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Operational Risk
Basel II/III

Advanced Measurement Approach
Risk Measurement & Capital Quantification

Loss Distribution Approach
Frequency Distribution
Severity Distribution* (arguably the main driver of the

aggregate loss distribution)

1. The OpRisk Setting and the Specific Objective

* Dependence between the frequency and serverity distributions under some circumstances is addressed later in the presentation.

** Technically, the term �efficient� can refer to an estimator that achieves the Cramér-Rao lower bound.  Hereafter in this presentation, the terms 
�efficient� and �efficiency� are used in a relative sense, as in having a lower mean squared error relative to that of another estimator.  See 
Appendix I.

Specific Objective: 
Select / develop a method to estimate the parameters of the 
severity distribution based on the following criteria �
unbiasedness, (relative) efficiency,** and robustness � with an 
emphasis on how these affect (right) tail-fit. 



© J.D. Opdyke
4

Maximum Likelihood Estimation (MLE):
�MLE does not inappropriately downweight extreme observations as do most/all 

robust statistics.  And focus on extreme observations is the entire point of the OpRisk
statistical modeling exercise!  Why should we even partially ignore the (right) tail when 
that is where and how capital requirements are determined?!  That�s essentially ignoring 
data � the most important data � just because its hard to model!�

Robust Statistics:
�All statistical models are merely idealized approximations of reality, and OpRisk data 

clearly violate the fragile, textbook model assumptions required by MLE.  Robust Statistics 
acknowledge and deal with these facts by explicitly and systematically accounting for 
them, sometimes with weights (and thus, they avoid a bias towards weight=one for every 
data point).  Consequently, under real-world, non-textbook OpRisk loss data, Robust 
Statistics exhibit less bias, equal or greater efficiency, and far more robustness than does 
MLE.  These characteristics translate into a more reliable, stable estimation approach, 
regardless of the framework used by robust statistics (i.e. multivariate regression or 
otherwise) to obtain high quantile estimates of the severity distribution.

2. MLE vs. Robust Statistics: Point-Counterpoint

�to be revisited
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• Due to the nature of estimating the far right tail of the OpRisk loss event 
distribution, some type of parametric statistical estimation is required.

• OpRisk data poses many serious challenges for such a statistical 
estimation, as described on slides 7-8.

• The validity of MLE, the �classical� approach, relies on assumptions 
clearly violated by the data.

• The main point of this presentation is to address the issue of whether 
these violations are material: whether MLE is robust enough to the 
aforementioned violations, or whether it loses its otherwise good 
statistical properties in this setting, making it unreliable for OpRisk
severity distribution parameter estimation.  To determine this, analytic 
results are derived (simulations are merely confirmatory) borrowing from 
the toolkit of robust statistics, which are examined as possible
alternatives to MLE should the objections against it have merit.

2. MLE vs. Robust Statistics: Point-Counterpoint



© J.D. Opdyke
6

Some Specific Questions to be Answered:

• Does MLE become unusable under relatively modest deviations from i.i.d., 
especially for the heavy-tailed distributions used in this setting, or are these 
claims overblown?

• Do analytical derivations of the MLE Influence Functions for severity 
distribution parameters support or contradict such claims?  Are they 
consistent with simulation results?  How does (possible) parameter 
dependence affect these results?  

• Do these results hold under truncation?  How much does truncation and the 
size of the collection threshold affect both MLE and Robust Statistics 
parameter estimates?

• Are widely used, well established Robust Statistics viable for severity 
distribution parameter estimation?  Are they too inefficient relative to MLE for 
practical use?  Do any implementation constraints (e.g. algorithmic issues) 
trip them up, especially under difficult-to-fit distributions (say, with infinite 
mean)?

2. MLE vs. Robust Statistics: Point-Counterpoint
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1. Relatively few actual data points on loss events
2. Extremely few actual data points on low frequency, high severity losses
3. The heavy-tailed nature of most relevant severity distributions
4. Heterogeneity, even within well-defined units of measure
5. The (left) truncated nature of most loss event data (since smaller losses below a threshold 

typically are ignored)
6. The changing nature, from quarter to quarter, of some of the data already in hand (e.g. 

financial restatements, dispute resolutions, etc.)
7. The real potential for a large quarter of new data to non-trivially change the severity 

distribution
8. The real potential for notable heterogeneity in the form of true, robustly defined statistical 

outliers (not just extreme events)
9. The ultimate need to estimate an extremely high quantile of the severity distribution

3. OpRisk Empirical Challenges
The following characteristics of most Operational Risk loss event data make estimating severity 
distribution parameters very challenging, and are the source of the MLE vs. Alternatives debate:

• Moreover, the combined effect of 1-9 increases estimation difficulty far more than the sum of the 
individual challenges (see Cope et al., 2009).

• Bottom line: OpRisk loss data is most certainly not independent and identically distributed 
(�i.i.d.�), which is a presumption of MLE; and even if it was close, from an estimation standpoint 
the above characteristics greatly magnify the effects of even small departures from i.i.d.
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A. Unusably large variances on the parameter estimates
B. Extreme sensitivity in parameter values to data changes (i.e. financial restatements, 

dispute resolutions, etc.) and/or new and different quarters of loss data.  This would 
translate into a lack of stability and reliability in capital estimates from quarter to quarter.

C. Unreasonable sensitivity of parameter estimates to very large losses
D. Unreasonable sensitivity of parameter estimates to very small losses (this counter-

intuitive result is documented analytically below)
E. Due to any of A-D, unusably large variance on estimated severity distribution (high) 

quantiles
F. Due to any of A-E, unusably large variance on capital estimates
G. A theoretical loss distribution that does not sync well with the empirical loss distribution: 

the quantiles of each simply do not match well.  This would not bode well for future 
estimations from quarter to quarter even if key tail quantiles in the current estimation are 
reasonably close.

3. OpRisk Empirical Challenges
The practical consequences of 1-9 above for OpRisk modeling can include:

• So in the OpRisk setting, when estimating severity distribution parameters, the statistical criteria 
of unbiasedness, efficiency, and robustness are critical and directly determine the degree to 
which capital estimates from quarter to quarter are stable, reliable, precise, and robust.

• A quantitative definition of statistical �robustness� (more precisely, �B-robustness�) is provided 
in the next several slides, after a brief definition of maximum likelihood estimation (MLE).
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4. Maximum Likelihood Estimation (MLE)

• Maximum Likelihood Estimation (MLE) is considered a �classical� approach to 
parameter estimation.

• MLE parameter estimates are the values that maximize the likelihood, under the 
assumed model, of observing the data sample at hand.

• When the assumed model is in fact the true generator of the data, and those data are 
independent and identically distributed (�i.i.d.�), MLE estimates are asymptotically 
unbiased (�consistent�), asymptotically normally distributed, and asymptotically 
efficient (i.e. they achieve the Cramér-Rao lower bound � see Appendix I).

• MLE values are obtained in practice by maximizing the log-likelihood function.

• As an example, derivations of MLE estimates of the parameters of the LogNormal
distribution are shown below.
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4. Maximum Likelihood Estimation (MLE)

For example, assuming an i.i.d. sample of n observations                       from the 
LogNormal distribution

• The likelihood function =

• The log-likelihood function = 

• Then  

• So simply maximize the objective function 
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4. Maximum Likelihood Estimation (MLE)
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4. Maximum Likelihood Estimation (MLE)
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4. Maximum Likelihood Estimation (MLE)

• When the log-likelihood cannot be simplified algebraically, numerical methods
often can be used to obtain its maximum.  For example, for the parameters of the 
Generalized Pareto Distribution (GDP), Grimshaw (1993) used a reparameterization
to develop a numerical algorithm that obtains MLE estimates.
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5a. Robust Statistics: Background and the IF

• The theory behind Robust Statistics is well developed and has been in use for nearly 
half a century (see Huber, 1964).  Textbooks have institutionalized this sub-field of 
statistics for the past 30 years (see Huber, 1981, and Hampel et al., 1986).

• Robust Statistics is a general approach to estimation that recognizes all statistical 
models are merely idealized approximations of reality.  Consequently, one of its main 
objectives is bounding the influence on the estimates of a small to moderate number of 
data points in the sample that deviate from the assumed statistical model.  

• Why?  So that in practice, when actual data samples generated by real-world processes 
do not exactly follow mathematically convenient textbook assumptions (e.g. all data 
points are not perfectly �i.i.d.�), estimates generated by robust statistics do not 
�breakdown� and provide meaningless, or at least notably biased and inaccurate, 
values: their values remain �robust� to such violations.  

• Based on the empirical challenges of modeling OpRisk loss data (which is most 
certainly not �i.i.d.�) satisfying this robustness objective would appear to be central to 
the OpRisk severity distribution parameter estimation effort: robust statistics may be 
tailor-made for this problem!  

• The tradeoff for obtaining robustness, however, is a loss of efficiency � a larger mean 
squared error (MSE � see Appendix I) � when the idealized model assumptions are true: 
if model assumptions are violated, robust statistics can be MORE efficient than MLE.
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5a. Robust Statistics: Background and the IF

• Perhaps the most useful analytical tool for assessing whether, and the degree to which, 
a statistic is �robust� in the sense that it bounds or limits the influence of arbitrary 
deviations* from the assumed model is the Influence Function (IF), defined below:

where

• is the distribution that is the assumed source of the data sample

• is a statistical functional, that is, a statistic defined by the distribution that is the 
(assumed) source of the data sample.  For example, the statistical functional for the 
mean is

• is a particular point of evaluation, and the points being evaulated are those that 
deviate from the assumed    .

• is the probability measure that puts mass 1 at the point .
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* The terms �arbitrary deviation� and �contamination� or �statistical contamination� are used synonymously to mean data points that come from 
a distribution other than that assumed by the statistical model. They are not necessarily related to issues of data quality per se.
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• is simply the distribution that includes some proportion of the data,    , that is an 
arbitrary deviation away from the assumed distribution,    . So the Influence Function is 
simply the difference between the value of the statistical functional INCLUDING this 
arbitrary deviation in the data, vs. EXCLUDING the arbitrary deviation (the difference is 
then scaled by    ).

• So the IF is defined by three things: an estimator       , an assumed distribution/model     , 
and a deviation from this distribution,     (     obviously can represent more than one data 
point as     is a proportion of the data sample, but it is easier conceptually to view     as a 
single data point whereby                 : this is, in fact, the Empirical Influence Function 
(EIF) � see Appendix III). 

• Simply put, the IF shows how, in the limit (asymptotically as   , so as               ), an 
estimator�s value changes as a function of    , the value of arbitrary deviations away 
from the assumed statistical model,     .  In other words, the IF is the functional 
derivative of the estimator with respect to the distribution.
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• IF is a special case of the Gâteaux derivative, but its existence requires even weaker 
conditions (see Hampel et al., 1986, and Huber, 1977), so its use is valid under a very 
wide range of application (including the relevant OpRisk severity distributions).  

5a. Robust Statistics: Background and the IF
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• If IF is bounded as     becomes arbitrarily large/small, the estimator is said to be �B-
robust�*; if IF is not bounded and the estimator�s values become arbitrarily large as 
deviations from the model become arbitrarily large/small, the estimator is NOT B-robust.

• The Gross Error Sensitivity (GES) measures the worst case (approximate) influence that 
an arbitrary deviation can have on the value of an estimator.  If GES is finite, an 
estimator is B-robust; if it is infinite, it is not B-robust.

• A useful example demonstrating the concept of B-robustness is the comparison of the 
IFs of two common location estimators: the mean and the median.  The former is 
unbounded with an infinite GES, and thus is not B-robust, while the latter is bounded, 
with a finite GES, and thus is B-robust. 

* �B� comes from �bias,� because if IF is bounded, the bias of the estimator is bounded.

( ) ( )* , sup ; ,GES T F IF x T F
x

γ= =

B-Robustness as Bounded IF

5a. Robust Statistics: Background and the IF

x
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IF mean

IF median

Graph 1: Influence Functions of the Mean and the Median
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• Because the IF of the mean is unbounded, a single arbitrarily large data point can render 
the mean meaninglessly large, but that is not true of the median.

• The IF of the mean is derived mathematically below (see Hampel et al., 1986, pp.108-109  
for a similar derivation for the median, also presented in Appendix II for convenience).

5a. Robust Statistics: Background and the IF
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Derivation of IF of the Mean: 
Assuming            , the standard normal distribution:F = Φ
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5a. Robust Statistics: Background and the IF
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Many important robustness measures are based directly on the IF: brief definitions are 
presented below, with complete definitions listed in Appendix III.

� Gross Error Sensitivity (GES):  Measures the worst case (approximate) influence that a small 
amount of contamination of a fixed size can have on the value of the estimator.  If finite, the IF is 
bounded, and the estimator is �B‐robust.�

� Rejection Point:  The point beyond which IF = zero and data points have no effect on the estimate. 

� Empirical Influence Function:  The non‐asymptotic, finite‐sample influence function.
� Sensitivity Curves: The scaled, non‐asymptotic, finite‐sample influence function (the difference 

between two empirical functionals, one based on a sample with contamination, one without, 
multiplied by n.)

� Asymptotic Variance and ARE: The variance of the estimator, and the ratio of the variances of two 
estimators.

� Change‐in‐Variance Sensitivity:  For M‐estimators, the derivative of the asymptotic variance when 
contaminated, divided by the asymptotic variance.  Assesses how sensitive is the estimator to 
changes in its asymptotic variance due to contamination at F.  If finite, then estimator is �V‐
robust,� which is stronger than B‐robustness.

� Local Shift Sensitivity: Assesses how sensitive the estimator is to small changes in the values of 
the observations; what is the worst effect on an estimator caused by shifting an observation 
slightly from point x to point y? 

� Breakdown Point:  A measure of global robustness, not local robustness like IF.  The percentage of 
data points that can be contaminated with the estimator still providing useful information, that is, 
not �breaking down.�

5a. Robust Statistics: Background and the IF
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• As may now be apparent, the robust statistics approach, and the analytical toolkit on 
which it relies, can be used to assess the performance of a very wide range of 
estimators, regardless of how they are classified; it is not limited to a small group of 
estimators.  Hence, it has very wide ranging application and general utility.

• And a major objective of a robust statistics approach, as described above, is to bound 
the influence function of an estimator so that the estimator remains robust to deviations 
from the assumed statistical model (distribution). This approach would appear to be 
tailor-made to tackle many of the empirical challenges resident in OpRisk loss data.

5a. Robust Statistics: Background and the IF
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• The goal of this section is to derive the IFs of the MLE estimators of the parameters of 
the relevant severity distributions.  For this presentation-format of this paper, these 
distributions include: Lognormal, Truncated LogNormal, Generalized Pareto Distribution 
(GPD), and Truncated GPD.  I have made similar derivations for additional severity 
distributions, but include only the above for the sake of brevity.  Additional distributions 
are included in the journal-format version of this paper.

• The point is to demonstrate analytically the non-robustness of MLE for the relevant 
estimations in the OpRisk setting, and hence the utility of IF as a heuristic and applied
tool for assessing estimator performance.  For example, deriving the IF for the mean 
(the MLE estimator of the specified model) gave an analytical result above of

We know this is not B-robust because as      becomes arbitrarily 
large, so too does the IF: it is not bounded.  Graphs comparing the IFs of these MLE 
estimators to the corresponding IFs of robust estimators will be shown in Section 7 
(technically, the EIFs are compared, but the EIFs converge asymptotically to the IFs, and 
for the sample sizes used (n=250), the MLE IFs and MLE EIFs are virtually identical).

5b. IF Derived: MLE Estimators of Severity Parameters

( )| ,IF x T xµ µ= − x
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• Points of Note:

– Derivations of the IFs, MLE or otherwise, must account for dependence between 
the parameters of the severity distribution: this is something that sometimes has 
been overlooked in the relevant OpRisk severity modeling literature.

– IFs for the MLE estimators for the (left) truncated* distributions have not been 
reported in the literature: they are new results.

– OBRE previously has not been applied to truncated data (with one exception that 
does not use the standard implementation algorithm): so these, too, are new 
results.

– Truncation induces dependence between the parameters of the severity 
distribution, if not there already (in which case truncation appears to augment it).  
This is shown in the formulae and graphs of the IFs, and appears to be the 
source of the extreme �sensitivity� of MLE estimators of truncated distributions 
reported in the literature, based on simulations.  This is the first paper to present 
the analytic results under truncation side-by-side with simulation results.

5b. IF Derived: MLE Estimators of Severity Parameters

* Unless otherwise noted, all truncation herein refers to left truncation, that is, truncation of the lower (left) tail, because data collection thresholds 
for losses ignore losses below a specified threshold.
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• MLEs belong to the class of �M-estimators,� so called because they generalize 
�M�aximum likelihood estimation.  Broad classes of estimators have the same form of IF 
(see Hampel et al. ,1986), so all M-estimators conveniently share the same form of IF. 

• M-estimators are consistent and asymptotically normal.

• M-estimators are defined as any estimator                         that satisfies

or                   where                                        

if the derivative of        exists, and           is defined on .

So for MLE:
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• And for M-estimators, IF is defined as (assuming a nonzero denominator):

where a and b define the domain of the density (in this setting,
typically a = 0 and b =       ).

So we can write

For the (left) truncated densities,                             where H is the truncation threshold.

And so the above becomes:

5b. IF Derived: MLE Estimators of Severity Parameters
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IF of MLEs for (left) truncated densities:

And so the IF is

5b. IF Derived: MLE Estimators of Severity Parameters
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   −   
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IF of MLEs for (left) truncated densities:

Note that a and b are now H and (typically)      , respectively.

As noted previously, we must account for (possible) dependence between the parameter 
estimates, and so we must use the matrix form of the IF defined below (see Stefanski & 
Boos (2002) and D.J. Dupuis (1998)):

Where       is either      or     ,            is simply the Fisher Information (if the data follow the 
assumed model), and        is now vectorized.  Parameter dependence exists when the off-
diagonal terms are not zero.

5b. IF Derived: MLE Estimators of Severity Parameters
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Note that the off-diagonal cross-terms are the second-order partial derivatives: 

and

With the above defintion, all that needs be done to derive IF for each severity distribution 
is the calculation of the first and second order derivatives of each density, as well as, for 
the (left) truncated cases, the first and second order derivatives of the cumulative 
distribution functions: that is, derive

This is done in Appendix IV for the four severity distributions examined herein.  

This �plug-n-play� approach makes derivation and use of the IFs corresponding to each 
severity distribution�s parameters considerably more convenient.

5b. IF Derived: MLE Estimators of Severity Parameters
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Below, I �plug-n-play� to obtain            for the four severity distributions. Note that for the 
LogNormal, (left) truncation induces parameter dependence, and for the GPD, it augments 
dependence that was there even before truncation.  For the truncated cases and the GPD, 
after the cells of            are obtained, IF is calculated numerically.

From Appendix IV, inserting the derivations of 

for the LogNormal yields

5b. IF Derived: MLE Estimators of Severity Parameters
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Inserting Appendix IV derivations of for the LogNormal yields�

5b. IF Derived: MLE Estimators of Severity Parameters
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From Appendix IV, inserting the derivations of

for the (left) Truncated LogNormal yields

5b. IF Derived: MLE Estimators of Severity Parameters
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parameter dependence)
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From Appendix IV, inserting the derivations of 

for the GPD yields

5b. IF Derived: MLE Estimators of Severity Parameters
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From Appendix IV, inserting the derivations of

for the (left) Truncated GPD yields

5b. IF Derived: MLE Estimators of Severity Parameters

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

; ; ; ; ; ; ; ; ; ;
, , , , , , , , ,  and 

f y f y f y f y f y F H F H F H F H F Hθ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

( ) ( ) ( ) ( ) ( )
2 2 2

2 2 32
0

2ln 1
1 2

1 ; , H

x
x x x xdG x f x dx

xF H x
ε

ε
βϕ β ε ε

ε β ε ε εβ ε βε ε

∞ ∞

  
+  ∂ + +   − = − ⋅ + − ∂ + − +   

  

∫ ∫

( ) ( ) ( )
( ) ( )

( )

2 2

2 2 2

22 2 2 3 2 22
0

ln 1 2ln 1 ln 1
1 12; , 1 ; ,

H
x x x

x xx x x xf x dx F H
x x xx

ε ε ε
ε εβ β ββ ε εβ ε β ε

βε ε ε β ε ε ε βε ε εβε ε

           
 +  + +             − + − ++ +            + + − ⋅ + − + +             + + ++                     +

∫ ( )

( )

0

2

; ,

1 ; ,

H

f x dx

F H

β ε

β ε


 
 
 
 
  
 

 − 

∫

( ) ( )
( )( )
( )

( )22 2
0

1 21 1
1 ; , H

x x
dG x f x dx

F H x
β ε β εϕ
β ββ ε β βε

∞ ∞  + +∂  − = − ⋅ − ∂  − +    
∫ ∫

( ) ( ) ( )( )
( )

( )

( )

2 2

22 22
0 0

2

1 21 1 1; , 1 ; , ; ,

1 ; ,

H H x xx xf x dx F H f x dx
x xx

F H

ε β εβ ββ ε β ε β ε
β β ε β β β εβ βε

β ε

    + +   − −   − + − ⋅ − +          + +   +      +
 − 

∫ ∫



© J.D. Opdyke
35

From Appendix IV, inserting the derivations of

for the (left) Truncated GPD yields

5b. IF Derived: MLE Estimators of Severity Parameters
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parameter dependence)
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5c. Robust Estimators: OBRE and CvM

OBRE Defined:
The Optimally Bias-Robust Estimator (OBRE) is provided for a given sample of data as 
the value      of      that solves (1):

( ),

1
; 0

n
A a
c i

i
xϕ θ

=

=∑ ( ) ( ) ( ) ( ) ( ), ; ; ;A a
c cx A s x a W xϕ θ θ θ θ θ = ⋅ − ⋅ 

( )
( ) ( ) ( )

; min 1;
;

c
cW x

A s x a
θ

θ θ θ

 
 =  

 ⋅ −   

θ̂ θ

where
and

and A and a respectively are a 
dim(θ) x dim(θ) matrix and a 
dim(θ)-dimensional vector 
determined by the equations:

( ) ( ), ,; ; TA a A a
c cE x x Iϕ θ ϕ θ ⋅ = 

( ), ; 0A a
cE xϕ θ  = 

is simply the score function,   , so OBRE is 
defined in terms of a weighted standardized scores function, where                            
are the weights.  c is a tuning parameter,                                , regulating
from very robust to MLE, respectively.

( );s x θ ( ) ( ) ( ); ; ;s x f x f xθ θ θ θ = ∂ ∂ 
( );cW x θ

( )dim cθ ≤ ≤ ∞

((2) � ensures bounded IF)

((3) � ensures Fisher consistency)

(1) (1.a)

(1.b)
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5c. Robust Estimators: OBRE and CvM

OBRE Defined:
• The weights make OBRE robust, but it maintains efficiency as close as possible to 

MLE (subject to its constraints) because it is based on the scores function.  Hence, its 
name: �Optimal� B-Robust Estimator.  The constraints � bounded IF and Fisher 
consistency � are implemented with A and a, respectively, which can be viewed as 
Lagrange multipliers.  And c regulates the robustness-efficiency tradeoff: a lower c
gives a more robust estimator, and            is MLE.  Bottom line: by minimizing the 
trace of the asymptotic covariance matrix, OBRE is maximally efficient for a given 
level of robustness, which is controlled by the analyst with c.  Many choose c to 
achieve 95% efficiency relative to MLE, but this actual value for c depends on the 
model being implemented.

• Several versions of the OBRE exist with minor variations on exactly how they bound 
the IF.  The OBRE defined above is the so-called �standardized� OBRE �which has 
proved to be numerically more stable� (see Alaiz and Victori-Feser, 1996).  The 
�standardized� OBRE is used in this study.

c = ∞
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5c. Robust Estimators: OBRE and CvM

OBRE Computed:
To compute OBRE, (1) must be solved under conditions (2) and (3), for a given tuning 
parameter value c, via Newton-Raphson (see D.J. Dupuis, 1998):

STEP 1:  Decide on a precision threshold, η, and initial value for θ, and initial values a = 0 
and                              where is the Fisher Information.

STEP 2: Solve for a and A in the following equations:

and 

where

which gives the �current values� of θ, a, and A used to solve the given equations.

STEP 3:  Now compute         and 

STEP 4:  If                                      then                    and return to STEP 2, otherwise stop.

( ) 1 T
A J θ − =  

( ) ( ) ( ) ( ); ; TJ s x s x dF xθθ θ θ= ⋅∫

1
2

TA A M −=

( ) ( ) ( ) ( ); ; , ,  k=1,2
T k

k cM s x a s x a W x dF xθθ θ θ   = − ⋅ − ⋅   ∫

( ) ( ) ( ) ( ) ( ), , ,c ca s x W x dF x W x dF xθ θθ θ θ= ∫ ∫

1M ( ) ( )1
1

0

1 ; ,
n

i c i
i

M s x a W x
n

θ θ θ−

=

  ∆ = ⋅ ⋅ − ⋅   
∑

( )max  1,2j
j

j

j
θ

η
θ
∆

> = θ θ θ→ + ∆
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5c. Robust Estimators: OBRE and CvM

OBRE Computed:
• The idea of the above algorithm is to first compute A and a for a given θ by solving (2) 

and (3).  This is followed by a Newton-Raphson step given these two new matrics, and 
these steps are iterated until convergence is achieved.  

• The above algorithm follows D.J. Dupuis (1998), who cautions on two points of 
implementation in an earlier paper by Alaiz and Victoria-Feser (1996):

– Alaiz and Victoria-Feser (1996) state that integration can be avoided in the 
calculation of a in STEP 2 and        in STEP 3, but Dupuis (1998) cautions that the 
former calculation of a requires integration, rather than a weighted average from 
plugging in the empirical density, or else (1.a) will be satisfied by all estimates.

– Also, perhaps mainly as a point of clarification, Dupuis (1998) clearly specifies
in STEP 4 rather than just               as in 

Alaiz and Victoria-Feser (1996).

• The initial values for A and a in STEP 1 correspond to the MLE.

1M

( )max  1,2j
j

j

j
θ

η
θ
∆

> =
θ η∆ >



© J.D. Opdyke
40

5c. Robust Estimators: OBRE and CvM

OBRE Computed:
• The algorithm converges if initial values for θ are reasonably close to the ultimate 

solution.  Initial values can be MLE, or a more robust estimate from another estimator, 
or even an OBRE estimate obtained with c = large and initial values as MLE, which 
would then be used as a starting point to obtain a second and final OBRE estimate with 
c = smaller.  In this study, MLE estimates were used as initial values, and no 
convergence problems were encountered, even when the loss dataset contained 5% 
arbitrary deviations from the assumed model.

• Note that the weights generated and used by OBRE,           , can be extremely useful for 
another important objective of robust statistics � outlier detection.  Within the OpRisk
setting, this can be especially useful for determining appropriate �units of measure� 
(uom), the grouping of loss events by some combinations of business unit and event 
type, each uom with the same (or close) loss distribution.  As discussed below, the 
extreme quantiles that need to be estimated for regulatory capital and economic capital 
purposes are extremely sensitive to even slight changes in the variability of the 
parameter estimates.  This, along with the a) unavoidable tradeoff between statistical 
power (sample size) and homogeneity; b) loss-type definitional issues; and c) 
remaining heterogeneity within units of measure even under ideal conditions, all make 
defining units of measure an extremely challenging and crucial task; good statistical 
methods can and should be utilized to successfully execute on this challenge.

cW
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5c. Robust Estimators: OBRE and CvM

The Cramér von Mises estimator is a �minimum distance� estimator (MDE), yielding the 
parameter value of the assumed distribution that minimizes its distance from the empirical 
distribution.  Given the CvM statistic                 in its common form,

where           is the empirical distribution and          is the assumed distribution, the 

minimum CvM estimator (MCVME) is that value       of        , for the given sample, that 
minimizes :

( )2W θ

( ) ( ) ( ) 22

1

1 n

n i i
i

W F x F x
n θθ

=

 = ⋅ − ∑

nF Fθ

( )2W θ
θ̂ θ

CvM Defined:

( ) ( ) ( ){ }2ˆ arg minMCVME nn F x F x dF xθ θ
θ

θ  = ⋅ − ∫
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5c. Robust Estimators: OBRE and CvM

The computational formula typically used to calculate the MCVME is:

where              is the ordered (s)�th value of x.

• MCVME is an M-class estimator, and as such it is consistent and asymptotically normal.

• MDE�s are very similar conceptually, and typically differ in how they weight the data 
points. For example, Anderson-Darling, another MDE, weights the tail more than does 
CvM.  CvM is very widely used, perhaps the most widely used MDE, hence its inclusion.

• Before presenting results comparing MLE to OBRE and CvM, I talk briefly about (left) 
truncation, and reemphasize its analytic and empirical importance in this setting.

( ) ( )( )
2

2

1

1 2 1
12 2

n

s
s

sW F x
n nθθ

=

− = ⋅ −  
∑

( )sx

CvM Computed:
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• Note first that given the size of the economic and regulatory capital estimates generated 
from severity distribution modeling (into the hundreds of millions and billions of 
dollars), the size of the thresholds appear tiny,
and the % of the non-truncated distributions that
fall below the thresholds do not appear shockingly
large, either (assuming, of course, that the loss
distribution below the threshold is the same as that
above it, which is solely a heuristic assumption here).

• However, the effects of (left) truncation on MLE 
severity distribution parameter estimates can be 
dramatic, even for low thresholds.

• Not only are the effects dramatic, but arguably very
unexpected.  The entire shape AND DIRECTION of 
some of the IFs change as does the threshold, over
relatively small changes in the threshold value.

• Note that this is not merely a sensitivity to simulation
assumptions, but rather, an analytical result. 25.7%31.9%$25,000

21.8%27.5%$20,000

12.4%16.0%$10,000

6.6%8.2%$5,000

5.4%6.5%$4,000

4.1%4.6%$3,000

2.8%2.8%$2,000

1.4%1.0%$1,000

GPD
(ξ=1.2, 

β=70,000) 
% Below

LogNormal
(µ=10.95, 
σ=1.75) 

% Below
Collection 
Threshold
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• Note the NEGATIVE covariance between parameters induced by (left) truncation.  Many 
would call this unexpected, if not counter-intuitive: the location parameter, µ, 
DECREASES under larger and larger arbitrary deviations.

EIF of Truncated LogNormal (µ = 10.95, σ = 1.75) MLE Parameter Estimates: 
by Size of Thresholdµ σ
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F
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F
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• Note the NEGATIVE covariance between parameters induced by (left) truncation.  Many 
would call this unexpected, if not counter-intuitive: the location parameter, µ, 
DECREASES under larger and larger arbitrary deviations.
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6. Truncation Matters, the Threshold Matters

• In an interesting twist, note that (left) truncation actually DECREASES sensitivity of the 
MLE estimator for σ (and less so for µ) for SMALL deviations (in the left tail) from the 
assumed model.
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6. Truncation Matters, the Threshold Matters

IF of Truncated LogNormal (µ = 10.95, σ = 1.75) MLE Parameter Estimates: 
by Size of Thresholdµ σ

IF
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• In an interesting twist, note that (left) truncation actually DECREASES sensitivity of the 
MLE estimator for σ (and less so for µ) for SMALL deviations (in the left tail) from the 
assumed model.



© J.D. Opdyke
48

6. Truncation Matters, the Threshold Matters

Log Scale

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• Note the log-linear                                              under no truncation is analogous to the
obtained earlier under the normal distribution.

( ) ( ); , ; lnIF x MLE xµ µ σ µ= −
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• β is more strongly affected by (left) truncation, increasing the negative covariance 
between parameters.

EIF of Truncated GPD (ξ = 1.20, β = 70,000) MLE Parameter Estimates: 
by Size of Thresholdξ β
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• β is more strongly affected by (left) truncation, increasing the negative covariance 
between parameters.

IF of Truncated GPD (ξ = 1.20, β = 70,000) MLE Parameter Estimates: 
by Size of Thresholdξ β
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• β is more strongly affected by (left) truncation, increasing the negative covariance 
between parameters.

IF of Truncated GPD (ξ = 1.20, β = 70,000) MLE Parameter Estimates: 
by Size of Thresholdξ β

Log Scale

IF

IF

x = arbitrary deviation (M)

x = arbitrary deviation (M)



© J.D. Opdyke
52

6. Truncation Matters, the Threshold Matters

• These unexpected, and even counterintuitive results, both in the magnitude of the effect 
of (left) truncation, and sometimes its direction, are confirmed in the simulations 
presented below, side-by-side with the analytical IF results.  This would appear to 
explain the extreme sensitivity of MLE estimators under truncation reported in the 
literature, which has perplexed some.
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7. Results:  Simulation Descriptions

The simulations generate MLE parameter estimates vs. OBRE and CvM parameter 
estimates.  The Empirical Influence Functions, which match perfectly with the derived IF 
formulae presented above (which is actually a very useful QC check), are presented 
side-by-side with the simulations, which confirm the performance under arbitrary 
deviations indicated by the IFs.

• Sample Size: n = 250 was chosen as a reasonable size for many units-of-measure.  
Depending on the bank, some will have larger n, some smaller, but if the results were 
not useful for this n = 250, then sample size would have been a real issue with these 
methods going forward, so that is why n = 250 was selected.

• Severity Distributions: the LogNormal and the 
Generalized Pareto.  Both are commonly used 
in this setting, but they are very distinct distributions, 
with the latter being more heavy-tailed (see table).  
The motivation for using GPD obviously was NOT a 
peaks-over-threshold approach in this study, but 
rather, the fact that it is in common use in this 
setting, is heavy-tailed, and is distinct from the 
LogNormal (i.e. one is not a transformed or limiting
version of the other).  Results obtained from other 
distributions will be included in journal-format version
of this paper.

$11,052,099,964$56,666,86299.996%

$232,229,183$12,710,08899.900%

$14,652,671$3,338,75699.000%

$2,123,992$1,013,06895.000%

$924,521$536,44390.000%

$307,885$185,41675.000%

$134,015$56,95450.000%

GPD
(ξ=1.2, 

β=70,000)

LogNormal
(µ=10.95, 
σ=1.75) Quantile
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7. Results:  Simulation Descriptions

• Truncation and Shifting:  The Truncated LogNormal and Truncated GPD, with the 
relatively low threshold of $5k, also are included, as is the �Shifted� LogNormal (the 
threshold is subtracted from the losses generated under truncation, the LogNormal is 
fitted, and then the threshold is added back after estimation).

• Parameter values: These were choosen (LogNormal µ = 10.95, σ = 1.75, Truncated 
LogNormal µ = 9.90, σ = 2.40, and both GPD and Truncated GPD ξ = 1.2, β = 70,000) so 
as to reflect a) fairly large differences between the Lognormal and the GPD; b) general 
empirical realities based on OpRisk work I�ve done (but not proprietary results); c) yet, 
some �stretching� vis-à-vis fairly large (but still realistic) GPD parameters, to ensure
that there were no estimation problems with these methods when they encountered 
more extreme severity distributions that are more difficult to estimate (actually, because 
ξ > 1, this GPD has infinite mean, a not uncommon occurrence empirically with OpRisk
loss data, according to the literature).  Obviously, for any given setting, all estimation 
methods should be tested extensively for parameter value ranges relevant to the 
specific estimation effort.

• OBRE value of c: For OBRE, different values for c, the tuning parameter, were used with 
the given parameter values, and values about c = 2 most consistently provided what 
appeared to be a good tradeoff between robustness and efficiency.  Again, for any given 
setting and any given loss dataset, different values of c should be tested and evaluated 
based on the objectives of the specific estimation effort.
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7. Results:  Simulation Descriptions

• OBRE Starting Values:  MLE estimates were used as starting point for the OBRE 
algorithm, and for this study, no convergence problems were encountered.  That said, 
values of η, c, n, and the distribution parameters all are very interrelated, and like any 
convergence algorithm, must be carefully monitored.  For example, values of                 
usually were used herein, but sometimes                 sufficed and saved computation and 
time resources; when it did not suffice, it produced unacceptable and unpredictable 
jumps in the values of the IF.  Such behavior is typical of convergence algorithms, so 
their responsible use requires cognizance of them.

• CvM Starting values:  A wide range of parameter values were provided for the Gaussian 
quadrature optimization algorithm. Only one convergence issue was encountered.

• Arbitrary Deviations: Observations arbitrarily deviating from the assumed severity 
distribution, both 2% of all observations and 5% of all observations, are randomly drawn 
from the top 10%tile (right tail) of the distribution and multiplied by a factor of ten.

• Starting points are sometimes noted in the literature as being important for the 
convergence of these algorithms, although this possibly is due to the relatively small 
sample sizes (as low as n = 40) being used in some of those studies (see Horbenko, 
Ruckdeschel, & Bae, 2011).  Only one potential convergence issue was noted in this
study.  Again, the focus here was to compare the robust methods to MLE, and to ensure 
that they were worth pursuing for application in this setting.  An important �next step� 
for this applied research is a sample size study designed to test �how low can we go.�

0.01η =
0.02η =



© J.D. Opdyke
56

-10

-8

-6

-4

-2

0

2

4

6

$0 $1 $2 $3 $4 $5

MLE 
OBRE (c=1.41)
OBRE (c=2.00)

-5

0

5

10

15

20

25

$0 $1 $2 $3 $4 $5

MLE 
OBRE (c=1.41)
OBRE (c=2.00)

7. Results:  LogNormal Distribution

EIF of LogNormal (µ = 10.95, σ = 1.75) Parameter Estimates: 
OBRE v. MLE

• NOTE:  Aribtrary deviations from the assumed model do not have to be 
large in absolute value to have a large impact on MLE estimates. The IF 
is a useful tool for spotting such counter-intuitive and important effects.

Millions

Millions

IF

IF
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7. Results: Summary

• Counter-Intuitive MLE Bias from Small-Sized Deviations: 
Small aribtrary deviations away from the presumed model (that is, deviations in the 
left tail) can have very large, disproportionate biasing effects on MLE estimates.  This 
is an analytically derived result of the (LogNormal) IF, not an artifact of sensitivity to 
simulation assumptions.

• Notable MLE Bias Under Small % Deviations: 
MLE estimators are uniformly and strongly biased by even mild deviations (only 2% of 
all observations) from the assumed severity distribution.

• Very Strong MLE Bias Under (Left) Truncation for Small % Deviations: 
MLE bias is especially strong under (left) truncation, both for the LogNormal & GPD.

• All Analytically Derived IFs Virtually Exactly Match EIFs

• (Left) Truncation Induces/Increases Parameter Covariance: 
For the LogNormal, GPD, Truncated LogNormal, and Truncated GPD distributions, 
large arbitrary deviation induces positive, negative, negative, and negative covariance 
between the MLE parameter estimates, respectively.  This would appear to be the 
source of the extreme sensitivity of MLE estimates to truncation often cited in the 
literature, based on simulations.  This is the first study known to this author placing 
such simulations side-by-side with MLE-IFs derived for truncated distributions.
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7. Results: Summary

• Efficiency � CvM and OBRE Superior to MLE:  Under the LogNormal distribution, 
differences in efficiency amonst the three estimators were negligible.  Under the 
Truncated LogNormal, MLE�s greater efficiency under no arbitrary deviation was 
extremely small, while its INefficiency compared to OBRE and CvM under 2% and 5% 
deviation was extremely large.  For the GPD, not until 5% deviation was inserted did 
OBRE and CvM become notably more efficient than MLE, which was also true for the 
Truncated GPD.  MLE was notably more efficient under 0% deviation only for β for the 
Truncated GPD.  The winners on the efficiency front clearly were the robust 
estimators.

• Robustness � CvM and OBRE Superior:  Unlike MLE, OBRE (c = 2.0) and CvM
performed very similarly and very well, exhibiting very good robustness properties 
with well-bounded EIFs, and virtually none of the bias shown by MLE, even under 5% 
arbitrary deviations in the (left) truncated models.  The one exception to this 
performance: CvM had difficulty attaining convergence for the Truncated GPD.  While 
this was admittedly the hardest distribution to fit, that also was the point of the 
exercise, and of using fairly large parameter values in this case.  Further scrutiny of 
this result would be required, with possible focus on starting values and the 
performance of gaussian quadrature under infinite means.
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7. Results: Summary

• Shifted LogNormal:  Results for the Shifted LogNormal were very similar to those of 
the LogNormal distribution; for the former compared to the latter, larger MSE and 
some bias, across estimators, were due to simply fitting the wrong model.  But as 
expected, the robust statistics maintain robustness to arbitrary deviations, whereas 
MLE is not able to.
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8. CvM and OBRE, Pros and Cons

• OBRE Advantages: 
� explicit control over robustness vs. efficiency via the tuning parameter
� �Optimal� efficiency for given level of robustness obtained (trace of parameter

covariance matrix minimized)
� extremely useful degree-of-deviation weights assigned to each observation
� generalizable to multivariate regression 

• OBRE Disadvantages: 
� some coding required, non-trivial implementation / set-up
� convergence not guaranteed (although no problems in this study)

• CvM Advantages:
� implementation is generally relatively quick and simple
� statistical performance (unbiasedness, robustness-efficiency tradeoff) appears to

be close to �optimal� OBRE performance
� generalizable to multivariate regression 

• CvM Disadvantages:
� possible convergence issues, as noted herein and in the literature (Ergashev, 2008)
� no explicit control over robustness vs. efficiency (without changing the statistic in

non-trivial ways)
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9. Potential Limitations of Robust Statistics Generally
• None of these estimators works perfectly under all conditions.  Like all statistical 

methods, robust estimators have limitations, and their responsible use requires the 
analyst to remain cognizant of them.  These include:

– Starting points � While using MLE starting points did not appear to be an issue in this 
study for OBRE, this is an issue likely more relevant under more severe sample size 
constraints.  However, this may have been a contributing factor in the one instance 
that CvM had trouble converging � under a Truncated GPD severity distribution.  More 
robust starting points may be required for smaller sample sizes, or for particularly 
hard-to-fit data.

– Convergence not guaranteed:  For a given set of data, convergence of these algorithms 
is not guaranteed, although it is worth noting that for heavy-tailed distributions, MLE 
estimators often, perhaps more often than not, rely on numerical algorithms, too.

– Merely Statistical Estimators:  It is important to remember in this OpRisk setting that 
robust statistics are merely statistical estimators: they do not solve, in and of 
themselves,

• the inherent difficulties in using distribution parameters to estimate very high 
quantiles

• data that resist conforming to (mathematically convenient) parametric 
assumptions

• problems related to initial model selection (where Bayesian methods are strong)
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10. Point-Counterpoint Revisted: Who Wins?

Maximum Likelihood Estimation (MLE):
�MLE does not inappropriately downweight extreme observations as do most/all 

robust statistics.  And focus on extreme observations is the entire point of the OpRisk
statistical modeling exercise!  Why should we even partially ignore the (right) tail when 
that is where and how capital requirements are determined?!  That�s essentially ignoring 
data � the most important data � just because its hard to model!�

Robust Statistics:
�All statistical models are merely idealized approximations of reality, and OpRisk data 

clearly violate the fragile, textbook model assumptions required by MLE.  Robust Statistics 
acknowledge and deal with these facts by explicitly and systematically accounting for 
them, sometimes with weights (and thus, they avoid a bias towards weight=one for every 
data point).  Consequently, under real-world, non-textbook OpRisk loss data, Robust 
Statistics exhibit less bias, equal or greater efficiency, and far more robustness than does 
MLE.  These characteristics translate into a more reliable, stable estimation approach, 
regardless of the framework used by robust statistics (i.e. multivariate regression or 
otherwise) to obtain high quantile estimates of the severity distribution.
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�Estimation of operational risk is badly influenced by the quality of data, as not all external data is 
relevant, some losses (i.e. �outliers�) may not be captured by the ideal model, and induce bias, and some 
data may not be reported at all.  This can result in systematic over- or under-estimation of operational 
risk. � robust estimation of the regulatory capital for the operational risk hence provides a useful 
technique to avoid bias when working with data influenced by outliers and possible deviations from the 
ideal models.� (Horbenko, Ruckdeschel, & Bae, 2010)

��recent empirical findings suggest that classical methods will frequently fit neither the bulk of the 
operational loss data nor the outliers well�  Classical estimators that assign equal importance to all 
available data are highly sensitive to outliers and in the presence of just a few extreme losses can 
produce arbitrarily large estimates of mean, variance and other vital statistics.  �On the contrary, 
robust methods take into account the underlying structure of the data and �separate� the bulk of the 
data from outlying events, [in � sic] this way avoiding upward bias in the vital statistics and forecasts.� 
(Chernobai & Rachev, 2006)

�Since we can assume that deviation from the model assumptions almost always occurs in finance and 
insurance data, it is useful to complement the analysis with procedures that are still reliable and 
reasonably efficient under small deviations from the assumed parametric model and highlight which 
observations (e.g. outliers) or deviating substructures have most influence on the statistical quantity 
under observation.  Robust statistics achieves this by a set of different statistical frameworks that 
generalize classical statistical procedures such as maximum likelihood or OLS.� (Embrechts & 
Dell�Aquila, 2006)

10. Point-Counterpoint Revisted: Confirmation
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11. New Findings, Summary, Recommendations, Next
New Findings:

• MLE Influence Functions Under Truncation:
Influence Functions for MLE severity distribution parameter estimators derived for 
(left) truncated distributions.  This appears to explain the extreme �sensitivity� of MLE 
estimators of (left) truncated distributions reported in the literature, based on 
simulations.  This is the first paper to present the analytic results side-by-side with 
confirmatory simulation results.

• OBRE Under Truncation:
OBRE applied to (left) truncated data.*  OBRE�s performance on these difficult-to-fit 
distributions, especially GPD with infinite mean, was flawless, and bodes well for its 
use in this setting.

* Victoria-Feser & Ronchetti, 1994, compute OBRE using (left) truncated data, but use an EM algorithm rather than the more standard Newton-
Raphson algorithm of D.J. Dupuis (1998) to obtain the OBRE estimates.
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11. New Findings, Summary, Recommendations, Next
Summary of Major Findings:

• MLE loses its good statistical properties under real-world OpRisk loss event data, that 
is, the moment it steps out of the non-i.i.d. textbook.

• MLE exhibits notable bias, and is less efficient and less robust than OBRE and CvM
under even modest deviations from the assumed severity distribution(s).

• This is especially true under truncated severity distributions, which are prevalent in 
the OpRisk setting.  This is confirmed with analytic derivations of MLE Influence 
Functions, not simulations alone.

• The robust statistics studied herein, namely CvM and OBRE, exhibit good statistical 
behavior in terms of unbiasedness, efficiency, and robustness under modest 
deviations from the assumed statistical severity distribution, with and without 
truncation.  

• The challenges of OpRisk loss event data appear to be tailor-made for a robust 
statistics approach, and the results presented herein appear very promising for its 
application in this setting. 
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Some Specific Questions to be Answered:

• Does MLE become unusable under relatively modest deviations from i.i.d., 
especially for the heavy-tailed distributions used in this setting  YES, or are 
these claims overblown?   NO

• Do analytical derivations of the MLE Influence Functions for severity 
distribution parameters support or contradict such claims?   NO, THEY 
SUPPORT THEM Are they consistent with simulation results?  YES How does 
(possible) parameter dependence affect these results?  VERY MUCH

• Do these results hold under truncation?  YES How much does truncation and 
the size of the collection threshold affect both MLE and Robust Statistics 
parameter estimates?  RESPECTIVELY: VERY BADLY, NOT MUCH/ROBUST 

• Are widely used, well established Robust Statistics viable for severity 
distribution parameter estimation? ALL RESULTS INDICATE YES Are they too 
inefficient relative to MLE for practical use?  NO, ACTUALLY BETTER THAN 
MLE Do any implementation constraints (e.g. algorithmic issues) trip them up, 
especially under difficult-to-fit distributions (say, with infinite mean)? NO, BUT 
NEEDS TO BE MONITORED

11. New Findings, Summary, Recommendations, Next
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11. New Findings, Summary, Recommendations, Next
Recommendations

• Replace MLE in the OpRisk severity distribution parameter estimation exercise with 
alternatives robust to modest violations of the assumed models, which by necessity 
are merely idealized approximations of a non-pristine, somewhat messy data reality.  
The robust statistics examined herein appear to be very promising candidates for this 
purpose, and definitely merit further study toward application in this setting.  
Suggestions are included in �next steps� below.

Next Steps: 
Capital Estimates, Sample Size Study, Variance Reduction via Regression

1. Capital Estimates:  
These parameter estimates must be used to obtain high quantiles of the severity 
distribution for regulatory and economic capital estimation.  Initial results via SLA 
(Single-Loss Approximation, see Böcker & Klϋppelberg, 2005), of course using ξ < 1.0 
for the GPD distributions for which the statistical behavior shown above was 
identical, indicate notably greater precision of the robust statistics under just 2% 
deviations, due to bias in the MLE estimates.  The robust capital estimates were 
closer to true required regulatory capital typically by at least several multiples of the 
true capital value.
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11. New Findings, Summary, Recommendations, Next
Next Steps

2. Sample Size Study:  
Sizes of units of measure vary, so it is important to know, for any estimation method 
under consideration, the minimum sample size necessary, under the specific 
distributional and data circumstances, to provide a parameter and a corresponding 
quantile estimate with a required level of precision.  Some studies have indicated 
robust results for variants of the estimators examined herein for sample sizes as low 
as n = 40 (see Horbenko, Ruckdeschel, & Bae, 2010).  A thorough �how low can we 
go� study focusing exclusively on this question under a wide range of scenarios 
would be a valuable contribution to the possible application of robust statistics in the 
OpRisk severity modeling setting.
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11. New Findings, Summary, Recommendations, Next
Next Steps

3. Variance Reduction � A Multivariate Approach:
As mentioned previously, what may be good estimation statistically, with good 
relative statistical precision, may not be good enough for reliable, stable capital 
estimation.  The fact that the quantiles that need to be estimated in this setting are so 
extremely high means that the slightest bias in, or change in variance in, the 
parameter estimators can dramatically affect the capital estimates in absolute terms. 
Therefore, variance in parameter estimation needs to be reduced at all costs.  

Multivariate Regression may reduce this variance in three ways concurrently by 

i) helping to better define units of measure to most efficiently make the tradeoff
between homogeneity and statistical power 

ii) increasing statistical power by preserving degrees of freedom while
simultaneously explaining and accounting for more heterogeneity, and 

iii) appropriately handling the problem of time-varying thresholds, which based on
the empirical results herein, can have a dramatic effect on parameter estimation

Robust Statistics can and should be applied within a multivariate framework to tackle 
this difficult challenge of variance reduction. 
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12. Appendix I

Mean Squared Error: This is the average of the squared devations of sample‐based 
estimate values from the true population value of the parameter being estimated, 
as shown below: 

If an estimator is unbiased, bias = 0 and MSE = Variance.  �Efficiency� can be 
defined in slightly different ways, but it is always inversely related to MSE.

The Cramér‐Rao Lower Bound: is the inverse of the information matrix � the 
negative of the expected value of the second‐order derivative of the log‐
likelihood.  Because this is the lower bound for the variance of any unbiased 
estimator, efficiency is usually defined in reference to it, if not in reference to 
another estimator (in which case it is usually called relative efficiency).

( ) ( ) ( )
2 2

1

1 ˆ
n

i
MSE Variance Bias

n
θ θ θ θ

=

 = − = + ∑
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For the median, we must use additional results from Hampel et al. (1986) related to L‐estimators (of location), which 
are of the form                                                 , where                           is the ordered sample and the are coefficients.

�L� of �L‐estimators� comes from �linear� combinations of order statistics.  A natural sequence of location estimators 
is obtained if the weights        are generated by              , where  

Under regularity conditions, these estimators are asymptotically normal and the corresponding functional is

, which is Fisher consistent with influence function

where the denominator is nonzero 
because it equals

Now the median corresponds to 

So its influence function is

and for standard normal, median=0,                        , so
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Many important robustness measures are based directly on the IF:

Gross Error Sensitivity (GES) is the supremum being taken over all x where IF 
exists:

This measures the worst case (approximate) influence that a small amount of 
contamination of a fixed size can have on the value of the estimator.  If GES is 
finite, that is, if IF is bounded, the estimator is B‐robust (�B� comes from �bias,�
because GES can be regarded as an upper bound on the (standardized) asymptotic 
bias of the estimator).  Robustifying an estimator typically makes it less efficient, 
so the conflict between robustness and efficiency is often best solved with Op 
timal B‐robust estimators (OBRE) � estimates which cannot be improved with 
respect to both GES and asymptotic variance (shown below).  So GES is very 
useful, alongside IF, for comparing two estimators.  If, for example, a comparison 
of the IFs of two estimators leads to ambiguous conclusions, that is, if one 
estimator�s IF has tighter bounds over one range but the other�s is tighter over 
another range, then GES is a useful tool describing which is better under the worst 
case scenario.

( ) ( )* , ; ,supT F IF x T F
x

γ =

12. Appendix III
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Rejection Point: If IF does not exist in some area and is equal to zero, then 
contamination of points in that area do not have any influence on the estimator at 
all.  The rejection point, then, is defined as

Observations farther away than       are rejected completely, so it is generally 
desirable if       is finite.  In other words, for estimators with finite rejection point, 
there will be some point beyond which extreme outlying data points will have no 
influence on the value of the estimator (because the value of the influence 
function is zero), and in general, this is a desirable characteristic of an estimator, 
adding to its robustness against data that deviates notably from the model�s 
assumptions.

( ){ }* inf 0; ; , 0 when r IF x T F x rρ = > = >
*ρ

*ρ

12. Appendix III
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Empirical Influence Function: The empirical influence function (EIF) naturally 
corresponds with the IF, and is given by

To implement this in practice, EIF is simply a plot of  
as a function of x, where x is the added contamination data point inserted in place 
of observation .  The EIF can be described as an estimation using the original 
sample, but with only n � 1 of the observations, compared to one using the same 
sample with one additional data point, x, the contamination.    This also is closely 
related to the jackknife (the finite sample approximation of the asymptotic 
variance, treated below, is the jackknife estimator of the variance).
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Sensitivity Curve: A concept very closely related to the empirical influence 
function, that is, the non‐asymptotic, finite sample IF, is Sensitivity Curves.  
Analogous to the EIF, these answer the question: how sensitive is the estimator, 
based on the finite empirical sample at hand, to single‐point contaminations at 
each data point?  From Hampel et al. (1986), the sensitivity curve is simply

, which is just a 
translated and rescaled version of EIF.  The functional is applied to two empirical 
samples (both with one original data point removed): one with a point of 
contamination, and one without.  The difference between the values of the 
empirical functional, multiplied by n, is the sensitivity curve.  

Analogously, when the estimator is a functional, then

, where       is the 

empirical distribution .  In fact, based on the above,                  will in
many cases converge to                         asymptotically.
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Asymptotic Variance and ARE:  Based on the IF, an important measure of 
efficiency is the asymptotic variance, from which the asymptotic relative efficiency 
(ARE) directly can be calculated.  The ARE is simply a measure of the relative size 
of the variances of two estimators, telling us which is more efficient. 

Understanding the (relative) efficiency of an estimator is especially important 
within the framework of robust statistics, because some degree of efficiency 
typically is lost when estimators are made robust.  Knowing the extent of 
efficiency loss is important, because we want estimators that are both robust and 
efficient, and these are competing criteria by which we need to compare 
estimators, under different distributions and against each other.  Designing 
estimators to be OBRE (optimally B‐robust estimators), for example, requires 
finding estimators that simultaneously can be made no more efficient, and no 
more robust, and to do this requires knowing how efficient and robust an 
estimator is.

( ) ( ) ( )2, ; ,V T F IF x T F dF x= ∫
( ) ( ), , ,T SARE V S F V T F=

12. Appendix III
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Change‐in‐Variance Sensitivity:  The �change‐in‐variance� sensitivity assesses how 
sensitive is the estimator to changes in its asymptotic variance due to 
contamination at F.  The denominator of CVS is the asymptotic variance (see 
section on M‐estimators above for a definition of ψ), and the numerator is the 
derivative of the asymptotic variance when contaminated. 

where the

change‐in‐variance function is 

for continuous

ψ, for which no delta functions arise.  The above is valid for all M‐estimators.  If 
CVS is finite, T is V‐robust (�V� is for Variance).  V‐robustness is stronger than B‐
robustness: if an estimator is V‐robust, it must also be B‐robust (and if an 
estimator is not B‐robust, then it is not V‐robust).  Note that unlike IF, only large 
positive values for CVF, not large negative values, point to nonrobustness.  
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Local Shift Sensitivity: The point of �local shift sensitivity� is to summarize how 
sensitive the estimator is to small changes in the values of the observations; in 
other words, how much is the estimator affected by shifting an observation 
slightly from point x to point y?  When the �worst� effect of this �wiggling� is 
obtained, and it is standardized, the local shift sensitivity is defined as

This helps to evaluate how sensitive an estimator is to changes in the data, all else 
equal.  And this is relevant in this setting because loss data does change from 
quarter to quarter, if financials are restated, litigation is settled, etc.   So this is an 
important tool for assessing the robustness of a particular estimator, and can be 
used in simulation studies to compare the behavior of multiple estimators under 
such data changes.

( ) ( )* ; , ; ,sup IF y T F IF x T F y x
x y

λ = − −
≠
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Breakdown Point:  While the IF and its related summary values are related to local 
robustness, describing the effects of a(n infinitesimal) contamination at point x, 
the �breakdown point� is a measure of global robustness � it describes the global 
reliability of an estimator by asking, up to what percentage of the data can be 
contaminated before the estimator stops providing valuable information? The 
asymptotic contamination breakdown point of the estimate T at F, denoted      , is 
the largest                   such that for                     remains bounded as a 
function of H and also bounded away from the boundary of θ. 

Analogously, the finite sample breakdown point       of the estimator       at the 
sample                   is given by

where the sample
is obtained from the sample                  by replacing the m data points 
by arbitrary values                     . 

The mean, for example, has asymptotic breakdown point and finite sample 
breakdown point, respectfully, of             and               , because a single 
observation with value = arbitrarily large (i.e. ∞) renders its values meaningless.  
In constrast, those of the median are             , and              for an even n and         

for odd n, respectfully, which is far more robust than the mean. 
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LogNormal Derivatives:

12. Appendix IV
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LogNormal Derivatives (for (left) Truncated case):
Due to Leibniz�s Rule, these derivatives 
can be moved inside these integrals.

( ) ( ) ( ) ( ) ( )20 0 0

; , ln
; , ; , ; ,

H H HF H y
f y dy f y dy f y dy

µ σ µ
µ σ µ σ µ σ

µ µ µ σ
 ∂ −∂ ∂= = =  

∂ ∂ ∂   
∫ ∫ ∫

( ) ( ) ( ) ( )( ) ( )
2

30 0 0

ln; , 1; , ; , ; ,
H H H yF H

f y dy f y dy f y dy
µµ σ

µ σ µ σ µ σ
σ σ σ σ σ

 −∂ ∂ ∂  = = = −
 ∂ ∂ ∂
  

∫ ∫ ∫

( ) ( ) ( ) ( )( ) ( )
2

2 2 2

2 2 2 4 20 0 0

ln; , 1; , ; , ; ,
H H H yF H

f y dy f y dy f y dy
µµ σ

µ σ µ σ µ σ
µ µ µ σ σ

 −∂ ∂ ∂  = = = −
 ∂ ∂ ∂
  

∫ ∫ ∫

( ) ( ) ( ) ( )( ) ( )( ) ( )
22 2

2 2 2

2 2 2 2 4 30 0 0

3 ln ln; , 1 1; , ; , ; ,
H H H y yF H

f y dy f y dy f y dy
µ µµ σ

µ σ µ σ µ σ
σ σ σ σ σ σ σ

   − −∂ ∂ ∂    = = = − + −
   ∂ ∂ ∂
      

∫ ∫ ∫

( ) ( ) ( ) ( ) ( )( ) ( )
2

2 30 0 0

ln; , ln 1; , ; , ; ,
H H H yF H y

f y dy f y dy f y dy
µµ σ µ

µ σ µ σ µ σ
µ σ µ σ µ σ σ σ σ

 − ∂ −∂ ∂  = = = −   ∂ ∂ ∂ ∂ ∂ ∂      
∫ ∫ ∫

12. Appendix IV

( ) ( )
( )
; ,

; ,
1 ; ,

f x
g x

F H
µ σ

µ σ
µ σ

=
−

( ) ( )
( )

1 ; ,
; , 1

1 ; ,
F x

G x
F H

µ σ
µ σ

µ σ
−

= −
−
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Generalized Pareto Distribution Derivatives:

( ) ( )1; , ; ,xf x f x
x

ββ ε β ε
β β β ε

 ∂ −= −  ∂ + 

( ) ( ) ( )2 2

ln 1
1

; , ; ,

x
x

f x f x
x

ε
ε β

β ε β ε
ε βε ε ε

  
+   − +∂   = +   ∂ +  

  

( )
1 1

1; , 1 xf x
ε

ε β ε
β β

 − −   
= + 

 

( ) ( )( )
( )

( )
22

22 2 22

1 21 1; , ; ,
x x xf x f x

xx

ε β ε ββ ε β ε
β β β β εβ βε

  + +  ∂ −  = − +    ∂ + +    

( )
( ) ( )

( ) ( )

2

2 2 2 2

22 2 3 2 22

2 ln 1 ln 1
12; , ; ,

x x
xx x x xf x f x

x xx

ε ε
εβ ββ ε εβ ε β ε

ε β ε ε ε βε ε εβε ε

        + +       − + ∂ + +       = + − + +      ∂ + ++               

( ) ( ) ( )
( ) ( ) ( )22 2 2

ln 1
1 11; , ; ,

x
x xx xf x f x

x x xx

ε
ε ε εβββ ε β ε

ε β β β ε βε ε ε βε β εβε ε

   
 +        − + + ∂ −     = − + + −        ∂ ∂ + + +   +            

12. Appendix IV
assuming 0, for  0 ;  0 ;  0xε β ε≥ ≤ < ∞ < < ∞ ≤ < ∞

( )
1

; , 1 1 xF x
ε

ε β ε
β

 −   
= − + 

 
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Generalized Pareto Distribution Derivatives (for (left) Truncated Case):
Due to Leibniz�s Rule, these derivatives can be moved inside these integrals.

( ) ( )
0

; , 1 ; ,
HF H x f x dx

x
β ε β β ε

β β β ε
∂  −= −  ∂ + 

∫

( ) ( ) ( )2 2
0

ln 1
; , 1

; ,
H

x
F H x

f x dx
x

ε
β ε ε β

β ε
ε βε ε ε

  
+   ∂ − +   = +   ∂ +  

  

∫

( ) ( )( )
( )

( )
22

22 2 22
0

; , 1 21 1 ; ,
HF H x x x f x dx

xx

β ε ε β ε β β ε
β β β β εβ βε

  ∂ + +  −  = − +    ∂ + +    
∫

( )
( ) ( )

( ) ( )

2

2 2 2 2

22 2 3 2 22
0

2 ln 1 ln 1
; , 12 ; ,

H
x x

F H xx x x x f x dx
x xx

ε ε
β ε εβ ββ ε ε β ε

ε β ε ε ε βε ε εβε ε

        + +       ∂ − + + +       = + − + +      ∂ + ++               

∫

( ) ( ) ( )
( ) ( ) ( )22 2 2

0

ln 1
; , 1 11 ; ,

H
x

F H x xx x f x dx
x x xx

ε
β ε ε ε εββ β ε

ε β β β ε βε ε ε βε β εβε ε

   
 +       ∂ − + + −     = − + + −        ∂ ∂ + + +   +            

∫

12. Appendix IV

( ) ( )
( )
; ,

; ,
1 ; ,

f x
g x

F H
µ σ

µ σ
µ σ

=
−

( ) ( )
( )

1 ; ,
; , 1

1 ; ,
F x

G x
F H

µ σ
µ σ

µ σ
−

= −
−
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