
© J.D. Opdyke
1

Presented at Joint Statistical Meetings, Miami, Florida, 07/30-08/04, 2011

Bootstraps, Permutation Tests, and
Sampling With and Without Replacement
Orders of Magnitude Faster Using SAS®

*The views presented herein are the views of the sole author, J.D. Opdyke, and do not necessarily reflect the views of other conference
participants or discussants. All all calculations and computations were performed by J.D. Opdyke using SAS®.

John Douglas (J.D.) Opdyke*, President
DataMineIt, JDOpdyke@DataMineIt.com

© J.D. Opdyke
2

1. Objective � Sampling Algorithms for �Big Data,� all within SAS®

2. Results � Speed, All Else Equal: No Storage Required
3. Approach: Ask, �Which Things is SAS® Extremely Good At v. Other Packages?�
4. Exploiting Specific SAS® Speed Advantages:

a. O(N) is better than O(n) (even when N>>n)??! Huh?!
b. Sampling With (OPDY) and Without (OPDN) Replacement
c. Keep it in Memory! No I/O
d. Linear Time Complexity

5. Competing Approaches within SAS®:
a. The PROCs: NPAR1WAY, SurveySelect, MultTest
b. Array-Based Bebbington (1975)
c. Hashing (Tables and Iterators)
d. DA (Direct Access), Out-SM (Output Sort-Merge), A4.8 (Tille)

6. Conclusions: OPDY/OPDN
- Speed (ORDERS OF MAGNITUDE FASTER (80 Sec. vs. 21.5 Hours))
- Scalability (linear time complexity)
- Robustness (Hashing and Procs Crash)
- Generalizability (bootstrap multivariate models, permute any test statistic)

7. Acknowledgements & References

Contents

© J.D. Opdyke
3

1. Objective: �Big Data� Sampling Algos within SAS®

Specific Objective:
Develop sampling algorithms specifically exploiting on SAS®�s fast
dataset processing capabilities to implement bootstraps and
permutation tests on �Big Data� without the prohibitive runtime
constraints of existing SAS Procs (NPAR1WAY, SurveySelect,
Multtest).

SPEED GOAL: Orders of Magnitude, all else equal. This is always
needed by the likes of large banks and other financial institutions
constantly running into the brick walls of runtime constraints:
massive amounts of data + computationally intensive methods.
Existing methods within SAS® simply cannot handle it. And SAS®

is arguably faster than any other major statistical software
package!

© J.D. Opdyke
4

2. Results: Speed, All Else Equal

Relative (Real*) Runtimes: Challengers v. Bootstrap OPDY & Permutation Test OPDN

566.0x201.0xSimultaneous Bebbington200027,500,000

Challenger
Crashed

Challenger
CrashedNPAR1WAY500210,000,000

400.0x353.0xNPAR1WAY200027,500,000

5,970.0x685.1xMultTest2000121,000,000

530.0x242.0xSurveySelect200067,500,000

vs. OPDN_Perm_FT1vs. OPDN

Challenger
Crashed

Challenger
CrashedHash Table + Hash Iterator500610,000

28.9x24.3xHash Table + Hash Iterator20001210,000

990.0x218.3xSurveySelect20001210,000,000

vs. OPDY_Boot_FT1vs. OPDYChallengern = m#Strata
N

(per Stratum)

*Relative CPU runtimes were very similar and are reported with complete simulation results in Opdyke (2010) and Opdyke (2011).
OPDY_Boot_FT1 and OPDY_Perm_FT1 are the proprietary versions of published OPDY and OPDN.

© J.D. Opdyke
5

Runtimes in Absolute Terms:

• OPDY_Boot_FT1 Bootstraps in 78 seconds
where Proc SurveySelect Bootstraps in
21.5 hours.

• OPDN_Perm_FT1 Conducts Permutation
Tests in under 2 minutes where Proc
MultTest Permutes in over 1 week.

2. Results: Speed, All Else Equal

© J.D. Opdyke
6

3. Approach: Ask, �Which Things is SAS® the Best At?�

SAS® is VERY FAST Compared to Other
Statistical Packages at 3 Things:

1. Reading in Datasets

2. Retaining Data Values Across Records

3. Looping on a Specific Record

So Design Sampling Algorithms that Exploit
These Advantages!

© J.D. Opdyke
7

Combine 1. and 2. in order to fill an array and accomplish
3. USING TEMPORARY ARRAYS!
1. There is no faster way to fill an array in SAS®, from scratch, than to

read-in values as the dataset is read in, record by record (things
like Proc Transpose are SLOW and crash on large arrays).

2. TEMPORARY Arrays retain values across records automatically
and save HUGE amounts of memory by avoiding assigning names
to all the array cells

3. For YEARS NOW, TEMPORARY ARRAYS HAVE HAD NO 32,000
CELL/VARIABLE LIMIT! Only 2GB RAM allowed 125 million cells!

4. Also, NO STORAGE REQUIRED!! So no storage constraints, and
no I/O so MUCH FASTER EXECUTION.

3. Approach: Ask, �Which Things is SAS® the Best At?�

© J.D. Opdyke
8

So once a dataset (column) has efficiently spilled into
a TEMPORARY array (row), perform calculations with
FAST LOOPING.
1. Since TEMPORARY arrays canNOT be saved to dataset, the users

will never crash the code accidentally

2. Each column can be read-in by BY VARIABLE combinations, and
the calculation values saved at the BY VARIABLE level

3. This is FASTER than �DOW� looping (see Dorfman, and Opdyke,
2011).

4. When CI�s for bootstraps or p-values for permutation tests need to
be calculated and saved, use TEMPORARY arrays to hold the m
statistics from the m samples, and calculate either by looping on
the m cells of the TEMPORARY arrays. The only thing that needs
be saved is the final p-value/confidence interval (CI).

3. Approach: Ask, �Which Things is SAS® the Best At?�

© J.D. Opdyke
9

Note that in SAS®, if minimizing real runtimes are the
practical concern, then often O(N) algos are better
than (faster than) O(n) algos, even when N>>n! Why?
Because its MUCH faster to simply read-in the entire
dataset than it is to try to sub-select specific records.

So theoretical time complexity alone should not drive
algorithm development and implementation in SAS®.

3. Approach: Ask, �Which Things is SAS® the Best At?�

© J.D. Opdyke
10

Sampling With Replacement - OPDY:

Once the large TEMPORARY array is efficiently filled, simply
sample with replacement using using OPDY (�One-Pass,
Duplicates? Yes�).

For example, a bootstrap on means simply would be:

array bmeans{<# of bootstrap samples>} _TEMPORARY_;
array temp{<size of dataset or strata>} _TEMPORARY_;
do m=1 to num_bsmps;

x=0;
do n=1 to <bootstrap sample size>;

x = temp[floor(ranuni(-1)*freq) + 1] + x;
end;
bmeans[m] = x/<bootstrap sample size>;

end;

4. Exploiting the SAS® Speed Advantages

© J.D. Opdyke
11

Keeping the bootstrap values in a TEMPORARY array can speed
things up by several multiples, and the final CI�s and/or
bootstrap statistic can be output, or saved in macro variables if
using a data _null_ (which further speeds things up as less
memory is held aside for a dataset to be output in a data step).

4. Exploiting the SAS® Speed Advantages

© J.D. Opdyke
12

Sampling Without Replacement - OPDN:

Once the large TEMPORARY array is efficiently filled,
simply sample with replacement using OPDN (�One-
Pass, Duplicates? No�).

Goodman & Hedetniemi (1982) is PERFECT for this
purpose, but not noted in the statistics literature (for
example, it is not cited in Tillé (2006), an authoritative
statistical sampling source. But Pesarin (2000) does
identify it, if not cite the source.)

An example for a permutation test of the mean is
presented below, with two versions of implementation.

4. Exploiting the SAS® Speed Advantages

© J.D. Opdyke
13

1. DO m = 1 to #permutation tests
2. x ← 0
3. tot_FREQ_hold ← # records in current stratum
4. tot_FREQ ← tot_FREQ_hold
5. do n = 1 to # records in smaller of Control and Treatment samples
6. cell ← uniform random variate on 1 to tot_FREQ
7. x ← temp[cell] + x
8. hold ← temp[cell]
9. temp[cell] ← temp[tot_FREQ]
10. temp[tot_FREQ] ← hold
11. tot_FREQ ← tot_FREQ -1
12. end;
13. psums[m] ← x
14. END;

OPDN implementation #1 of Goodman & Hedetniemi (1982) for Permutation Tests:
*** temp[] is the array filled with all the data values, for current stratum, of the variable being permuted
*** psums[] is the array containing the permutation sample statistic values for every permutation sample

4. Exploiting the SAS® Speed Advantages

© J.D. Opdyke
14

1. DO m = 1 to #permutation tests
2. tot_FREQ_hold ← # records in current stratum
3. tot_FREQ ← tot_FREQ_hold
4. do n = 1 to # records in smaller of Control and Treatment samples
5. cell ← uniform random variate on 1 to tot_FREQ
6. hold ← temp[cell]
7. temp[cell] ← temp[tot_FREQ]
8. temp[tot_FREQ] ← hold
9. tot_FREQ ← tot_FREQ -1
10. end;
11. psums[m] ← sum(temp[tot_FREQ] to temp[tot_FREQ_hold])
12. END;

OPDN implementation #2 of Goodman & Hedetniemi (1982) for Permutation Tests:
*** temp[] is the array filled with all the data values, for current stratum, of the variable being permuted
*** psums[] is the array containing the permutation sample statistic values for every permutation sample

4. Exploiting the SAS® Speed Advantages

© J.D. Opdyke
15

Note that Goodman & Hedetniemi (1982) uses only a
single array for ALL the permutation samples: since
the initial order of the array cells doesn�t matter for
random sampling, the array is left as it was from the
previous sample when beginning to sample the next
permutation sample. This is an extremely efficient use
of the large TEMPORARY array containing the entire
dataset/strata of values.

4. Exploiting the SAS® Speed Advantages

© J.D. Opdyke
16

Keep it in Memory: No I/O:
Note that neither OPDY nor OPDN write to disk: the entire
algorithm is executed in memory, which GREATLY increases
execution speed. And SAS®�s memory management of
TEMPORARY arrays is second to none: OPDY and OPDN can
handle datasets (technically, strata size) orders of magnitude
larger than can Proc NPAR1WAY AND Hash Tables, both of
which crash on datasets OPDY and OPDN handle easily.

With only 2GB RAM, TEMPORARY arrays of 125 million cells can
be used in SAS® v.9.2 before crashing.

Finally, both algorithms are SCALABLE, as the time complexity
of both is linear runtime (see Graphs 1 and 2 below). This is not
the case for Proc MultTest, Proc NPAR1WAY, or Proc
SurveySelect.

4. Exploiting the SAS® Speed Advantages

© J.D. Opdyke
17

Log10(Real Runtime) = -5.99228 + 0.588164 * Log10(N*n*m) (where N = all N across strata) (1)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

9 10 11 12 13 14 15

Log 10 (N*n*m)

Lo
g 1

0
(R

ea
l R

un
tim

e
)

Graph 1: OPDY Real Runtime by N*n*m (N = all strata)

4. Exploiting the SAS® Speed Advantages

© J.D. Opdyke
18

Log10(Real Runtime) = -5.95291 + 0.57001* Log10(N*n*m) (where N = all N across strata) (2)

Graph 2: OPDN Real Runtime by N*n*m (N = all strata)

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

10 11 12 13 14 15

Log 10 (N*n*m)

Lo
g 1

0
(R

ea
l R

un
tim

e
)

4. Exploiting the SAS® Speed Advantages

© J.D. Opdyke
19

For bootstraps:
• Proc SurveySelect
• A4.8, cited in Tillé (2006), proof derived in Opdyke

(2011)
• Hash Table with Hash Iterator
• DA (direct-access)
• Out-SM (output, sort, merge)

For permutation tests:
• The Procs: SurveySelect, NPAR1WAY, MultTest
• Array-based Bebbington (1975)

5. Competing Approaches within SAS®

© J.D. Opdyke
20

Bebbington (1975):
1. Initialize: Let i ← 0, N’ ← N + 1, n’ ← n
2. i ← i + 1
3. If n’ = 0, STOP Algorithm
4. Visit Data Record i
5. N’ ← N’ � 1
6. Generate Uniform Random Variate u ~ Uniform[0, 1]
7. If u > n’ / N’, Go To 2.

Otherwise, Output Record i into Sample
n’ ← n’ � 1
Go To 2.

2. MLE vs. Robust Statistics: Point-Counterpoint

Execute the algorithm above m times simultaneously, on each
record, using an m-dimensional array.

© J.D. Opdyke
21

A4.8 (cited in Tillé, 2006, proof provided in Opdyke, 2011):
1. Initialize: Let i ← 0, N’ ← N + 1, n’ ← n
2. i ← i + 1
3. If n’ = 0, STOP Algorithm
4. Visit Data Record i
5. N’ ← N’ � 1
6. Generate Binomial Random Variate b ~ Binomial(n’, p ← 1/N’)*
7. If b = 0, Go To 2.

Otherwise, Output Record i into Sample b times
n’ ← n’ � b
Go To 2.

2. MLE vs. Robust Statistics: Point-Counterpoint

* Using A4.8, p will never equal zero. If p = 1 (meaning the end of the stratum (dataset) is reached and i = N, N’ = 1, and n’ = 0) before all n
items are sampled, the rand function b=rand(�binomial�,p,n’) in SAS® assigns a value of n’ to b, which is correct for A4.8.

Execute the algorithm above m times simultaneously, on each
record, using an m-dimensional array.

© J.D. Opdyke
22

The only difference between Bebbington (1975) and A4.8 is
the density determining whether, and the number of times,
the observation is selected: the former, for sampling
without replacement, selects at most one time using a
uniform pseudo-random number generator; the latter, for
sampling with replacement, selects zero or more times
using a binomial pseudo-random number generator.

Bebbington is slightly more competitive because the
uniform pseudo-random number generator is faster than
the binomial pseudo-random number generator, which
prevents A4.8 from being a viable competitor.

5. Competing Approaches within SAS®

© J.D. Opdyke
23

Hashing is fast, because it is memory-based, but it runs into memory
constraints, crashing on datasets/strata well under an order of
magnitude smaller than those OPDY can handle.

DA is an aging, very slow, essentially obsolete
method: the �POINT=� Direct Access option on the SET statement can
be used on small datsets, but it is not viable for modern,
computationally intensive methods requiring large amounts of
resampling.

Out-SM is inadequate, too, but for different reasons: it becomes
prohibitively slow because of all the I/O required. Outputting large
numbers of bootstrap-sample observations, sorting them, and then
merging them back on to the original data by observation id# is slow,
unwieldy and resource-intensive.

So DA, and especially Out-SM, are essentially useless under �Big Data�
conditions; Hashing is fast, but cannot scale to �Big Data,� either.

5. Competing Approaches within SAS®

© J.D. Opdyke
24

Proc SurveySelect is surprisingly slow, given that it is
a relatively new procedure. Proc NPAR1WAY is faster,
due to more efficient use of memory, but the price it
pays is the same tradeoff as Hashing: it crashes on
datasets/strata well under an order of magnitude
smaller than those OPDY can handle. And Proc
MultTest, the oldest of the three, is also the slowest of
the three, because it is much more I/O intensive.

5. Competing Approaches within SAS®

© J.D. Opdyke
25

Note that while OPDY and OPDN execute on
datasets/strata much larger than Hashing and Proc
NPAR1WAY can handle, they actually have
theoretically unlimited dataset size: they are only
limited by the size of the largest stratum in the dataset.
So if a truly massive dataset was comprised of a large
number of strata with fairly large, but not massive
numbers of observations in each, the other methods
would fail, but OPDY and OPDN would not.

5. Competing Approaches within SAS®

© J.D. Opdyke
26

• SCALABLE: No other algorithms or Procs in SAS® are
at all scalable as are OPDY and OPDN for executing
Bootstraps and Permutation Tests on �Big Data�.

• FASTER: They are both ORDERS OF MAGNITUDE
FASTER than all other algorithms/Procs when
datasets are at least of modest size, which is the only
time that speed matters anyway.

• MORE ROBUST: And both can handle strata orders of
magnitude larger than all other methods before those
either crash, or become prohibitively slow, since they
do not have linear time complexity as do OPDY and
OPDN. Theoretically, dataset size is unlimited for
these algorithms.

6. Conclusions

© J.D. Opdyke
27

• GENERALIZABILITY: Both OPDY and OPDN also are
completely generalizable: OPDY can execute
bootstraps on multivariate models (DataMineIt has a
version of OPDY_Boot_FT1 that does this), and OPDN
can be modified to execute permutation tests using
virtually any test statistic.

• No other algorithms/Procs in SAS can handle the
challenge of applying computationally intensive
resampling methods to �BIG DATA� as do OPDY and
OPDN (and their proprietary versions,
OPDY_Boot_FT1 and OPDN_Perm_FT1)

6. Conclusions

© J.D. Opdyke
28

2. Results: Speed, All Else Equal

Relative (Real*) Runtimes: Challengers v. Bootstrap OPDY & Permutation Test OPDN

566.0x201.0xSimultaneous Bebbington200027,500,000

Challenger
Crashed

Challenger
CrashedNPAR1WAY500210,000,000

400.0x353.0xNPAR1WAY200027,500,000

5,970.0x685.1xMultTest2000121,000,000

530.0x242.0xSurveySelect200067,500,000

vs. OPDN_Perm_FT1vs. OPDN

Challenger
Crashed

Challenger
CrashedHash Table + Hash Iterator500610,000

28.9x24.3xHash Table + Hash Iterator20001210,000

990.0x218.3xSurveySelect20001210,000,000

vs. OPDY_Boot_FT1vs. OPDYChallengern = m#Strata
N

(per Stratum)

*Relative CPU runtimes were very similar and are reported with complete simulation results in Opdyke (2010) and Opdyke (2011).
OPDY_Boot_FT1 and OPDY_Perm_FT1 are the proprietary versions of published OPDY and OPDN.

© J.D. Opdyke
29

12. References

• Bebbington, A. (1975), �A Simple Method of Drawing a Sample Without Replacement,�
Journal of the Royal Statistical Society, Series C (Applied Statistics), Vol. 24, No. 1, 136.

• Dorfman, P., �The DOW-Loop Unrolled,� Paper BB-13.

• Goodman, S. & S. Hedetniemi (1977), Introduction to the Design and Analysis of
Algorithms, McGraw-Hill, New York.

• Opdyke, J.D. (2010), �Much Faster Bootstraps Using SAS®,� InterStat, October, 2010.

• Opdyke, J.D. (2011), �Permutation Tests (and Sampling Without Replacement) Orders
of Magnitude Faster Using SAS®,� InterStat, January, 2011.

• Pesarin, F. (2001), Multivariate Permutation Tests with Applications in Biostatistics,
John Wiley & Sons, Ltd., New York.

• Tillé, Y. (2006), Sampling Algorithms, New York, NY, Springer.

© J.D. Opdyke
30

I sincerely thank Nicole Ann Johnson Opdyke
and Toyo Johnson for their support and belief
that SAS® could produce a better bootstrap
and a better permutation test.

Acknowledgments:

© J.D. Opdyke
31

Providing statistical consulting and risk
analytics to the banking, credit, and
consulting sectors.

J.D. Opdyke
President, DataMineIt

JDOpdyke@DataMineIt.com
www.DataMineIt.com

