but it maintains efficiency as close as possible to 
MLE (subject to its constraints) because it is based on the scores function.  Hence, its 
name: “Optimal” B-Robust Estimator.  The constraints – bounded IF and Fisher 
consistency – are implemented with A and a, respectively, which can be viewed as 
Lagrange multipliers.  And c regulates the robustness-efficiency tradeoff: a lower c 
gives a more robust estimator, and            is MLE.  Bottom line: by minimizing the 
trace of the asymptotic covariance matrix, OBRE is maximally efficient for a given 
level of robustness, which is controlled by the analyst with c.  Many choose c to 
achieve 95% efficiency relative to MLE, but this actual value for c depends on the 
model being implemented. 

• Several versions of the OBRE exist with minor variations on exactly how they bound 
the IF.  The OBRE defined above is the so-called “standardized” OBRE “which has 
proved to be numerically more stable” (see Alaiz and Victori-Feser, 1996).  The 
“standardized” OBRE is used in this study. 

c = ∞

6. Appendix 1:  OBRE Defined and Computed 
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OBRE Computed: 
To compute OBRE, (1) must be solved under conditions (2) and (3), for a given tuning 
parameter value c, via Newton-Raphson (see D.J. Dupuis, 1998): 
 
STEP 1:  Decide on a precision threshold, η, an initial value for θ, and initial values a = 0 
and                              where                    is the Fisher Information. 
 
 

STEP 2: Solve for a and A in the following equations: 
  
    and  
 
where 

which gives the “current values” of θ, a, and A used to solve the given equations. 

STEP 3:  Now compute         and  

 
 

STEP 4:  If                                      then                           and return to STEP 2, otherwise stop. 

( ) 1 T
A J θ − =  
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( ) ( ) ( ) ( ) ( ), , ,c ca s x W x dF x W x dF xθ θθ θ θ= ∫ ∫

1M ( ) ( )1
1

0

1 ; ,
n

i c i
i

M s x a W x
n

θ θ θ−

=

  ∆ = ⋅ ⋅ − ⋅   
∑

( )max  1,2j
j

j

j
θ

η
θ

∆
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OBRE Computed: 
• The idea of the above algorithm is to first compute A and a for a given θ by solving (2) 

and (3).  This is followed by a Newton-Raphson step given these two new matrics, and 
these steps are iterated until convergence is achieved.   

• The above algorithm follows D.J. Dupuis (1998), who cautions on two points of 
implementation in an earlier paper by Alaiz and Victoria-Feser (1996): 

– Alaiz and Victoria-Feser (1996) state that integration can be avoided in the 
calculation of a in STEP 2 and        in STEP 3, but Dupuis (1998) cautions that the 
former calculation of a requires integration, rather than a weighted average from 
plugging in the empirical density, or else (1.a) will be satisfied by all estimates. 

– Also, perhaps mainly as a point of clarification, Dupuis (1998) clearly specifies 
                                     in STEP 4 rather than just               as in  
 
 

Alaiz and Victoria-Feser (1996). 

• The initial values for A and a in STEP 1 correspond to the MLE. 

1M

( )max  1,2j
j

j

j
θ

η
θ

∆
> =

θ η∆ >

6. Appendix 1:  OBRE Defined and Computed 
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OBRE Computed: 
• The algorithm converges if initial values for θ are reasonably close to the ultimate 

solution.  Initial values can be MLE, or a more robust estimate from another estimator, 
or even an OBRE estimate obtained with c = large and initial values as MLE, which 
would then be used as a starting point to obtain a second and final OBRE estimate with 
c = smaller.  In this study, MLE estimates were used as initial values, and no 
convergence problems were encountered, even when the loss dataset contained 6% 
arbitrary deviations from the assumed model. 

• Note that the weights generated and used by OBRE,           , can be extremely useful for 
another important objective of robust statistics – outlier detection.  Within the OpRisk 
setting, this can be especially useful for determining appropriate “units of measure” 
(uom), the grouping of loss events by some combinations of business unit and event 
type, each uom with the same (or close) loss distribution.  As discussed below, the 
extreme quantiles that need to be estimated for regulatory capital and economic capital 
purposes are extremely sensitive to even slight changes in the variability of the 
parameter estimates.  This, along with the a) unavoidable tradeoff between statistical 
power (sample size) and homogeneity; b) loss-type definitional issues; and c) 
remaining heterogeneity within units of measure even under ideal conditions, all make 
defining units of measure an extremely challenging and crucial task; good statistical 
methods can and should be utilized to successfully execute on this challenge. 

cW

6. Appendix 1:  OBRE Defined and Computed 
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6. Appendix 2:  SLA Capital Simulations 
 The simulations generate MLE parameter estimates vs. OBRE estimates.  Each is used 

to generate a distribution of capital estimates based on SLA. 

• SLA (Single-Loss Approximation): Parameter estimates are used in Degen’s (2010/2011) 
(similar to Böcker and Klϋppelberg’s (2005)) SLA formula to obtain capital estimates, 
and the distributions of these capital estimates are  
compared. 
 
                                        

• Sample Size: n = 250 was chosen as a reasonable  
size for many units-of-measure.  Depending on the  
bank, some will have larger n, some smaller, but if  
the results were not useful for this n = 250, then  
sample size would have been a real issue with these 
methods going forward, so that is why n = 250 was  
selected. 

• Severity Distributions: the LogNormal and the  
LogGamma.  Both are commonly used in this setting,  
but they are very distinct distributions, with the latter  
being more heavy-tailed (see table).  Results obtained  
from other distributions will be included in journal- 
format version of this paper. 

X%Tile 
LogNormal 
(μ=11, σ=2)  

LogGamma 
(a=35.5, b=3.25) 

50.0000% $59,874  $50,045  

75.0000% $230,724  $179,422  

90.0000% $776,928  $614,477  

95.0000% $1,606,723  $1,333,228  

99.0000% $6,278,840  $6,162,960  

99.9000% $28,932,168  $38,778,432  

99.9700% $57,266,640  $92,087,922  

99.9960% $159,698,811  $355,104,952  

99.9988% $279,358,818  $760,642,911  

0.999;  & 25 arbitrarily;α λ= = 1 11C Fα
α λµ

λ
− − ≈ − + 

 



• Truncation:  The Truncated LogNormal and Truncated LogGamma, with a collection 
threshold of $5k, are included.  

• Parameter values:  These were choosen (both LogNormal and Truncated LogNormal, μ = 
11, σ = 2, and both LogGamma and Truncated LogGamma a = 35.5, b = 3.25) so as to 
reflect a) fairly large differences between the Lognormal and the LogGamma; b) general 
empirical realities based on OpRisk work I’ve done (but not proprietary results); c) yet, 
some “stretching” vis-à-vis fairly large (but still realistic) parameter values (the base 
distributions have means of about $442k and $467k, respectively).  Obviously, for any 
given setting, all estimation methods should be tested extensively for parameter value 
ranges relevant to the specific estimation effort. 
 

Time did not permit a full set of simulations to be run using GPD, but there are no 
methodological constraints against doing this, which preliminary runs confirm.  Even 
when simulated random samples exhibit parameter values (          ) yielding an infinite 
mean, which is especially common for the truncated GPD, utilization of Degen’s 
(2010/2011) correct SLA approximation, which does not rely on the estimated mean of 
the severity distribution, is easily implemented and yields correct results. 
 
 
 
This is not to say that severity distributions with infinite means are desirable or 
undesirable in this setting – only that the methodology contained herein is agnostic on 
the subject and is not adversely affected by it. 

where                                                   if                       , and             if 
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6. Appendix 2:  SLA Capital Simulations 

ˆ 1ξ >

( )1 11 11 1 1
1 1
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• Arbitrary Deviations:  Mixture distributions are used to test the robustness of the estimators to 
deviations from iid data.  Three scenarios are studied: 6% Left tail contamination, 6% Right tail 
contamination, and 3% Left tail + 3% Right tail contamination.  For the LogNormal, the left and 
right tail contamination is drawn from LogNormal(μ = 9.5, σ = 2) and LogNormal(μ = 11.576, σ = 
2), respectively, and for the LogGamma, the left and right tail contamination is drawn from 
LogGamma(a = 31.8, b = 3.25) and LogGamma(a = 37, b = 3.25), respectively.  Each of these 
has a mean that deviates just under $350,000 from the respective base distributions. 

• OBRE value of c: For OBRE, different values for c, the tuning parameter, were used with the 
given parameter values, and those which provided the most obviously appropriate tradeoff 
between accuracy and precision of the corresponding SLA capital estimates were used.  
Developing fully data-driven algorithms to obtain these values is ongoing research. 

• OBRE Starting Values:  MLE estimates were used as starting point for the OBRE algorithm, 
and for this study, no convergence problems were encountered.  That said, values of η, c, n, 
and the distribution parameters all are very interrelated, and like any convergence algorithm, 
must be carefully monitored.  For example, values of                   were sufficient for LogNormal 
parameter estimation, but for LogGamma estimation,                     and even                        were 
sometimes required due to its longer tail and the need for greater precision.  Such variation is 
typical of convergence algorithms, so their responsible use requires an awareness of these 
issues.  While starting values are sometimes noted in the literature as being important for the 
convergence of OBRE algorithms, this emphasis may be due to the relatively small sample 
sizes (as low as n = 40) being used in some of those studies (see Horbenko, Ruckdeschel, & 
Bae, 2011). 

6. Appendix 2:  SLA Capital Simulations 

0.01η =
0.005η = 0.0001η =
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