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Presented at the 18th Annual Operational Risk – North America conference, New 
York, New York, March 15-16, 2016. 
 
The views presented herein are the views of the sole author and do not reflect the 
views of GE Capital or any other institution. 
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Key Risk Indicator (KRI) Data  
(a.k.a. Business Environment and Internal Control Factor (BEICF) Data) –  
 
Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA: 
 
KRI Data can (and should!) be used directly in capital modeling.  Establishing 
material, statistically causal relationships between KRIs and capital is the 
only way that operational risk management and mitigation efforts can have 
direct and desired effects on capital requirements.   
 

For example, this gives the operational risk capital analyst the means by which 
to make statements to, say, the head of the trading shop such as, “If you can 
decrease your system downtime by a standard deviation, or X%, I can take 
$40m in capital off the table for you, all else equal.” 
 

This is accomplished using multivariate econometric (regression) techniques to 
estimate frequency and severity parameters based directly on the KRI Data.  
This is directly analogous to knowing the drivers of, say, a PD model when 
estimating capital for credit risk. 

I. Beyond “Red-Light, Green-Light” KRIs… 



 
© J.D. Opdyke 

6 of 103 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
WHY Multivariate Regression? 
 
Multivariate regression is needed to control for covariance betwixt the KRI 
covariates.  Multivariate regression is the only way to estimate the effect of 
an independent variable (a particular KRI) on a dependent variable (capital) 
holding all else constant, that is, without capturing the effects of other KRIs 
that to some degree move in tandem with the one in question.   

Without a regression to “hold all else constant” and eliminate the confounding 
effect of, say trading volume, when estimating the effect of system downtime on 
operational risk capital, the estimate of the effect of system downtime will be 
biased, and inference based on it will be misinformed, and the mitigation efforts 
based on it will be misguided and likely ineffective.  

I. OpRisk Management/Mitigation via KRI Regression 
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I. Beyond “Red-Light, Green-Light” KRIs… 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
WHY Multivariate Regression? 
 
This, of course, presumes that relationships (covariance) exist betwixt relevant 
KRIs, as it does in the real world (if it did not, there would be no need for 
multivariate regression here). 

Multivariate regression also increases the precision with which we are able to 
estimate the frequency and severity parameters.  We are using additional data 
in the estimation, which will increase statistical power (even though we are 
not increasing sample size in the form of additional loss events). 

  



 
© J.D. Opdyke 

8 of 103 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
WHY Multivariate Regression?  ONLY this approach provides 
1. Statistically Causal Relationships between KRIs and Capital, AND KRIs and LOSS 

FREQUENCY AND SEVERITY (… NOT JUST CAPITAL!!!) 
2. Magnitude of Effect of Each KRI on i. Capital AND ii. LOSS FREQUENCY AND 

SEVERITY Independent of other KRIs 

3. RELATIVE IMPORTANCE of Each KRI’s Effect on i. Capital AND ii. LOSS FREQUENCY 
AND SEVERITY Independent of other KRIs (key for $allocation for mitigation efforts) 

4. Direction of Effect of Each KRI on i. Capital AND ii. LOSS FREQUENCY AND 
SEVERITY Independent of other KRIs 

5. Whether Effect of Each KRI is Statistically Significant vis-à-vis i. Capital AND ii. LOSS 
FREQUENCY AND SEVERITY Independent of other KRIs 

6. Whether Effect of Each KRI is Material vis-à-vis i. Capital AND ii. LOSS FREQUENCY 
AND SEVERITY Independent of other KRIs 

7. Increase in the Precision of the Estimate of Capital (AND Frequency and Severity), all 
else equal 

I. OpRisk Management/Mitigation via KRI Regression 
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I. Beyond “Red-Light, Green-Light” KRIs… 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
REQUIREMENTS 
 
KRI Data for modeling purposes must be disaggregated at the level of the 
loss event.  In other words, it must be “granular,” with data points for each KRI 
collected associated with each individual loss (or timing that concurs with the 
loss).   

This is distinct from what many (non-modelers) refer to as “KRIs,” which are 
typically highly aggregated, descriptive statistics that are tracked over time and 
used to guide operational risk management and mitigation efforts directly, rather 
than via an estimation process that links them to capital (or some other outcome 
measure).  Aggregated KRIs typically are used non-inferentially, to identify 
“Red Lights,” “Amber Lights,” and “Green Lights.” 
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I. OpRisk Management/Mitigation via KRI Regression 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
METHODS 
 

Frequency: Poisson and Negative Binomial Regression 
- Time tested, decades old methods applied in many fields. 
- However, doesn’t move the capital needle nearly as much as severity. 

Severity: Scale regression 
- More recent, main difference is just the link function. 
- DOES move the capital needle, sometimes dramatically. 
- This is a Scale Regression, and so the Severity requires a scale parameter. 

GAMLSS (Generalized Additive Models of Location, Scale, and Shape) 
Regression: 
- Most general, covariates apply to location, scale, and shape parameters. 
- In literature and applied use at least as long as Operational Risk has been a 
  discipline (see Rigby and Stasinopoulos, 2001). 
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I. Beyond “Red-Light, Green-Light” KRIs… 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
METHODS 
 
Frequency: Poisson and Negative Binomial Regression 
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
METHODS 
 
Severity: Scale Regression 
 

( )~ ,  such that  is affected by the regressors as Y θ θℑ Ω

0
1

exp
k

i i
i

xθ θ β
=

 
= ⋅  

 
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0where  is the base value of the scale parameter,θ

 is the distribution of  with nonscale parameters  and scale parameter Y θℑ Ω
and  are  regressors and  are the corresponding parameters.i ix k β
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I. OpRisk Management/Mitigation via KRI Regression 
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I. Beyond “Red-Light, Green-Light” KRIs… 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
METHODS 
 
GAMLSS Regression 
 ( )if ~ ; , , ;  1, , ;  and  are  covariates; 1, ,  parameters;

ki i i i i ikj kY f y i N X j k pµ σ τ = = 

( ) ( ),k k k k k kg h Xθ η β= =

( ) ( )
1 11 1 1 1 1 11 12 12 1 1, i j i jg h X X Xµ η β β β β= = = + + +

( ) ( )
2 22 2 2 2 2 21 22 22 2 2, i j i jg h X X Xσ η β β β β= = = + + +

( ) ( )
3 33 3 3 3 3 31 32 32 3 3, i j i jg h X X Xτ η β β β β= = = + + +

( )
1

ˆ arg max log | , ,
k

N

k i i i i
i

f y
θ

θ µ σ τ
∈Θ =

  =    
∑ for the parametric version, and a penalized log likelihood 

for the semi-parametric version. 

GAMLSS can include both linear & non-linear effects. 

and , ,  and  are location, scale, and shape parameters, i i i kµ σ τ θ
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I. OpRisk Management/Mitigation via KRI Regression 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
IDENTIFYING THE RIGHT KRIs 
 
Everybody knows what factors drive a PD model in credit risk.  Why do we not 
automatically know the KRIs that drive operational risk capital? 

- OpRisk is much Newer 

- A much broader question (and Risk Type) across a much broader range of very 
different businesses, products, and specific risk types. 

- This question needs to be answered for each UoM, and while there may be 
some overlap, there will be considerable differences in the things that drive 
trading-related operational risk losses in EDPM event type vs., say, class action 
litigation losses in the CPBP event type. 
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
IDENTIFYING THE RIGHT KRIs 
 
But smart operational risk researchers have developed useful guidelines in the 
search for and development of material and statistically significant KRIs 
(although the only way to “know” this, ultimately, is to use them in the 
regression). 

 

 

  

I. Beyond “Red-Light, Green-Light” KRIs… 
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I. OpRisk Management/Mitigation via KRI Regression 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
IDENTIFYING THE RIGHT KRIs: Cruz (2012) – useful KRIs must be 
a. Objective:  Quantitative and objectively measurable. 
b. Simple: The simpler they are, the more likely they are to be used.  Also, 

highly complex KRIs confound issues of causality with issues of functional 
form and possible overfitting. 

c. Identifiable:  Explicitly identified with a cost center (or no one will maintain 
and champion it) 

d. Representative: …of a critical path process (or no one will 
maintain/champion it) 

 
(“maintaining” KRIs in current feedback loops is discussed below…) 
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
IDENTIFYING THE RIGHT KRIs: Chapelle (2013) – useful KRIs must be 
a. KEY:  “Essential/Relevant/Few” … less is more.  Many for the sake of 

comprehensiveness is an utter waste. 
b. RISK: Must address RISK, i.e. the possibility of a negative outcome, not 

losses that have already taken place (e.g. customer satisfaction – actually a 
performance indicator with little predictive power re: operational risk … must 
address the root cause of a negative outcome, not the symptom). 

c. INDICATOR:  “Predictor” is better word… must be a predictor of the future, 
not a descriptor of the past or present.  Must indicate an increase in the 
likelihood of an operational risk loss.  Control failures are good candidates. 

I. Beyond “Red-Light, Green-Light” KRIs… 
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I. OpRisk Management/Mitigation via KRI Regression 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
Chapelle (2012) – good candidates for predictive, forward-looking KRIs: 
i. Failed KPIs:  Poor performance is often a source of risk. 
ii. Failed Controls: Most obvious source of preventative indicators: the role of 

a control is to reduce risk, so failed KCI is also a KRI.  Also, failed 
performance of a control function – e.g. a back office – is a KPI, a KRI, and 
a KCI (note that to a multivariate regression, data is data: it does not 
matter whether it is called a KCI or a KRI!). 

iii. Cause of the Cause:  Root causes. Why the “human error?”  Lack of skill?  
Lack of training?  Lack of attention (longer than mandated hours?  History 
of poor individual performance?).  

iv. Environmental KRIs: Relate to context in which business operates, e.g. 
macro economic environment, financial markets, etc.  Active awareness of 
broader environment, not merely tracking firm-centric, descriptive “KRIs.” 
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
Chapelle (2012) – be SMART when designing/defining predictive, forward-
looking KRIs: 
i. Specific:  KRIs must reflect specific business activity. 
ii. Measurable: Especially for modeling, must be quantifiably measurable. 
iii. Actionable: Without a clear path to mitigation, it serves no purpose. 
iv. Realistic: Actions indicated by changes in KRIs must be reasonable and 

credible.  For example, “zero tolerance” of a risk is not realistic.  Risk 
mitigation appropriately reflects well defined risk appetite: no risk, no return. 

v. Timely:  Must be as close to real time as possible to maximize utility to the 
business. 

I. Beyond “Red-Light, Green-Light” KRIs… 
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I. OpRisk Management/Mitigation via KRI Regression 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
Proactively Selecting and Maintaining the Right KRIs:  
KRIs must be current.  They must be maintained – continually assessed and 
reevaluated, simultaneously, together – in a dynamic feedback loop based on 
current data. 
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
Proactively Selecting and Maintaining the Right KRIs:  
Dynamic Feedback Loop 
• Data Capture: Informed by subject matter expertise and technical modeling 

expertise (and previous results). 

• KRI Creation / Assessment / Modification: Informed by SME and technical 
modeling expertise (and previous results). 

• Capital Estimation Using KRI-based Regression: Informed by technical 
modeling expertise. 

• Risk Management / Mitigation:  If KRIs are well designed, results from 
capital modeling seemlessly dictate mitigation efforts. 

• New Data Capture Efforts:  The loop continues, modified and informed by 
results from the prior stages / loops. 

I. Beyond “Red-Light, Green-Light” KRIs… 
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I. OpRisk Management/Mitigation via KRI Regression 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
Proactively Selecting and Maintaining the Right KRIs:  
Dynamic Feedback Loop 

Data Capture 

KRI Creation /  
Assessment / 
Modification 

Risk Management / 
Risk Mitigation 

Capital Estimation  
Using KRI-based 

Econometric Regression 



 
© J.D. Opdyke 

23 of 103 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
Proactively Selecting and Maintaining the Right KRIs:  
Dynamic Feedback Loop 
 
This is DYNAMIC.  Macro environments change, the firm’s risk profile changes, 
and capital SHOULD change based on risk mitigation efforts guided by KRI-
based capital modeling results.  The KRIs that exhibit predictive power vis-à-vis 
capital will change over time (at least in part because the mitigation based on 
them was effective!), old will be discarded or modified, and new ones will be 
used, as long as the loop is actively maintained, owned, and fed current data 
and modeling expertise. 
 
This is a labor intensive process, but the returns dwarf the required investment. 

This also addresses a major criticism of operational risk capital models as 
generally backward-looking:  KRI-based regression uses admittedly historical 
loss event data for a forward-looking purpose – to PREDICT and mitigate 
losses! 

 

I. Beyond “Red-Light, Green-Light” KRIs… 



 
© J.D. Opdyke 

24 of 103 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
WHY Multivariate Regression?  SUMMARY: ONLY this approach provides 
1. Statistically Causal Relationships between KRIs and Capital, AND KRIs and LOSS 

FREQUENCY AND SEVERITY (… NOT JUST CAPITAL!!!) 
2. Magnitude of Effect of Each KRI on i. Capital AND ii. LOSS FREQUENCY AND 

SEVERITY Independent of other KRIs 

3. RELATIVE IMPORTANCE of Each KRI’s Effect on i. Capital AND ii. LOSS FREQUENCY 
AND SEVERITY Independent of other KRIs (key for $allocation for mitigation efforts) 

4. Direction of Effect of Each KRI on i. Capital AND ii. LOSS FREQUENCY AND 
SEVERITY Independent of other KRIs 

5. Whether Effect of Each KRI is Statistically Significant vis-à-vis i. Capital AND ii. LOSS 
FREQUENCY AND SEVERITY Independent of other KRIs 

6. Whether Effect of Each KRI is Material vis-à-vis i. Capital AND ii. LOSS FREQUENCY 
AND SEVERITY Independent of other KRIs 

7. Increase in the Precision of the Estimate of Capital (AND Frequency and Severity), all 
else equal 

I. OpRisk Management/Mitigation via KRI Regression 
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA: 
 

1. GAMLSS and related Regression Models are the only way to Estimate 
OpRisk Capital SCIENTIFICALLY, OBJECTIVELY, and INFERENTIALLY to 
directly and quantitatively and CAUSALLY LINK it to DRIVERS OF OPRISK, 
thus allowing responsible, targeted, and measurable mitigation and 
management.  THIS is OpRisk’s endgame! 

2. This is NOT mathematical voodoo!! – related regressions are referenced in 
current, published guidance from the Federal Reserve Board (see BGFRS, 
2013, p.28) and have been used in applied settings longer than OpRisk has 
been a risk type/discipline (sometimes much longer). 

3. And this is NOT merely “aspirational”!!!  No more effort/resources are 
required to define and obtain covariates AT THE LEVEL OF THE OPRISK 
LOSS EVENTS than are dedicated to creating “rolled up” aggregated KRIs 
USED IN RED-LIGHT, GREEN-LIGHT “analysis” 

 

I. Beyond “Red-Light, Green-Light” KRIs… 
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA: 
 

4. Yes, of course there are many challenges associated with effectively 
implementing GAMLSS models in this setting.  But it HAS been done (see 
Cruz, 2012, and Shevchenko, 2014), and ANY non-trivial empirical analysis 
worth implementing will have challenges: that has not stopped us from 
tackling it for other risk types, so why should it stop us for OpRisk?  It 
shouldn’t, and doesn’t, as long as we invest in OpRisk where we need to: i. 
our data (the right type, of the highest quality, and maximum quantity (i.e. 
maximum appropriate capture)); and ii. our quants (great data’s worthless 
if we don’t have the technical sophistication to maximize its value). 

5. Finally, the ROI here dwarfs that of any other endeavors related to 
Operational Risk Measurement or Management because it most effectively 
accomplishes and integrates BOTH!  How can we effectively MANAGE and 
MITIGATE if we cannot scientifically, objectively, and accurately MEASURE 
the direction, magnitude, and causality of OpRisk Drivers?  This can only 
be done with regressions. 

I. OpRisk Management/Mitigation via KRI Regression 
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss 
Severity COMPLETELY CONSISTENT AND COMPATIBLE WITH AMA/LDA:   
 
Oft-heard “responses”: 
1. This regression stuff is just “aspirational” 
2. That may be fine for credit and market risk, but that’s way too hard to do for OpRisk 

3. CRO’s are “comfortable” with Red-Light, Green-Light 
4. CRO’s wouldn’t understand this complicated regression stuff 
5. Its too hard to collect that data 

6. Our rolled-up KRI’s are not correlated at all… we know, we checked them with the 
=CORREL function in EXCEL!  So we don’t need regression here… 

7. No way, we’d have to adjust our data collection software … the vendor says adding 
a few (KRI) columns of data for each OpRisk loss event will cost $25m 

8. We’ve been aggregating KRIs for years like everybody else… that can’t be wrong! 
9. Well, maybe you have a point, but its too late to do it the right way now. 
10. [MY FAVORITE…] “Our job is a higher calling then just estimating capital.” 

 

I. Beyond “Red-Light, Green-Light” KRIs… 
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I. … 
II. Eliminating Systematically Upward APPROXIMATION Bias in the Capital 

Estimate Due to “SLA” (Single Loss Approximation), the Most Widely Used 
Approximation 

III. … 
IV. … 
V. … 
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II. Eliminating Upward Approximation Bias in Capital 

• Under the Basel II/III AMA, estimated capital requirements are the 
Value-at-Risk (VaR) quantile corresponding to the 99.9%Tile of the 
aggregate loss distribution, which is the convolution of the 
frequency and severity distributions. 

• This convolution typically has no closed form, but its VaR may be 
obtained in a number of ways, including extensive monte carlo 
simulations, fast Fourier transform, Panjer recursion (see Panjer 
(2006) and Embrechts and Frei (2009)), and Degen’s (2010) Single 
Loss Approximation.   

• All are approximations, with the first as the gold standard providing 
arbitrary precision, and SLA (as a closed-form formula) as the 
fastest and most computationally efficient.  SLA is shown below 
under three tail index conditions (not that only a. is relevant for 
severities that cannot have infinite mean):  
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 
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       (the above assumes a Poisson-distributed frequency distribution and can be modified if this assumption does not hold) 
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1,  1
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Fc x F s dsξ µ  = = − ∫

where          is the mean of  µ F

(           is so extreme as to not be 
   relevant in this setting) 

2ξ ≥

II. Eliminating Upward Approximation Bias in Capital 

a) 

b) 

c) 
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Figures A1-A4:  ISLA2 Correction for SLA Divergence at Root of ξ=1 for GPD Severity (θ = 55,000) 
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• When implementing the above it is critical to note that the capital 
estimate diverges as           specifically, for a) 
and for c)                            .  Note that this divergence does not only 
occur for small deviations from            AND DOES NOT DISAPPEAR 
ASYMPTOTICALLY.  For example, for GPD, divergence can be 
noticeable in the range of                          Therefore, one must utilize a 
an alternative derivation of Degen’s formulae to avoid this obstacle. 
 

• Opdyke and Mayorov (forthcoming, 2016) show that for  
upward capital bias is on the order of magnitude of tens of millions of 
USD, and that even when the tail index does not approach  
for example,                   which is not at all uncommon, SLA’s upward 
bias in as few samples as 1,000 when running simulations is often 
orders of magnitude larger than true capital.  In other words, it does 
not take many samples to hit one that is yields parameter estimates 
with a tail index arbitrarily close to a value of one, making SLA’s use 
in any kind of random sampling or simulations extremely unreliable. 

1ξ →

 as  1Cα ξ −→ +∞ →
 as  1Cα ξ +→ −∞ →

1;ξ =

0.8 1.2.ξ< <

II. Eliminating Upward Approximation Bias in Capital 

0.99,ξ =

1,ξ →
0.85,ξ =
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• To solve this problem, because SLA is so widely used, Opdyke (2014) 
developed a straightforward, fast, and accurate non-linear 
interpolation (“ISLA,” Interpolated SLA), which was generalized and 
made even more accurate by Opdyke and Mayorov (forthcoming, 
2016) in “ISLA2.”  The ISLA2 completely eliminates SLA’s 
systematically upward capital bias and provides an extremely fast and 
accurate approximation. 

• The perturbative approach of Hernandez et al. (2012) appears to be 
the only other method that is simultaneously comparably fast and 
accurate, although for banks/sifi’s already using SLA, ISLA2 arguably 
would be preferred. 

II. Eliminating Upward Approximation Bias in Capital 
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1. Goals and Operational Risk Setting 
2. AMA–LDA OpRisk Capital Defined 
3. When is Capital Apparently a Convex Function of Severity Parameters? 

 

a. Convexity of Severity VaR         Convexity of ALD VaR         Inflated Capital 
b. Multiple Checks for Convexity of Severity VaR 

 

4. When is this Capital Bias (Inflation) Material? 

5. RCE (Reduced-bias Capital Estimator) Virtually Eliminates Capital Bias 

6. Simulation Study: RCE vs. MLE 
Severities: LogNormal, GPD, LogGamma, & Truncated Versions of Each 
 

a. RCE More Accurate:  MLE Capital Bias can be ENORMOUS ($Billion+ for one unit of measure!) 
b. RCE More Precise:     RCE RMSE < MLE RMSE, RCE StdDev < MLE StdDev, RCE IQR < MLE IQR 
c. RCE More Robust:     RCE Robustness to Violations of iid > MLE 

 

7. Alternate Estimators 

8. Summary and Conclusions 

⇒ ⇒

III. Mitigating Upward Estimation Bias in Capital 



1. Goals and OpRisk Setting 

I. Demonstrate that Jensen’s Inequality is the apparent source of 
systematically inflated operational risk capital estimates under the 
most common implementations of Basel II/III’s AMA-LDA, and that 
this bias often is very large: hundreds of $millions, and sometimes 
$billions at the unit-of-measure level. 
 

II. Develop a Reduced-bias Capital Estimator (RCE) that i) dramatically 
mitigates this capital overstatement, ii) notably increases the 
precision of the capital estimate, and iii) consistently increases its 
robustness to violations of the (unsupported) i.i.d. presumption.  
With capital accuracy, precision, and robustness greater than any 
other current LDA implementation, RCE arguably would 
unambiguously improve the most widespread OpRisk Capital 
Estimation Framework, and would be the most consistent with 
regulatory intent vis-à-vis an unbiased and more stable 
implementation under Basel II/III’s AMA. 
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Operational Risk 
 Basel II/III 
  Advanced Measurement Approaches (AMA) 
   Risk Measurement & Capital Estimation 
    Loss Distribution Approach (LDA) 
     Frequency Distribution 

    Severity Distribution*  
 

       Aggregate Loss Distribution 

* For purposes of this presentation, and as is widespread practice, potential dependence between the frequency and severity distributions is 
ignored.  See Chernobai, Rachev, and Fabozzi (2007) and Ergashev (2008). 
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1. Goals and OpRisk Setting 



2. AMA–LDA OpRisk Capital Defined 

• A la Basel II/III, Operational Risk Capital for large banks/SIFIs must be estimated with an 
Advanced Measurement  Approaches (AMA) framework. 

• In writing, AMA provides great flexibility, but in practice, there has been industry 
convergence to the Loss Distribution Approach (LDA). 

• Under LDA, severity and frequency distributions representing the magnitude and 
number of OpRisk loss events, respectively, are estimated based on samples of OpRisk 
loss event data. 

• The severity and frequency distributions are convoluted (rarely in closed form) to obtain 
the Aggregate Loss Distribution. 

• Estimated Capital is a VaR of the Aggregate Loss Distribution: specifically, the quantile 
associated with its 99.9%tile, or the 1-in-1000 year loss, on average.  Capital is estimated 
for every cell of data (or “Unit-of-Measure” (UoM), typically defined by Line of Business 
and Event Type) and then aggregated to the enterprise level via dependence modeling.  
The focus in this presentation is UoM-level capital. 

• In practice, frequency parameters have very little effect on estimated capital, which is 
driven almost entirely by the severity parameter values (see Degen’s (2010) analytical 
result below). 
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2. AMA–LDA OpRisk Capital Defined 
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Loss Distribution Approach – For a given UoM: 
 

DCT = 10k 

Estimated Severity PDF – Truncated LogNormal (µ=10, σ=2.8, H=10k) 

Estimated Frequency PMF – Poisson (annual λ=25) 

Convolution via 
simulation (in 
practice, rarely a 
closed form solution 
… but for the VaR 
there are good and 
widely accepted 
analytical 
approximations 
much faster than 
Monte Carlo 
simulation)  

Aggregate Loss Distribution 

Regulatory Capital 
= VaR at 99.9%tile 
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3.a. Apparent Convexity of Severity VaR     Inflated Capital 

• Estimated Capital is Essentially a High Quantile of the Severity Distribution as per 
Degen’s (2010) Single Loss Approximation (SLA): 
 
 
 
In other words, first term >> second term (see Section 2. for improved approximations of 
Opdyke, 2014 (ISLA), Hernandez et al., 2012, and Opdyke and Mayorov, 2016 (ISLA2)). 

• PROPOSED: For this setting (heavy-tailed severities, certain parameter value ranges, and 
very high p = percentiles):   
IF Aggregate Loss Distribution (ALD) VaR (i.e. Capital) is a very slightly concave function 
of λ, the frequency parameter(s) (as shown empirically in Opdyke, 2014),  
AND Severity VaR is a sufficiently convex function of severity parameter vector      for 
Jensen’s inequality to hold 
THEN ALD VaR (Capital) is a sufficiently convex function of        for Jensen’s inequality to 
hold. 

• NOTE:  Severity VaR is much more extreme than ALD VaR, because for, say, λ = 30, and α 
= 0.999 and α = 0.9997,                                   0.999967 and 0.99999, respectively. 

1 1 ˆ1 ;C Fα
α β λµ
λ

− − ≈ − + 
 

β̂

β̂

⇒

where  = frequency parameter and  = E Xλ µ   

( )1 1p α λ = − − = 



3.a. Apparent Convexity of Severity VaR     Inflated Capital 

( )ˆpdf β

( )ˆE β β= β̂

sample2β̂ sample1β̂ sample3β̂

( )ˆPr β β= ± ∆

• Operational Risk Loss Event Data = a Sample, NOT a Population 

• Therefore, true severity parameters, β , will never be known. 

    BUT Estimated Parameters,    , 
have DISTRIBUTIONS that are 
known under specified 
assumptions (e.g. Maximum 
Likelihood Estimators (MLE) are 
asymptotically normal, 
unbiased, and efficient under 
i.i.d. data) 

β̂Figure 1:  
Severity Parameter PDF 
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⇒



3.a. Apparent Convexity of Severity VaR     Inflated Capital 
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( ) ( )ˆ ˆ =Capital Bias  0E g g Eβ β    − >        
( )ˆ ˆ Estimated Capitalg Cβ = =

( ) ( )1ˆ ˆ; = presumed shape of severity quantile/VaRg F pβ β−=

( )ˆE β β= β̂

( )ˆpdf β

( )( )ˆpdf g β

LOWCI HIGHCI

( )LOWg CI

( )HIGHg CI

( )ˆg E β 
  

( )ˆE g β 
  

Capital Bias 

* Graph based on Kennedy (1992), p.37. 

“Jensen’s inequality” 
first proved in 1906. 
   

If VaR, g(), is strictly convex 
in    , capital always will be 
inflated. 
  

This appears to be true for i) 
the relevant severities 
(heavy-tailed) with ii) relevant 
parameter ranges, WHEN iii) 
p is large (i.e. p>0.999). 

β̂

Figure 2:  
Estimator Variance Causes 
Jensen’s Inequality 

⇒



• Of course, this is convexity with respect to estimated severity 
parameters.  This is explicitly stated in Opdyke and Cavallo (2012a) 
on p.68, and again in Opdyke (2014) on p.12, respectively, as below: 

• “This is illustrated in Figure 20 (from Kennedy (1992, p. 37)).  This 
applies to quantile estimation of all commonly used severity 
distributions: if β is a random variable (here, our severity distribution 
parameter estimates) and        is a (strictly) convex function (here, the 
inverse of our severity distribution CDF), then                         , and our 
quantile estimate (capital estimate) is biased upward.” 

• “under these conditions, VaR appears to always be a convex 
function, like       , of the parameters of the severity distribution, 
which here is the vector β (we can visualize β as a single parameter 
without loss of generality as the multivariate case for Jensen’s 
inequality is well established (see Schaefer 1976)). Consequently, the 
capital estimation,             will be biased upward.” 
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3.a. Apparent Convexity of Severity VaR     Inflated Capital ⇒

( ) ( )ˆ ˆg E E gβ β   <     

( )g ⋅

( )g ⋅

( )ˆV̂ g β=



• Unfortunately, there is a little confusion on this point in an unpublished paper 
(see Larsen, 2015): 

• “This mean bias is a central object of study in Opdyke and Cavallo (2012), where they claim that MLE results in capital 
overestimation. The meaning of this statistic for modeling decisions, however, is not completely clear. … Opdyke and Cavallo 
(2012) write that the mean OpVaR bias is a consequence of Jensen's inequality, but no further details are given. This would 
follow if the CDF              for a heavy-tailed distribution were a convex function. There is no mention whether convexity is with 
respect to the loss variable x or with respect to the parameters θ. For the Jensen's inequality argument of Opdyke and Cavallo 
(2012) to be valid, convexity must be shown with respect to the parameters θ, not the loss amount x.[fn3]  Specifically, we 
would have to show that, for all loss amounts x in a neighborhood of the true OpVaR, the Hessian of               with respect to θ 
is negative definite (and hence the Hessian of the quantile function of              would be positive definite). This property is 
trivial to verify for the Pareto distribution considered here as depending only on one variable, but is less than straightforward 
for more complicated distributions. That there is still something to prove before invoking Jensen's inequality is mentioned in 
a subsequent paper (Opdyke, 2014).” 

• In footnote 3 Larsen (2015) examines potential convexity of VaR with respect to 
“x,” the variable representing the size of the loss events.  But these are not being 
ESTIMATED – they are the data points themselves! Jensen’s inequality is 
fundamentally about ESTIMATION, not data per se, so the point of the footnote is 
unclear, if not misguided.  We encourage (re)reading Opdyke and Cavallo (2012a) 
and Opdyke (2014) above to avoid any confusion regarding the relevance 
Jensen’s inequality in this setting.  Finally, Mayorov, Opdyke, and Balakrishnan 
(forthcoming, 2016) ANALYTICALLY demonstrate that examining the positive vs. 
negative definiteness of the Hessian alone is not enough to verify VaR’s local 
convexity here, and they establish more rigorous conditions for this to hold. 

• The 2nd confusion in Larsen (2015), this time regarding bias, is addressed below. 
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3.a. Apparent Convexity of Severity VaR     Inflated Capital ⇒

( )|F x θ

( )|F x θ
( )|F x θ



• It is critical to note here that even though capital estimates will be, on 
average, high 50% of the time and low 50% of the time even under 
Jensen’s inequality, the AMOUNTS that they are high vs. low are very 
different: when high, they are often much higher than true capital, but 
when low, they often are not much lower than true capital.  Would you/ 
your bank bet on a nickel gain vs. a dollar loss with equal probability?!   

• When comparing capital estimates to true capital, probability alone is 
not sufficient here – the absolute DISTANCE from true capital matters 
too.  And it is the mean (expected value), rather than specific quantiles 
like the median, that is determined by BOTH the probability, AND the 
absolute distance from true capital, associated with specific capital 
estimates. 

• The capital estimate distribution, and all of its relevant characteristics, 
are examined throughout this presentation.  The specific issue of the 
distance of true capital from specific quantiles of the distribution (e.g. 
the median) is examined in great detail in Appendix C herein, as well as 
in footnote 67, p.59, of Opdyke (2014), where it is shown that so-called 
“median bias” is an essentially irrelevant artifice in this setting. 
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3.a. Apparent Convexity of Severity VaR     Inflated Capital ⇒



• Severity VaR is NOT a convex function of the severity parameter 
vector     globally, for all percentiles (p) and all severities.  This is 
widely known and easily proved.   

• However, Severity VaR appears always to be a convex function of      
under, concurrently, BOTH i) sufficiently high percentiles (p>0.999) 
AND ii) sufficiently heavy-tailed severities (amongst those used in 
OpRisk modeling).  Both conditions hold in AMA–LDA OpRisk 
Capital Estimation (see Appendix A), and the very strong empirical 
evidence is exactly consistent with the effects of convexity in that we 
observe Jensen’s Inequality empirically.  

• Still, we would like to PROVE Jensen’s inequality for a) Severity VaR 
under these conditions, and b) Severity VaR for all relevant severities 
[a) and b) would be proven asymptotically: ultimately we would like 
to prove Jensen’s inequality for c) arbitrary finite sample size.] 

β̂

3.b. Multiple Checks for Convexity of Severity VaR 

β̂
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3.b. Multiple Checks for Convexity of Severity VaR 
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• Still, we would like to PROVE a) convexity in Severity VaR under 
these conditions, and b) convexity in VaR for all relevant severities. 

• Re: a), we can examine three things: 
The shape of VaR as a function of the severity parameters…  

i. individually (i.e. check for marginal convexity) 

ii. jointly (i.e. mathematically determine the shape of the 
multidimensional VaR surface) 

iii. jointly, based on extensive Monte Carlo simulation (i.e. examine 
the behavior of VaR as a function of joint parameter perturbation) 



3.b. Multiple Checks for Convexity of Severity VaR 
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• Re: a), we can examine three things: 
The shape of VaR as a function of the severity parameters…  

i. individually (i.e. check for marginal convexity) 
 
Analytically this is straightforward for those severities with 
closed-form VaR functions.  For the LogNormal, for example, 
 
 
 
 
 
 
However, this is not typically the case, especially for truncated 
distributions.  But these marginal checks are easy to do 
graphically (NOTE that GPD also is straightforward analytically). 
 

( )( )1exp ,  soVaR ICDF pµ σ −= = + Φ

2 2 0VaR VaRµ∂ ∂ = >

( )
22 2 1 0VaR VaR pσ − ∂ ∂ = ⋅ Φ > 



3.b. Multiple Checks for Convexity of Severity VaR 

( )1 ;F p ξ−

Figure 3a: 
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3.b. Multiple Checks for Convexity of Severity VaR 

( )1 ;F p θ−

Figure 3b: 
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For GPD, for large p(>0.999): VaR is convex in    and linear in   , so 
VaR APPEARS to be convex in parameter vector    , implying 
systematic and consistent capital inflation.  Note this convexity in  
increases in p.  Additional widely used severities are shown below. 
 
TABLE 1: Marginal VaR Convexity/Linearity OVER RELEVANT DOMAIN (p > 0.999) by Parameter by Severity 

 

 

 

 

 

 
 

ξ θ
β̂

3.b. Multiple Checks for Convexity of Severity VaR 

 
Severity Distribution 

VaR  is Convex/Linear as Function of... Relationship  
between  

Parameter 1 Parameter 2 Parameter 3 Parameters 
1)   LogNormal (µ, σ) Convex Convex Independent 
2)   LogLogistic (α, β) Linear Convex Independent 
3)   LogGamma (a, b) Convex Convex Dependent 
4)   GPD (ξ, θ) Convex Linear Dependent 
5)   Burr (type XII) (ϒ, α, β) Convex Convex Linear Dependent 
6)   Truncated 1) Convex Convex Dependent 
7)   Truncated 2) Linear Convex Dependent 
8)   Truncated 3) Convex Convex Dependent 
9)   Truncated 4) Convex Linear Dependent 
10) Truncated 5) Convex Convex Linear Dependent 
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ξ



3.b. Multiple Checks for Convexity of Severity VaR 
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• Re: a), we can examine three things: 
The shape of VaR as a function of the severity parameters…  

i. individually (i.e. check for marginal convexity) 
 
For all commonly used severities in this space,* VaR always 
appears to be a convex function of at least one parameter, and a 
linear function of the rest.  This would be consistent with convex, 
or “convex-dominant” (see below) behavior when VaR is 
examined as a function of the severity parameters jointly. 

*NOTE:  Although in the past spliced and mixed-distribution severities 
  have been used by a number of banks, the most recent 
  Interagency Guidance (June, 2014) indicated strong preference for 
  single-density severity estimation with fewer parameters, both to 
  avoid potential for overfitting the loss event data.  Specifically, the 
  LogNormal, LogGamma, GPD, and Burr Type XII severities were  
  mentioned. 



3.b. Multiple Checks for Convexity of Severity VaR 
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• Re: a), we can examine three things: 
The shape of VaR as a function of the severity parameters…  

ii. jointly (i.e. mathematically determine the shape of the 
multidimensional VaR surface) 
 
This can be done via examination of the signs and magnitudes 
of the eigenvalues of the shape operator (which define its 
principal curvatures). 
 
This turns out to be analytically nontrivial, if not intractable 
under truncation, and even numeric calculations for many of the 
relevant severities are nontrivial given the sizes of the severity 
percentiles that must be used in this setting (because most of 
the gradients are exceedingly large for such high percentiles).   
 



3.b. Multiple Checks for Convexity of Severity VaR 
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ii. jointly (i.e. mathematically determine the shape of the 
multidimensional VaR surface) 
 
So this research currently remains underway, and without this 
strict mathematical verification, attributions of capital inflation to 
Jensen’s inequality are deemed “apparent” and/or “preliminary,” 
as are those related to VaR’s (apparent) convexity. 
 
This scientifically conservative approach, however, belies the 
strong and consistent empirical evidence of capital inflation, and 
its behavior as being exactly consistent with the effects of 
Jensen’s inequality (in addition to findings of marginal 
convexity).  In other words, just because the specific 
multidimensional shapes of high-percentile VaR under these 
severities are nontrivial to define mathematically, we should not 
turn a blind eye toward strong empirical evidence that convexity 
dominates VaR’s shapes as a joint function of severity 
parameters. 



3.b. Multiple Checks for Convexity of Severity VaR 
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ii. jointly (i.e. mathematically determine the shape of the 
multidimensional VaR surface) 
 
In other words, the cumulative weight of the evidence – even in 
the absence of a “smoking-gun” absolute mathematical proof – 
is very strong here.  An apt analogy is the relationship between 
smoking and cancer: no one study definitively proves the now-
known and widely accepted relationship between the two – it 
was the weight of cumulative evidence from disparate sources 
that eventually became accepted wisdom and scientific fact. 
 
All strong and consistent evidence here points to Jensen’s 
Inequality as the source of bias, so we should not delay in 
allowing this assumption to guide the design of solutions to it. 
 
It is also crucial to note that a strictly convex VaR surface is not 
necessary for Jensen’s inequality to be true, and this is a widely 
proven result: the surface need only be sufficiently convex. 



3.b. Multiple Checks for Convexity of Severity VaR 
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iii. jointly, based on extensive Monte Carlo simulation (i.e. examine 
the behavior of VaR as a function of joint parameter perturbation) 

This is unarguably the most directly relevant of the three “checks” 
for convexity -- EXAMPLE: 

a. simulate 10 years of i.i.d. losses generated under a Poisson 
frequency distribution, with λ = 25, and a LogNormal severity 
distribution with µ = 9.27, σ = 2.77, estimating λ, µ, and σ 
using, say, maximum likelihood. 

b. Use Degen (2010) to calculate RCap with α = 0.999 and ECap 
with α = 0.9997 based on the estimated λ, µ, and σ.  

c. Repeat a. and b. 1,000 or more times. 

d. The mean of the 1,000+ RCap/ECap estimates            will be 
about $83m/$203m larger than “true” capital            ($603m, 
$1,293m; see complete results in Table 4a below). 
 

( )ˆE g β 
  
( )ˆg E β 

  



3.b. Multiple Checks for Convexity of Severity VaR 

 
© J.D. Opdyke 

57 of 103 

ANOTHER EXAMPLE: 

a. simulate 10 years of i.i.d. losses generated under a Poisson 
frequency distribution, with λ = 25, and a GPD severity 
distribution with ξ = 0.875, θ = 47,500, estimating λ, ξ, and θ 
using, say, maximum likelihood. 

b. Use Degen (2010) to calculate RCap with α = 0.999 and ECap 
with α = 0.9997 based on the estimated λ, ξ, and θ.  

c. Repeat a. and b. 1,000 or more times. 

d. The mean of the 1,000+ RCap/ECap estimates             will be 
about $249m/$1,016m larger than “true” capital 
($391m/$1,106m; see complete results in Table 4e below). 
 

( )ˆE g β 
  

( )ˆg E β 
  



3.b. Multiple Checks for Convexity of Severity VaR 

 
© J.D. Opdyke 

58 of 103 

iii. jointly, based on extensive Monte Carlo simulation (i.e. examine 
the behavior of VaR as a function of joint parameter perturbation) 
 
As long as the percentiles examined are large enough (e.g. p > 
0.999) and the severity parameter values large enough, the 
estimates of severity VaR and Rcap/ECap consistently, across all 
severities used in AMA-based operational risk capital estimation,  
are notably inflated.  This inflation can be dramatic, not 
uncommonly into the hundreds of millions, and even billions of 
dollars, for each UoM (unit-of-measure) as shown below. 
 
So let us presume sufficient VaR convexity for Jensen’s 
Inequality to hold, and design a capital estimator accordingly to 
mitigate the actual capital bias/inflation of which it is the 
presumed source… 



• Still, we would like to PROVE a) convexity in Severity VaR under 
these conditions, and b) convexity in VaR for all relevant severities. 

• As noted above, Mayorov, Opdyke, and Balakrishnan (forthcoming, 
2016) establish strong ANALYTICAL support for VaR’s local 
convexity here. 

• But for the time being we are presuming a) based on very strong 
empirical evidence and incomplete mathematical evidence. 

• For b), tackling ALL potentially relevant severities is nontrivial (if 
possible), but arguably unnecessary as the number of severities 
used in this setting are quite finite, and we can satisfy a) for each 
individually. 
 
Note again that because capital (VaR of ALD) was shown empirically 
in Opdyke (2014) to be only a slightly concave function of the 
frequency parameter(s), the only source of capital inflation would 
appear to be strong convexity in severity VaR. 

3.b. Multiple Checks for Convexity of Severity VaR 
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4. When is Capital Bias (Inflation) Material? 

Convexity in Severity VaR      Capital Bias is upwards* 
Magnitude of Capital Inflation is Determined by: 

a) Variance of Severity Parameter Estimator:   
Larger Variance (smaller n<1,000)         Larger Capital Bias 

b) Heaviness of Severity Distribution Tail:  
Heavier         More Capital Bias 
(so truncated distributions      more bias, ceteris paribus)  

c) Size of VaR Being Estimated:  
Higher VaR        More Capital Bias 
(so Economic Capital Bias > Regulatory Capital Bias) 

This demonstrable empirical behavior is exactly consistent with 
Jensen’s Inequality, and since most UoMs are heavy-tailed severities 
and typically n < 250, AMA–LDA OpRisk capital estimation is squarely 
in the bias zone! 
 

⇒

⇒

⇒

⇒

⇒

*Again, convexity applies to the pool of relevant severities 
here, which are medium- to heavy-tailed.   
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NOTE:  LDA Capital Bias holds for most, if not all widely used severity 
parameter estimators (e.g. Maximum Likelihood Estimation 
(MLE), Robust Estimators (OBRE, CvM, QD, etc.), Penalized 
Likelihood Estimation (PLE), Method of Moments, all M-Class 
Estimators, Generalized Method of Moments, Probability 
Weighted Moments, etc.). 

NOTE:  Because CVaR is a (provably) convex function of severity 
parameter estimates (see Brown, 2007, Bardou et al., 2010, & 
Ben-Tal, 2005),  switching from VaR to CVaR, even if allowed, 
does not avoid this problem (and in fact, appears to make it 
worse). 

NOTE:  Severities with E(x)=∞ also can exhibit such bias (see GPD with ξ 
= 1.1, θ = 40,000 in Opdyke, 2014), even though (arguably 
contrived) counterexamples exist. 

 

 

4. When is Capital Bias (Inflation) Material? 



5. RCE – Reduced-bias Capital Estimator 

I. Demonstrate that Jensen’s Inequality is the apparent source of 
systematically inflated operational risk capital estimates … 
 

II. Develop a Solution… 
 
SOLUTION CHALLENGES / CONSTRAINTS: 
 

1. It must remain consistent with the LDA Framework (even with new guidance (6/30/14) encouraging 
new methods, arguably the smaller the divergence from widespread industry practice, the greater 
the chances of regulatory approval). 

2. The same general method must work across very different severities. 
3. It must work when severity distributions are truncated to account for data collection thresholds. 
4. It must work even if E(x)=∞ (or close, which is relevant for any simulation-based method). 
5. It cannot be excessively complex (or it won’t be used). 
6. It cannot be extremely computationally intensive (e.g. a desktop computer, or it won’t be used). 
7. Its range of application must encompass all commonly used estimators of severity (and frequency) 
8. It must work regardless of the method used to approximate VaR of the aggregate loss distribution. 
9. It must be easily understood and implemented using any widely available statistical software. 
10. It must provide unambiguous improvements over the most widely used implementations of LDA 

(e.g. MLE, and most other estimators) on all three key criteria – capital accuracy, capital precision, 
and capital robustness. 
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RCE (Reduced-bias Capital Estimator) is the only published 
estimator designed to effectively mitigate LDA Capital Bias. 

RCE simply is a scaler of capital as a function of the degree of 
empirical VaR convexity. 

RCE Conceptually Defined: 
 

Step 1: Estimate LDA-based capital using any estimator (e.g. MLE). 
 
Step 2: Using 1), simulate K iid data samples and estimate parameters of each 
 
Step 3: Using 2), simulate M data samples for each of the K parameters, estimate 
capital for each, and calculate median for each, yielding K medians of capital 
 
Step 4:  
RCE = median(K medians) * [median(K medians) / weighted mean(K medians)]^c 

5. RCE – Reduced-bias Capital Estimator 
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RCE Motivation: 

RCE = median(K medians) * [median(K medians) / weighted mean(K medians)]^c 

First term: The median of K medians is empirically close to “capital.”  The K 
medians simply trace out the VaR function (in 1-dimension,        in Figure 2) just 
as do K capital estimates, but capital is more volatile than using another layer of 
sampling to obtain the K medians in Step 3. 

Second term:  The ratio of the median to the mean is an empirical measure of the 
convexity of VaR,       .  This is used to scale down the first term (which is 
essentially capital) to eliminate inflation exactly consistent with the effects of 
Jensen’s Inequality.  The mean is weighted* based on the sampling 
(perturbation) method described below.  The c exponent is a function of the 
severity chosen and the sample size, both of which are known ex ante under 
LDA. 

5. RCE – Reduced-bias Capital Estimator 

( )ˆg β

( )ˆg β

* Due to the sampling method described below, the median in the numerator turns out to be empirically 
identical to a weighted median, and so for efficiency, the simple median is used. 
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RCE Implemented: 
 

Step 1: Estimate LDA-based capital using any estimator (e.g. MLE). 

Step 2: Using 1), generate K parameter vectors based on the Var-Cov matrix using 
iso-density sampling (see Figure 4 below): use iso-density ellipses to select 
parameter values associated with a given probability, and change parameter values 
to reach these ellipses via the decrease-decrease, decrease-increase, increase-
decrease, and increase-increase of both parameters by the same number of standard 
deviations (thus generating two orthogonal lines emanating from original parameter 
estimate in the normalized coordinate system).  Opdyke (2014) uses ellipse 
percentiles = 1, 10, 25, 50, 75, 90, and 99, so K = 4*7=28, and two frequency 
percentiles for λ, 25 and 75, so total K = 28*2 = 56.  Weights = (1-psev)*2*(1-pfrq). 

Step 3: Using the K parameter vectors from 2) (including the frequency parameters), 
generate another triplet of M parameter vectors for each (let M=K), and calculate 
capital for each, and take the median to get K medians of capital. 

Step 4: 
RCE = median(K medians) * [median(K medians) / weighted mean(K medians)]^c 

5. RCE – Reduced-bias Capital Estimator 
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FIGURE 4: Iso-density Perturbation of the Joint Severity Parameter Distribution 

5. RCE – Reduced-bias Capital Estimator 

For multivariate 
normal (e.g. all M-class 
estimators), ellipses 
are given by: 

where x is a k- (2-) 
dimensional vector, μ 
is the known k -
dimensional mean 
vector (the parameter 
estimates), ∑ is the 
known covariance 
matrix (the inverse of 
the Fisher information 
of the given severity), 
and            is the 
quantile function for 
probability p of the Chi-
square distribution 
with k degrees of 
freedom.  

( )2
k pχ

( ) ( ) ( )1 2T
kx x pµ µ χ−− Σ − ≤

1/ parmσ
2/ parmσ



 
© J.D. Opdyke 

67 of 103 

Finding x as the solution to                                    can be obtained quickly via a 
convergence algorithm (e.g. bisection) or simply the analytic solution to the 
equation rather than the inequality (see Mayorov 2014).  Simply change both 
parameters by q units of their respective standard deviations to obtain four 
pairs of parameter values on the ellipse defined by p: increase both 
parameters by q standard deviations               , decrease both parameters by 
q standard deviations                , increase one while decreasing the other 
                 , and decrease one while increasing the other                   . 
 
 
 
 
 
 
Alternately, the eigenvalues and eigenvectors of      can be used to define the 
most extreme parameter values (smallest and largest) on the ellipses 
(corresponding to the largest/smallest eigenvalues) (see Johnson and 
Wichern, 2007), but this may change the values of c calculated below, and the 
above is arguably more straightforward.  

5. RCE – Reduced-bias Capital Estimator 

( )1 2 1z z= =

( )1 2 1z z= = −

( )1 21, 1z z= = − ( )1 21, 1z z= − =

( ) ( ) ( )1 2T
kx x pµ µ χ−− Σ − ≤

( ) ( )2
1 2 1,21

#
2

k p z z
q SD

χ ρ⋅ +
=

( )1 2 1,2where stdev of parameter 1 (2), and  is Pearson's correlation of the parameter estimates.σ σ ρ=

1−Σ
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Iso-density sampling (perturbation) makes RCE runtime feasible 
(1 to 3 seconds on a standard desktop PC): 

5. RCE – Reduced-bias Capital Estimator 

Severity* Real Time CPU Time 
LogN 0.14 0.14 
TLogN 1.10 1.10 
Logg 1.13 1.12 
TLogg 2.96 2.94 
GPD 0.21 0.18 
TGPD 1.35 1.35 

Table 2: Runtime of RCE by Severity (seconds) 

The complexity of the Fisher information is the only thing that drives 
runtime (sample size is irrelevant). 

 

* See Appendix B. 
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Implementation NOTE:  
 
It is important to avoid bias when using iso-density sampling in cases of 
incalculably high capital.  For example, say the initial MLE parameters 
happen to be large, and then the 99%tile of the joint parameter 
distribution, based on the initial estimates, is obtained in Step 2 of RCE’s 
implementation; and then the 99%tile of THIS Fisher information is 
obtained in Step 3, based on the joint parameter distribution of the Step 
2 values.  Capital calculated in Step 3 sometimes simply will be too large 
to calculate in such cases.  If ignored, this could systematically bias 
RCE.  A simple solution is to eliminate the entire ellipse of values – along 
with all “larger” ellipses – when any one value on an ellipse is too large 
to calculate. 

5. RCE – Reduced-bias Capital Estimator 
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How is c(n, severity) determined?: 
 
 

Method 1: Conduct a simulation study to empirically determine the value of c for 
the relevant sample sizes and severities (both known ex ante within the LDA 
framework) using three sets of parameter values: the original estimates, and 
those corresponding to the 2.5%tile and the 97.5%tile of the joint parameter 
distribution, which yields a 95% confidence interval (a wider confidence interval 
can be used if desired).  The value of c(n, severity) is chosen to yield true capital 
(or slightly above) for all three sets of parameter values. 

Method 2: Use the simulation study conducted in Opdyke (2014) to select values 
of c for specific values of n and severity (see Table 3 and Figure 5 below). 

5. RCE – Reduced-bias Capital Estimator 
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5. RCE – Reduced-bias Capital Estimator 

Table 3: 
Values of c(n, severity) by Severity by # of Loss Events 
(Linear, and Non-Linear Interpolation with Roots Specified for Shaded Ranges) 
 

 

N →  150 250 500 750 1000   Root 

Severity               
LogN 1.00 1.55 1.55 1.55 1.75   8 
TLogN 1.20 1.70 1.80 1.80 1.80   8 
Logg 1.00 1.00 1.00 1.00 0.30   3 
TLogg 0.30 0.70 0.85 1.00 1.00   3 
GPD 1.60 1.95 2.00 2.00 2.00   10 
TGPD 1.50 1.85 2.00 2.10 2.10   10 
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5. RCE – Reduced-bias Capital Estimator 
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Figure 5: 
Values of c(n, severity) by Severity by # of Loss Events 
 

 



 
© J.D. Opdyke 

73 of 103 

NOTE:  Unfortunately, other Bias-reduction/elimination strategies in the 
literature, even for VaR (e.g. see Kim and Hardy, 2007), do not appear to 
work for this problem.*  Most involve shifting the distribution of the 
estimator, often using some type of bootstrap distribution, which in this 
setting often results in negative capital estimates and greater capital 
instability.  RCE-based capital is never negative, and is more stable than 
capital based on most, if not all other commonly used severity 
parameter estimators (e.g. MLE). 
 

Also, given the very high percentiles being examined in this setting (e.g., 
Severity VaR = 0.99999 and higher), approaches that rely on the 
derivative(s) of VaR(s), perhaps via (Taylor) series expansions, appear to 
run into numeric precision issues for some severities.  So even when 
such solutions exist in tractable form, practical challenges may derail 
their application here. 

5. RCE – Reduced-bias Capital Estimator 

 

* The only other work in the literature that appears to be similar in approach to RCE is the fragility heuristic (H) of Taleb et al. (2012) and Taleb and Douady (2013). 
Both RCE and H are measures of convexity based on perturbations of parameters: H measures the distance between the average of model results over a range of 
shocks and the model result of the average shock, while RCE is a scaling factor based on the ratio of the median to the mean of similar parameter perturbations.  
Both exploit Jensen’s inequality to measure convexity: in the case of the fragility heuristic, to raise an alarm about it, and in the case of RCE, to eliminate it (or 
rather, to effectively mitigate its biasing effects on capital estimation). 
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6. Simulation Study:  RCE vs. MLE 

SIMULATION STUDY*: 1,000 (i.i.d.) Simulations of 
• λ = 25 (Poisson-distributed average annual losses … 
    so n = 250, on average, over 10 years) 

• α = 0.999 and 0.9997 for Regulatory and Economic Capital, 
     respectively (so [ 1 – (1- α) / λ ] = 0.99996 and 0.999988, 
     respectively). 
 
Selected Results of RCE capital vs. MLE capital: 

o LogNormal 
o LogGamma 
o GPD 
o Truncated LogNormal 
o Truncated LogGamma 
o Truncated GPD 

  

*Note that true bias is probably far greater than that associated with MLE-based capital below, since under the i.i.d. 
presumption MLE is maximally efficient. 
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Table 4a:  
RCE vs. LDA-MLE for LogNormal Severity (µ = 9.27, σ = 2.77, H=$0k)* 

 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $614 $686 $1,333 $1,498 

True Capital $603 $603 $1,293 $1,293 

Bias  
(Mean - True) $12 $83 $40 $205 

Bias % 2.0% 13.8% 3.1% 15.8% 

RMSE* $328 $382 $764 $898 

STDDev* $328 $373 $763 $874 
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Table 4b:  
RCE vs. LDA-MLE for Truncated LogNormal Severity (µ = 10.7, σ = 2.385, H=$10k)* 

 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $700 $847   $1,338 $1,678 

True Capital $670 $670 $1,267 $1,267 

Bias  
(Mean - True) $30 $177 $71 $411 

Bias % 4.5% 26.4% 5.6% 32.4% 

RMSE* $469 $665   $1,003 $1,521 

STDDev* $468 $641 $1,000 $1,464 
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Table 4c:  
RCE vs. LDA-MLE for LogGamma Severity (a = 25, b = 2.5, H=$0k)* 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $466 $513   $1,105 $1,272 

True Capital $444 $444 $1,064 $1,064 

Bias  
(Mean - True) $11 $70 $42 $208 

Bias % 2.5% 15.7% 3.9% 19.5% 

RMSE* $301 $355   $814 $984 

STDDev* $301 $348   $813 $962 
 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 
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Table 4d:  
RCE vs. LDA-MLE for Truncated LogGamma Severity (a = 34.5, b = 3.15, H=$10k)* 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $539 $635 $1,158 $1,437 

True Capital $510 $510 $1,086 $1,086 

Bias  
(Mean - True) $29 $125 $72 $350 

Bias % 5.8% 24.5% 6.6% 32.2% 

RMSE* $397 $544 $941 $1,453 

STDDev* $396 $529 $938 $1,410 
 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 
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Table 4e:  
RCE vs. LDA-MLE for GPD Severity (ξ = 0.875, θ = 47,500, H=$0k)* 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $396 $640 $1,016 $2,123 

True Capital $391 $391 $1,106 $1,106 

Bias  
(Mean - True) $5 $249 $24 $1,016 

Bias % 1.2% 63.7% 2.2% 91.9% 

RMSE* $466 $870 $1,594 $3,514 

STDDev* $466 $834 $1,594 $3,363 
 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 
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Table 4f:  
RCE vs. LDA-MLE for Truncated GPD Severity (ξ = 0.8675, θ = 50,000, H=$10k)* 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $466 $737   $1,327 $2,432 

True Capital $452 $452 $1,267 $1,267 

Bias  
(Mean - True) $13 $285 $61 $1,166 

Bias % 3.0% 63.0% 4.8% 92.0% 

RMSE* $576 $1,062   $1,988 $4,337 

STDDev* $576 $1,023   $1,988 $4,177 
 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 
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Table 5: 
Summary of Capital Accuracy by Sample Size: 
MLE vs. RCE ($millions) (across 6 severities, Opdyke, 2014) 
 +-------------------- ECap --------------------+ +-------------------- RCap --------------------+ 

Mean Absolute Bias Median Absolute Bias Mean Absolute Bias Median Absolute Bias 
λ = RCE MLE RCE MLE RCE MLE RCE MLE 
15 7.8% 92.6% 2.6% 82.3% 5.9% 61.6% 1.6% 58.1% 
25 3.4% 53.1% 3.3% 40.6% 2.4% 38.1% 2.0% 30.6% 
50 2.8% 25.7% 2.7% 17.7% 2.0% 19.4% 1.9% 14.3% 
75 1.2% 15.5% 0.8% 10.7% 0.8% 11.9% 0.5% 8.7% 
100 0.9% 11.3% 0.5% 7.9% 0.5% 8.7% 0.4% 6.1% 

15 $61 $825 $18 $502 $21 $228 $5 $154 
25 $45 $727 $29 $410 $14 $209 $8 $133 
50 $69 $617 $52 $320 $20 $182 $15 $109 
75 $40 $526 $14 $250 $11 $157 $3 $80 
100 $32 $485 $15 $223 $7 $142 $5 $73 

NOTE: Even when relative absolute bias of MLE decreases, actual bias $ still are notable.  

6. Simulation Study:  RCE vs. MLE 
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SIMULATION STUDY:  Conclusions 
RCE vs. MLE-LDA 

a) RCE is Dramatically More Accurate: LDA-MLE 
Bias can be ENORMOUS: $Billion+ just for one uom! 

b) RCE is Notably More Precise: Sometimes <50% 
RCE RMSE < MLE RMSE, RCE StdDev < MLE StdDev 

c) RCE is Consistently More Robust: 
RCE Robustness to Violations of iid > MLE  (see non-iid 
simulation study in Opdyke, 2014) 

6. Simulation Study:  RCE vs. MLE 
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7. Alternate Estimators 

1. An alternate form of RCE is to simply use estimated capital as the first term, and 
then scale it based on the perturbation of its frequency and severity parameters:   

RCE = median(K medians) * [median(K medians) / weighted mean(K medians)]^c 

Modified RCE: 
MRCE = estimated capital * [median(K medians) / weighted mean(K medians)]^c. 

 This approach has the advantage of simply being a scalar of existing capital, but 
requires re-estimation of the values of “c” for some combinations of severity 
distribution + sample size.  However, with respect to the variance of capital estimate, 
RCE maintains the distinct advantage (i.e. RCE decreases it). 

2. A non-published paper by Zhou, Durfee, and Fabozzi (2015) presents a 
modification of the RCE approach.  Curiously, even though Zhou et al. (2015) 
follows Opdyke (2014), in both timing and methodology, changes made to the RCE 
estimator appear to worsen not only its performance in terms of bias, speed of 
execution, and stability, but also increase its likelihood of regulatory rejection due 
to its reliance on “trimming” (which RCE avoids).  See Appendix C for further 
details. 
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8. Summary and Conclusions 

• Under an LDA framework, operational risk capital estimates based on the most 
commonly used estimators of severity parameters (e.g. MLE) and the relevant severity 
distributions are consistently systematically biased upwards, presumably due to 
Jensen’s inequality (Jensen, 1906).   

• This bias is often material, sometimes inflating required capital by hundreds of 
millions, and even billions of dollars. 

• RCE is the estimator MOST consistent with regulatory intent regarding a prudent, 
responsible implementation of an AMA–LDA framework in that it alone is not 
systematically and materially biased, let alone imprecise and non-robust. 

• RCE is the only capital estimator that mitigates and nearly eliminates capital 
inflation under AMA-LDA.  RCE also is notably more precise than LDA-based capital 
under most, if not all severity estimators, and consistently more robust to violations 
of i.i.d. data (which are endemic to operational risk loss data).  Therefore, with greater 
capital accuracy, precision, and robustness, RCE unambiguously and notably 
improves LDA-based OpRisk Capital Estimation by all relevant criteria. 
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I. Regression-Based (AMA/LDA) Capital Estimation using “granular” KRIs is the 

only way to scientifically, objectively, and accurately manage and mitigate 
operational risk using statistically causal risk drivers.  “Red-Light , Green-
Light” Aggregated “Rolled Up” KRIs cannot do this, and worse, damage 
estimation and management with i) misleading inferences that fail to take into 
account covariance between risk drivers (we live in a multivariate world!), and 
ii) a false sense of security (which increases risk!) based on little more than 
gut feels and thoughtful guesswork. 

II. SLA-based Capital Approximations are systematically upwardly biased.  
ISLA2 (Opdyke and Mayorov, 2016) eliminates this bias, remains 
straightforward, accurate, and fast, and for banks/sifi’s already using SLA, is 
readily implemented. 

III. Jensen’s Inequality systematically, upwardly biases AMA/LDA Capital 
ESTIMATION, and the magnitude of this bias can be enormous (e.g. beyond 
$1b for a single UoM; see Opdyke, 2014, and Mayorov, Opdyke, and 
Balakrishnan, 2016).  The Reduced-bias Capital Estimator (RCE) of Opdyke 
(2014) dramatically mitigates this bias, while simultaneously increasing 
capital precision and robustness.  RCE is completely compatible with and 
consistent with Regression-Based AMA/LDA Capital Estimation. 

IV. Summary and Conclusions 
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“Measurement is the first step that leads to control and 
eventually to improvement.  If you can’t measure 
something, you can’t understand it.  If you can’t 
understand it, you can’t control it.  If you can’t control it, 
you can’t improve it.” 
- H.J. Harrington 
 
Measurement may not be everything, but without 
reasonably accurate, precise, and robust measurement, 
its very hard to argue that you can do OpRisk 
management and mitigation right (or even in a way that 
doesn’t do more harm than good). 
 

IV. Summary and Conclusions 
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V. Appendix A: VaR’s Empirical Convexity Over Relevant Domain (p>0.999) 

• As currently implemented per Basel II/III’s AMA-LDA, operational risk capital is a value-at-risk (VaR) estimate (i.e. the 
quantile corresponding to p = 0.999, the 99.9%tile) of the aggregate loss distribution.  As shown by Degen (2010), this is 
essentially a high quantile of the severity distribution.  For those severities relevant to operational risk capital 
estimation, VaR always appears to be a convex function of the severity distribution parameter estimates as long as the 
quantile being estimated is large enough (e.g. corresponding to p>0.999; see Degen, Embrechts, & Lambrigger, 2007;  
Daníelsson et al., 2005;  and Daníelsson et al., 2013).  For the heavy-tailed severities examined above, in addition to two 
others sometimes used in this space (Burr type XII and LogLogistic), we see: 
 
TABLE A1: Marginal VaR Behavior OVER RELEVANT DOMAIN (p > 0.999) by Severity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     As mentioned above (p.16), VaR empirical convexity increases in p: larger quantiles are associated with greater convexity. 

 
Severity Distribution 

VaR  is Convex/Linear as Function of... Relationship  
between  

Parameter 1 Parameter 2 Parameter 3 Parameters 
1)   LogNormal (µ, σ) Convex Convex Independent 
2)   LogLogistic (α, β) Linear Convex Independent 
3)   LogGamma (a, b) Convex Convex Dependent 
4)   GPD (ξ, θ) Convex Linear Dependent 
5)   Burr (type XII) (ϒ, α, β) Convex Convex Linear Dependent 
6)   Truncated 1) Convex Convex Dependent 
7)   Truncated 2) Linear Convex Dependent 
8)   Truncated 3) Convex Convex Dependent 
9)   Truncated 4) Convex Linear Dependent 
10) Truncated 5) Convex Convex Linear Dependent 
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• PDF and CDF of LogNormal: 

 

• Mean of LogNormal: 

• Inverse Fisher information of LogNormal: 

V. Appendix B: Severity PDFs, CDFs, & Means for Capital Approximation 
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• PDF and CDF of Truncated LogNormal: 

 

• Mean of Truncated LogNormal: 
 
 

• Inverse Fisher information of Truncated LogNormal: 
 
 
 
 
 
From Roehr (2002).  Note that the first cell of this matrix as presented in Roehr, 2002, contains a typo: this is corrected in 
the presentation above. 
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• PDF and CDF of Generalized Pareto Distribution (GPD): 

 

• Mean of GPD: 

• Inverse Fisher information of GPD: 
 
 
 
    From Smith (1987) 
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• PDF and CDF of Truncated GPD: 

 

• Mean of Truncated GPD: 

• Inverse Fisher information of Truncated GPD: 
 
 
 
 
    From Roehr (2002) 
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• PDF and CDF of LogGamma*: 

 

• Mean of LogGamma: 

• Inverse Fisher information of LogGamma: 
 
 
 
 
From Opdyke and Cavallo (2012a) 

V. Appendix B: Severity PDFs, CDFs, & Means for Capital Approximation 
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• PDF and CDF of Truncated LogGamma*: 

 
 

• Mean of Truncated LogGamma: 
 
 
 
 
     From Opdyke (2014) 

 

• Inverse Fisher information of Truncated LogGamma: 
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• Inverse Fisher info. of Truncated LogGamma*: 
 
 
 
 
 
 
 
 
 
 
 
 
From Opdyke and Cavallo (2012b) 
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• Inverse Fisher information of Truncated LogGamma: 
 
To avoid computationally expensive numeric integration,  
Opdyke (2014) derives the analytic approximation below: 

 
 
 
 

V. Appendix B: Severity PDFs, CDFs, & Means for Capital Approximation 
 
 

 

( )
1

1      where  
A BA B Dθ

−
−  =   

( ) ( ){ ( ) ( ) ( ) ( )( )2 2

4 2

1 2 2 3 2a aA GHG z a z UIG GHG a a GHG Log z digamma a
a UIG

   = × − ⋅ − + − ⋅ − ⋅ + Γ ⋅ ⋅ − −  

( ) ( )( ) ( ) ( )( ) ( ) }24a a a UIG Log z digamma a UIG trigamma a + Γ − Γ − ⋅ − − + ⋅  

( ) ( )( ) ( ) ( )( )( ){ }2 2 2
2 2

1 2 a ab bB t GHG z a t UIG a z Log z digamma a
a bUIG

−= × ⋅ ⋅ − − + Γ − − −

( ) ( ) ( )22

2 2 2 2

1a ab bt z a z t zaD
b b UIG b UIG

− −− − − −
= + −

where...



 
© J.D. Opdyke 

100 of 103 

• Inverse Fisher information of Truncated LogGamma: 
 
 
 
 

V. Appendix B: Severity PDFs, CDFs, & Means for Capital Approximation 
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In a non-published paper, Zhou et al. (2015) present a modification of RCE.  The approach follow’s Opdyke (2014) in both 
timing and methodology by using a median/mean ratio of estimated capital combined with an adjustment factor.   

 
Adjusted capital = capital * [median of simulated capital / mean of simulated capital]  

 
Unfortunately, in attempting to compensate for greater instability due to its reliance on simple parameter simulation (as 
opposed to a far more stable approach based on the median-of-median of parameter estimates), their adjustment factor relies 
on data “trimming.”  Estimation methods like “trimming” that rely on systematically discarding a percentage of observed loss 
data (or simulated data based on parameter estimates which are based on observed loss data) have not been well received by 
regulators.  In addition, the more simple approach of Zhou et al. (2015) approach has the following disadvantages relative to 
RCE: 

 

1. It appears to be far less stable than RCE, which is designed specifically to avoid these instability issues (see above) 

2. It is tested far less extensively on fewer severities 

3. It appears to have greater capital bias compared to RCE, and the authors state that further “tuning” of the amount of 
“trimming” required is needed for its application to additional severities 

4. Its execution time is slower, sometimes by orders of magnitude (RCE typically is implemented within one or two seconds) 

5. The authors themselves conclude that their alternate method provides “ ‘limited’ improvement” and is not sufficient to 
use within a loss distribution approach for operational risk capital estimation. 

 

V. Appendix C: Rejection of “Trimming” Methods 
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In addition, Zhou et al.’s (2015) focus on so-called “median bias” is at odds with their own estimator, the statistical literature, 
and the primary goals of the operational risk capital estimation setting. 

1) For nearly a century, statistical “bias” has been defined with respect to the mean of an estimator, not one of its quantiles 
(such as the median). 

2) To the extent that researchers would like to design an estimator centered on a particular quantile (such as a median), the 
(highly) skewed nature of the operational risk capital distribution (under the loss distribution approach) means that the 
capital estimator cannot be unbiased simultaneously with respect to both the mean and the median.  Zhou et al. (2015) 
acknowledge this, but then proceed to follow Opdyke (2014) and attempt to design a capital estimator (actually, to modify 
RCE) in a manner that is “unbiased” in the traditional sense (i.e. vis-à-vis the mean) while ignoring so-called “median bias”. 

3) Exploring the possibility of estimators that are unbiased with respect to a particular quantile is arguably the wrong 
approach here.  Far more relevant is the question of how close to ALL estimator quantiles is the true value of capital, on 
average?  Or even more pertinent, given the extreme right-skewness of the capital distribution (based on ANY of the widely 
used frequency and severity estimators), is how close is the true value of capital, on average, to the quantiles in the right tail of 
the (estimator’s) capital distribution?  Stated differently, how well does the estimator “pull in” and eliminate extremes in the 
right tail?  The most established and widely used statistic that at least indirectly addresses the first question is, simply, the 
RMSE.  And Opdyke (2014) shows RCE-based capital to always have smaller – and often dramatically smaller – RMSE 
compared to MLE-based capital.  Regarding the second question, specifically with reference to RCE, Opdyke (2014) showed 
empirically that the right tail of the capital distribution (even as close to the body as the 60%tile) was far closer to true capital 
than that based on MLE.  In other words, Opdyke (2014) showed that the RCE-based capital distribution is far less skewed 
than that based on MLE (by both traditional measures of skew and quantile-based measures).  And skewness is the far more 
important question to address in this setting compared to so-called “median bias”: wildly inflated capital estimates in the 
right tail, due to instability of the estimator (as happens to Zhou et al. (2015) in the absence of “trimming”), are exactly what 
researchers and regulators are most concerned with and seeking to avoid, not whether the median of the estimator is close(r) 
to true capital. 

Thus does Opdyke (2014) show that the two most established and widely used metrics – skewness and RMSE – that also 
happen to matter most in this setting are those by which RCE-based capital has been rigorously tested and is vastly superior 
to MLE-based capital.  So-called “median bias” is an irrelevant artifice in this setting. 

V. Appendix C: Rejection of “Trimming” Methods 
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