
Journal of Modern Applied Statistical Methods Copyright 2003 JMASM, Inc.
May 2003, Vol. 2, No 1, 27-49 1538 � 9472/02/$30.00

27

REGULAR ARTICLES
Fast Permutation Tests that Maximize Power Under Conventional Monte Carlo

Sampling for Pairwise and Multiple Comparisons

J.D. Opdyke
DataMineIt

Marblehead, MA

While the distribution-free nature of permutation tests makes them the most appropriate method for
hypothesis testing under a wide range of conditions, their computational demands can be runtime prohibitive,
especially if samples are not very small and/or many tests must be conducted (e.g. all pairwise comparisons).
This paper presents statistical code that performs continuous-data permutation tests under such conditions
very quickly � often more than an order of magnitude faster than widely available commercial alternatives
when many tests must be performed and some of the sample pairs contain a large sample. Also presented is
an efficient method for obtaining a set of permutation samples containing no duplicates, thus maximizing the
power of a pairwise permutation test under a conventional Monte Carlo approach with negligible runtime cost
(well under 1% when runtimes are greatest). For multiple comparisons, the code is structured to provide an
additional speed premium, making permutation-style p-value adjustments practical to use with permutation
test p-values (although for relatively few comparisons at a time). �No-replacement� sampling also provides a
power gain for such multiple comparisons, with similarly negligible runtime cost.

Key words: Permutation test, Monte Carlo, multiple comparisons, variance reduction, multiple testing

 procedures, permutation-style p-value adjustments, oversampling, no-replacement sampling

Introduction

Permutation tests are as old as modern statistics
(see Fisher (1935)), and their statistical properties
are well understood and thoroughly documented in
the statistics literature (see Pesarin (2001) and
Mielke and Berry (2001) for extensive
bibliographies). Though not always as powerful
as their parametric counterparts that rely on
asymptotic theory, they sometimes have equal or
even greater power (see Andersen and Legendre
(1999) for just one example). In addition to their
utility when asymptotic theory falls short (e.g.
small samples and the Central Limit Theorem),
permutation tests are unbiased, and when fully

J.D. Opdyke is President of DataMineIt, a
statistical data mining consultancy (jdopdyke@
datamineit.com, www.datamineit.com). I owe
special thanks to Geri S. Costanza, M.S., for a
number of valuable insights. Any errors are my
own.

enumerated, they provide gratifyingly exact
results. Most important, however, is that with few
exceptions, valid permutation tests rely on no
distributional assumptions � only the requirement
that the data satisfies the condition of
exchangeability (i.e. distributional invariance
under the null hypothesis to permutations of the
subscripts of the data points). This gives
permutation tests a very broad range of
application.

Until recently the major drawback of permutation
tests has been their high computational demands.
Even when sampling from the permutation sample
space, as is typically done, rather than fully
enumerating it, computer runtimes still have been
prohibitive, especially if samples are not very
small. Recent advances in computing speed and
capacity increasingly have relaxed this constraint,
but the continual development of new and
computationally intensive statistical methods is
easily keeping pace with such advances.

 FAST PERMUTATION TESTS 28

For example, Westfall and Young (1993)
convincingly demonstrated, under a broad range of
real-world data conditions, the need for
resampling-based multiple testing procedures.
However, if the unadjusted p-values themselves
are derived from resampling methods, such as
permutation tests, the multiple comparisons p-
value adjustment requires a computationally
intensive nested loop, where a large number
(thousands) of additional permutation tests must
be performed for each original permutation test to
properly adjust its p-value. Obviously, even if
each permutation test requires just a few seconds,
runtimes quickly become prohibitive if there are
many p-values that need to be adjusted.

Similarly, power estimation of tests based on
resampling methods require the same intensive
nested loop structure (see Boos and Zhang (2000)
for a useful computation reduction technique),
while power estimation of the multiple
comparisons adjustment procedure mentioned
above requires an additional (third) loop.

Such examples clearly demonstrate the ongoing
need to develop faster code and algorithms that are
also increasingly statistically efficient, since
variance reduction lessens sampling requirements
which, all else equal, increases speed. The goal of
the methods described below is to contribute to
these efforts.

Widely Available Permutation Sampling
Procedures

Three procedures in SAS® v8.2 � PROC
NPAR1WAY, PROC MULTTEST, and PROC
PLAN � and one procedure in Cytel�s Proc
StatXact® v5.0 � PROC TWOSAMPL � can be
used to perform two-sample nonparametric
permutation tests. All but PROC PLAN sample
the input dataset itself, while PROC PLAN
generates a record-by-record list, each record
containing a number identifying the corresponding
record on the input dataset to include in the
�permutation� samples. This list subsequently
must be merged with the original data to obtain the
corresponding data points, something PROC
MULTTEST does automatically by directly
generating all the �permutation� samples it uses
for permutation-style p-value adjustments (these

samples, however, can be used instead as the
samples for the actual permutation tests). In
contrast, both PROC NPAR1WAY and PROC
TWOSAMPL actually conduct the permutation
test and provide a p-value, whereas the samples
from both PROC MULTTEST and PROC PLAN
must be manipulated �by hand� to calculate the
value of the test statistic associated with the
original sample pair, and then compare it to all
those associated with each of the �permutation�
samples to obtain a p-value.

Nonetheless, effective use of PROC PLAN, as
shown in benchmarks in the Results section below,
is much faster than these other procedures � often
more than an order of magnitude faster when one
of the samples is large. The only potential
problem with using PROC PLAN is that it has a
sample size constraint � the product of the sum of
the two sample sizes (n1 + n2) and the number of
�permutation� samples being drawn (T) cannot
exceed 231 (about 2.1 billion, the largest
representable integer in SAS) or the procedure
terminates. However, this can be circumvented by
inserting calls to PROC PLAN in a loop which
cycles roundup((n1 + n2)* T / 231) times, each loop
drawing T * [roundup((n1 + n2)* T / 231)]-1 samples
until T samples have been drawn (see code in
Appendix C). This looping in and of itself does
not slow execution of the procedure.

All of the abovementioned procedures can perform
conventional Monte Carlo sampling without
replacement within a sample, as required of all but
a few stylized permutation tests, but none can
avoid the possibility of drawing the same sample
more than once. In other words, when drawing the
sample of �permutation� samples, these
procedures can only draw from the sample space
of samples (conditional on the data) with
replacement (WR). This problem of drawing
duplicate samples, its effect on the statistical
power of the permutation test, and a proposed
solution that maximizes power under conventional
Monte Carlo sampling for both pairwise and
multiple comparisons are discussed in the
Methodology section below. First, the background
issues of determining the number of �permutation�
samples to draw, and sampling approaches other
than conventional Monte Carlo, are addressed

 29 J.D. OPDYKE

below.

Determining the Number of Permutation Samples

When drawing samples from the permutation
sample space, one must determine how many
samples should be drawn. Obtaining an exact p-
value from a permutation test via full enumeration
� i.e. by generating all possible sample
combinations by reshuffling the data points of the
samples at hand � quickly becomes infeasible as
sample sizes increase. As shown in (1), the
number of possible sample combinations becomes
very large even for relatively small sample sizes
(two samples of 29 observations each, for
example, have 30,067,266,499,541,000 possible
sample combinations).

(1)

of two-sample combinations

where sample one�s size, sample two�s
size, and

Network algorithms (see Mehta and Patel (1983))
expand the sample size range over which exact p-
values realistically may be obtained, but the rapid
combinatorial expansion of the �permutation�
sample space � defined as conditional on the data
in (1) � still limits the full enumeration of
continuous data samples to relatively small sample
sizes.

Sampling from the permutation sample space,
however, can provide an estimate of the exact p-
value via a conventional Monte Carlo approach,
whereby the probability of drawing any particular
sample is equal to one divided by the number of
possible sample combinations, as in (2) below:

(2)

(Note that permutations of the same sample do not
affect this probability.) A (one-sided) permutation
test p-value is simply the number of test statistic
values, each corresponding to a �permutation�
sample, at least as large as that based on the
observed data samples; therefore, the estimated p-
value based on conventional Monte Carlo
sampling is simply an estimated proportion

distributed binomially. The normal approximation
to the binomial distribution allows one easily to
obtain specified levels of precision for this
estimate, based either on the standard error (se) or
the coefficient of variation (cv), as a function of T
= the number of samples drawn. This is done by
straightforward solutions of (3) and (4)
respectively (see Brown et al. (2001) for
descriptions of the �Agresti-Coull� and �Wilson�
intervals � superior, if slightly more complex,
alternatives to the commonly used Wald
approximation shown in (3)).

(3)

(4)

 and for , .

For example, if cv<0.10 is needed, one would
solve for T in (4) using the most relevant p-value
(p-value = α) and adding one to the solution so
that the inequality holds (see Efron and Tibshirani,
1993, pp. 208-211 for an identical calculation). If
α = 0.05, then T=1,901, which also yields an
approximate 95% confidence interval, based on
(3), of just under 0.01 on either side of p-value = α
= 0.05. While this may be sufficiently precise for
many applications, increased precision is
obtainable with larger T, though as shown in
Graph 1, marginal gains in precision decrease
rapidly in T. (Note that the normal approximation
to the binomial distribution easily satisfies the
strictest criteria in the statistical literature for T =
1,901 and p-value = 0.05 (see Cochran (1977), p.
58, and Evans, et al. (1993), p. 39)).

()
1

1Pr
n n

S s
C

= =

1n = 2n =

1 2n n n= +

()
1

1 2

1 2

!

! !n n
n n

C
n n

+
= =

se
cv

p value
=

−

()0.05 1 0.05

0.10 1,900
0.05

Tcv T

−

= = ⇒ =

0.10cv < 1,901T =

()()1
, and

p value p value
se

T

− − −
≈

()95% 1.96ci p value se≈ − ± ×

FAST PERMUTATION TESTS 30

Graph 1: Permutation p-value -- cv and 1.96*se
by T (# permutation samples) for p-value = alpha = 0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0
20

0
40

0
60

0
80

0
1,0

00
1,2

00
1,4

00
1,6

00
1,8

00
2,0

00
2,2

00
2,4

00
2,6

00
2,8

00
3,0

00
3,2

00
3,4

00

T

cv

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

1.
96

*s
e

se*1.96 cv

An efficient alternative to a fixed level of
precision, however, especially when conducting
many permutation tests, is increasing T only when
the confidence interval of a specific test includes
the critical value. Selectively tightening the
confidence interval in this way avoids wasteful
sampling when p-values are nowhere near the
critical value of the test.

Other Sampling Methods

The level of precision a method provides for a
given number of samples is its efficiency. The
efficiency, as well as speed, of conventional
Monte Carlo sampling as described above
typically are inferior to other sampling methods,
such as various forms of importance sampling,
which recently have received considerable
attention and development (see Owen (2000) for a
current survey and recent developments). The
idea is that samples are selected not with a
uniform probability over the entire sample space,
but rather, based on their �importance� for
reducing the variance of the estimated p-value.
While these and similar variance reduction
methods are extremely effective under a wide and
growing range of conditions, this paper focuses on
conventional Monte Carlo sampling for several
reasons: first, some conditions remain under
which such methods cannot (yet) be implemented
reliably, and results based on quickly implemented
conventional Monte Carlo should serve at least as
an important verification of the validity of these
more efficient methods when their results are
suspect; secondly, to date there is little research on
the use of such methods in resampling-based

multiple testing procedures (see Naiman and
Priebe (2001) and Ortiz and Kaelbling (2000) for
related work in this area); and lastly, the sampling
procedures in most statistical software packages
utilize conventional Monte Carlo, making it much
easier to implement when applying resampling
methods to stylized statistical tests.

Thus, this paper addresses the need for fast
statistical code that quickly performs permutation
tests based on conventional Monte Carlo sampling
for pairwise and multiple comparisons. It also
proposes a simple modification to how most
researchers implement conventional Monte Carlo
permutation tests: it proposes sampling from the
permutation sample space without replacement
rather than with replacement which, by definition
of conventional Monte Carlo, maximizes power
under this sampling approach through variance
reduction. The proposed method
(�oversampling�) can utilize any �with-
replacement� (WR) sampling procedure to
accomplish this, in effect efficiently converting
any WR sampling procedure into a �no-
replacement� (NR) sampling procedure. Before
describing �oversampling,� however, the power
differential between WR sampling and NR
sampling is examined below.

Methodology

Duplicate Permutation Samples and Power

As mentioned above, all of the procedures
examined in this study � PROC PLAN, PROC
MULTTEST, PROC NPAR1WAY, and PROC
TWOSAMPL � can perform conventional Monte
Carlo sampling without replacement within a
sample, as is required of almost all permutation
tests (see Pesarin (2001), Ch. 10, for a notable
exception). In other words, no duplicates of the
same data point exist within a single sample. This
reference to sampling �without replacement� is
distinct from drawing an entire set of
�permutation� samples that contains no entire
sample more than once; this is referred to below as
no-replacement (NR) sampling, while generating a
set of �permutation� samples that may contain
duplicate samples is referred to as �with
replacement� (WR) sampling.

 1,901

31 J.D. OPDYKE

No-replacement (NR) Sampling and Pairwise
Comparisons

Regardless of the number of permutation samples
drawn (T), a single pairwise permutation will lose
statistical power if there are duplicate samples
among the T samples drawn. Intuitively, this
makes sense because the fewer duplicates
contained in the sample of �permutation� samples,
the better represented is the empirical distribution
function, and more information almost always
implies greater power. In other words, if a
difference between population distributions truly
exists, more information (i.e. fewer duplicates), on
average, should allow us to more readily detect it.
And drawing a sample that contains no duplicates
will yield the greatest power attainable under
conventional Monte Carlo.

Statistically, the greater power attributable to NR
sampling over WR sampling is due to variance
reduction in the estimated p-value ((5.1) � (5.5)).
Any permutation test relying on sampling rather
than full enumeration will yield an actual
significance level (asl) larger than α due to Monte
Carlo error (see Berry & Mielke (1983)). This
(one-sided) sampling-based asl is simply the
probability under the null hypothesis that the value
of the test statistic, based on the �permutation�
samples, is equal to or greater than that
corresponding to the critical value of the test
conditional on the true p-value (the conditional
nature of this probability requires summing over
all possible values of p, as in (5.8) and (5.9)). The
asl under NR sampling is smaller than the asl
under WR sampling because the abovementioned
conditional distribution of the former is based on
the hypergeometric distribution: this has smaller
variance than the conditional distribution of WR
sampling, which is based on the binomial
distribution ((5.6) and (5.7)). This means that
once the critical p-values are adjusted to account
for asl>α (the Monte Carlo error), the adjusted
critical value for NR sampling will be larger than
that of WR sampling ((5.10) � (5.13)). This gives
permutation tests based on NR sampling greater
power.

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

where

(5.6)

(5.7)

where

 = number of permutation samples drawn,

(5.8)

(5.9)

where

 = number of �successes� (number of
�permutation� sample test statistic values ≥
observed sample test statistic value) among
 permutation samples drawn,

 is an integer, and

 = the critical value adjusted for Monte Carlo
error.

(Note that above, the critical p-value of the test is
adjusted, rather than the p-values themselves,
solely for heuristic and computational purposes
when demonstrating the power differential
between NR and WR sampling in (5.1)-(5.5). In
practice, it is the p-values themselves which
should be adjusted for ease of interpretation of the
test results. Both adjustments yield identical

2 2

2 2

* *
NR WR

hyp bin

NR WR

NR WR

NR WR

asl asl

c c

power power
α α

σ σ

σ σ

<

⇒ <
⇒ <

⇒ >

⇒ >

()2 1bin pn p pσ = −

()() ()1 1

2 1 / 1hyp p n n p n nn p p C n Cσ = − − −

()()
()

0 0

1Pr | 1
ppp

k n knn
p

WR p
p p pi k

n i i
asl S n p

in n n

α

α
−

= =

= ≤ = −

∑ ∑

()()

0 0

1Pr |
pp

N
N by

nn
p

NR p
p S k

p

N SS
n kk

asl S n p
Nn
n

α

α

= =

−
 − = ≤ =

∑ ∑

S

pn

*cα

p

N
n

pn

FAST PERMUTATION TESTS 32

results statistically.) The discreteness of both the
binomial and hypergeometric distributions prevent
the attainment of adjusted critical p-values
yielding asl = α exactly. However, interpolation
between α and the largest p-value yielding asl<α,
based on the percentage change in the
corresponding asl�s, provides a reasonable
approximation of the critical p-values that would
yield asl = α if the distributions were continuous.
Although this interpolation was used when
calculating the asymptotic power differential
between NR sampling and WR sampling ((6.2) vs.
(6.3) and Table 2), a convenient shorthand
provides similar results. If (asl / α) is assumed to
be constant for p-values close to α, then

(5.10)

so

(5.11)

and

(5.12)

(5.13)

The power differential resulting from use of the
two different critical values can be obtained by
simulation. An asymptotic approximation,
however, provides, as a lower bound, a good idea
of its order of magnitude, as well as a useful
benchmark against which simulations based on
different distributions can be compared to
demonstrate relative rates of convergence
(efficient use of Boos and Zhang (2000) to
perform these simulations is the subject of
continuing research).

By the Central Limit Theorem, we know that
asymptotically,

(6.1)

where

 = size of effect (a location shift)
 = population variance
(see Pesarin (2001), p. 65)

Therefore

(6.2)

(6.3)

(Note that knowledge of is unnecessary if is
expressed in terms of .) The empirical results of
this asymptotic analysis, which are lower bounds
for the actual power gains provided by NR
sampling, are included in the Results section
below in Table 2 (the derivations shown in (5.1) �
(6.3) were first presented in Opdyke (2002b)).

NR Sampling and Multiple Comparisons

The above rationale for the power gains of NR
sampling applies to multiple comparisons as well.
However, for permutation-style p-value
adjustments of permutation test p-values, there are
two sources of power gain: a) a stochastically
larger distribution of the minimum p-value under
NR sampling, and b) smaller original p-values of
the permutation tests themselves, after adjustment
for Monte Carlo error as described above (note
that here, the p-values themselves are adjusted,
rather than the critical p-values).

Take the single step multiple testing adjustment
procedure described by Westfall and Young
(1993) (Algorithm 2.5, pp. 46-48). If we have,
say, a family of ten permutation test p-values that
need adjustment, we need to generate, under the
complete null hypothesis, a vector of ten new p-
values by the same process (permutation test)
some large number of times, and for each original
p-value count the number of times the minimum p-
value of each vector is smaller than or equal to that
original p-value. Dividing each of these ten
counts by the number of times the simulation is
run yields ten proportions, which are the ten
adjusted p-values.

a) Note that since each p-value in each vector is
simply another permutation test, NR sampling will
yield a smaller variance for each of these p-values
compared to WR sampling, as described in the
previous section ((5.1) � (5.2), (5.6) � (5.7)). As a
consequence, the minimum p-value will be

* asl
cα α

α
 ≈

2
*

NR
NR

c
aslα
α≈

1 n
power zα

δ
σ

= − Φ −

*1
WR

WR c

n
power z

α

δ
σ

≈ − Φ −

*1
NR

NR c

n
power z

α

δ
σ

≈ − Φ −

1 2n n n= +

σ
δ

2
*c

aslα
α≈

σ
σ

δ

2
*

NR
WR

c
aslα
α≈

33 J.D. OPDYKE

stochastically larger when the p-values in each
vector are generated using NR sampling than
when using WR sampling (7.1). Therefore, the
probability that the minimum p-value will be
smaller than a given original p-value will be
smaller for NR sampling than for WR sampling
(7.2). This makes the corresponding numerator
(the count) of the adjusted p-value smaller on
average, and the adjusted p-value itself smaller on
average (7.3), giving the p-value adjustment under
NR sampling more power (7.4).

(7.1)
 is stochastically larger than

(7.2)

fi

fi (7.3)

fi (7.4)

where

 = original p-value

 = data-based p-value vector of j p-values

 = joint random variable of j p-values

 = the complete null hypothesis, i.e. assuming
that all null hypotheses included in the family of
multiple comparisons are true

 = the adjusted p-value of

b) Another source of power gain from NR
sampling is the smaller p-values of the original
permutation tests themselves, after adjustment for
Monte Carlo error as described in the previous
section. Assume that none of the �simulated� p-
values in each vector are generated using NR
sampling, but that the original p-values are
generated, and then Monte Carlo-error adjusted,
using NR sampling instead of WR sampling.
Because the p-values of the former are smaller
(8.1), the probability of the same minimum p-
value being less than or equal to the original p-
value is smaller for NR sampling (8.2). This
means the corresponding numerator (the count) of

the adjusted p-value will be smaller on average,
and the adjusted p-value itself will be smaller on
average (8.3), giving the p-value adjustment under
NR sampling more power (8.4).

(8.1)

(8.2)

fi

fi (8.3)

fi (8.4)

Therefore, to maximize NR sampling power gains
when using permutation-style p-value adjustments
in multiple comparisons of permutation test p-
values, combine both a) and b) � use NR sampling
to generate both the original Monte Carlo-error
adjusted p-values, as well as the �simulated� p-
value vectors when making the multiple
comparisons adjustment ((9.1) � (9.3)).

(9.1)

fi (9.2)

fi (9.3)

The same rationale applies to stepwise multiple
comparisons adjustments. Whenever NR
sampling is used to generate either or both the
minimum p-value and the original Monte Carlo
error-adjusted p-values, its variance reduction will
yield greater power (these derivations, (7.1)-(9.3),
were first presented in Opdyke (2002b)).

Efficient simulation of the power differential
shown in (9.1) � (9.3), which requires a
computationally intensive nested loop with three
levels, is the topic of continuing research.
However, its magnitude may very well be larger
than that of a single pairwise comparison since
variance reduction is achieved from two sources �
both a) and b) above � rather than from b) alone.

Before presenting the asymptotic power
calculations for a single pairwise comparison, the

*

1
min

NRj
j k

p
≤ ≤

*

1
min

WRj
j k

p
≤ ≤

0 0
1 1
min minPr | Pr |

NR WR

C C
j i j i

j k j k
P p H P p H

≤ ≤ ≤ ≤

 ≤ < ≤

))a aNR WRpower power>

NR WRi ip p<

0 0
1 1
min minPr | Pr |

NR WR

C C
j i j i

j k j k
p p H p p H

≤ ≤ ≤ ≤

 ≤ < ≤

))NR WRb bi ip p<! !

))b bNR WRpower power>

*
jp

jP

0
CH

ip

NRip! ip

0 0
1 1
min minPr | Pr |

NR NR WR WR

C C
j i j i

j k j k
p p H p p H

≤ ≤ ≤ ≤

 ≤ < ≤

NR WRi ip p<! !

NR WRpower power>

))NR WRa ai ip p<! !

FAST PERMUTATION TESTS 34

next section derives and presents an efficient
method for performing NR sampling based on any
procedure which uses WR sampling, as do all the
�permutation� sampling procedures examined in
this paper and known to this author.
�Oversampling,� in effect, efficiently converts any
WR sampling procedure into an NR sampling
procedure, as shown below.

�Oversampling� to Avoid Duplicate Samples

�Oversampling� involves simply drawing more
than the desired T samples (say, r samples),
deleting any duplicate samples, and then randomly
selecting T samples from the remaining set (this
method, and its results in Table 1, were first
presented in Opdyke (2002a)). This approach
does not alter the probability of drawing any
particular sample (see (2)), so �oversampling� is a
statistically valid approach for obtaining T distinct
samples.

The next question to address is, what is the
optimal size of (r-T)? The goal is to minimize
expected runtime, which is a function of (r-T), or
simply r, and the size of r involves the following
runtime tradeoff: larger r will contribute to longer
runtimes due to the extra time required to generate
more samples, but also will diminish the
probability that fewer than T unique samples will
be drawn, which would require another draw of r
samples and increase overall runtime; smaller r
will require less time to generate fewer samples,
but at the price of an increased probability of
being left with fewer than T unique samples and
having to redraw the samples all over again.
Expected runtime is simply the product of a) the
expected number of times r samples need to be
drawn to obtain at least T unique samples, and b)
the time it takes to draw r samples. So if expected
runtime = g(r, x, y�), we seek r such that ∂g/∂r =

0 (and ∂2g/∂r > 0).

Minimizing Expected Runtime

a) The number of times r samples must be drawn
before obtaining at least T unique samples is a
random variable that follows the geometric
distribution, which identifies the number of events
occurring before the first success:

(10)

where p indicates the probability of success (of
obtaining at least T unique samples) for each event
(each call to PROC PLAN, or whichever WR
sampling procedure is being used). The expected
value of the geometric distribution is E[S] = 1/p,
and p is derived from a general form of the
familiar (coupon or baseball card) collector�s
problem. This problem asks the question, �How
many card packets must one purchase to collect a
complete set of baseball cards?� or equivalently,
�How many samples must one draw, when
sampling with replacement (because the sample
size is so large), to obtain a complete set of all
samples from the sampling distribution?� The
more general problem, which is the relevant one
for this analysis, is �How many samples are
required, when sampling with replacement, to
obtain T distinct samples from the sampling
distribution?� The number of samples �required�
follows a probability mass function (11) which is
the sum of geometric random variables.

(11)

where r = # of samples drawn and j ≤ r

However, we are interested in the probability of
obtaining at least T unique samples, which is
simply the cumulative probability of obtaining T,
T+1, T+2, � , r-1, and r unique samples, as shown
below:

(12)

where T ≤ r.

Thus, the expected number of times r samples
must be drawn to obtain at least T unique samples
is a function of the number of possible sample
combinations and r, as shown in (13) below:

() ()()1Pr 1 sS s p p −= = −

() ()
() ()
() ()

1

1 10

1 !
Pr # unique samples

! ! ! !

j i r
n n

r
n n i n n

C j j i
j

j C j i j i C=

− −
= =

− −
∑

() ()
() ()
() ()

1

1 10

1 !
Pr

! ! ! !

jr i r
n n

r
n nj T i n n

C j j i
p j T

j C j i j i C= =

− −

= ≥ =
− −

∑ ∑

35 J.D. OPDYKE

(13)
expected # of calls to PROC PLAN =
CTPP(, r, T) =

Graph 2 illustrates the functional relationship
between p, 1/p, and r for n1 = 68, n2= 4, and T =
1,901:

Graph 2: Probability of at least T Unique Samples (p)
and Expected # of calls to Proc Plan (1/p)

by r (for n1=4, n2=68, and T=1,901)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1,901 1,903 1,905 1,907 1,909 1,911 1,913 1,915
r

Pr
(j>

=1
,9

01
)=

p

 1
/p

 =
 e

xp
ec

te
d

ca

lls

p 1/p

b) Now to return to the other factor determining
expected sampling runtime � the time it takes
PROC PLAN to draw a sample of r samples. This
is simply the runtime of PROC PLAN as a
function of, interestingly, not the number of
possible two-sample combinations, but rather the
sum of the two sample sizes (n1 + n2), as well as
the number of samples drawn, r. This is shown in
Graph 3 (see Appendix A for simulation details).
Obviously, r and (n1 + n2) are correlated, but
runtime is very well predicted (adj R2 = 0.9884) by
the simple ordinary least squares multivariate
regression equation in (14):

Graph 3: PROC PLAN Runtime by n1+n2 by r

0

5

10

15

20

25

30

35

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000

n1+n2

R
ea

l T
im

e
(s

ec
on

ds
)

r = 1,901 2,700 3,500

(14)
PROC PLAN Runtime =
PPRT(n1, n2, r) =
β0 + β1*(n1 + n2) + β2*r + β3*(n1 + n2)*r

Nonlinearity at about (n1 + n2) = 65,500 and (n1 +
n2) = 73,500 prompted the inclusion of dummy
and interaction terms, leading to the near perfect
prediction (adjusted R2 = 0.9927) for PPRT(n1, n2,
r) presented in Appendix B (see Graph 4, which is
simply a magnification of Graph 3 up to (n1 +
n2)=100,000).

Graph 4: PROC PLAN Runtime by n1+n2 by r

0.0

0.5

1.0

1.5

2.0

2.5

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

n1+n2

Re
al

 T
im

e
(s

ec
on

ds
)

r = 1,901 2,700 3,500

Thus, expected runtime g(n1, n2, r, T) is the
product of PROC PLAN Runtime and the
expected number of calls to PROC PLAN:

()
() ()
() ()

1

1 1

1

0

1 !1

! ! ! !

jr i r
n n

r
n nj T i n n

C j j i

p j C j i j i C

−

= =

 − −

=
 − −

∑ ∑

1n nC

FAST PERMUTATION TESTS 36

 (15)
expected runtime = g(n1, n2, r, T) = (14) x (13) =
PPRT(n1, n2, r) * CTPP(, r, T) =
[
β0 + β1*(n1 + n2) + β2*r + β3*(n1 + n2)*r
+ d1*β4 + d1*β5*(n1+n2)+ d1*β6*r+d1*β7*(n1+n2)*r
+ d2*β8+d2*β9*(n1+n2)+d2*β10*r+d2*β11*(n1+n2)*r
]
*

To get an intuitive feel for r as a function of n1 and
n2 (for a given T), note again that the second term
of (15) is a combinatorial function of the sample
sizes while the first term is merely a linear
function of the sample sizes (see Graph 5).

Graph 5: Estimated PROC PLAN Runtime by r
(for n1=4, n2=68, and T=1,901 -- based on PPRT in Appendix B)

0.0580

0.0581

0.0582

0.0583

0.0584

0.0585

0.0586

0.0587

0.0588

1,90
1

1,9
02

1,90
3

1,9
04

1,90
5

1,906
1,907

1,9
08

1,9
09

1,91
0

1,9
11

1,91
2

1,9
13

1,914
1,91

5
1,916

1,91
7

1,9
18

1,91
9

1,9
20

1,921

r

Es
tim

at
ed

 R
un

tim
e

(s
ec

on
ds

)

The combinatorial terms in the second term of (15)
end up dominating as sample sizes increase,
asymptotically converging to 1.0 (one call to
PROC PLAN) faster than the first term (each
PROC PLAN runtime) diverges. Hence, for all
but very small sample sizes, an optimal r in terms
of expected runtime (where ∂g/∂r = 0) will be
fairly close to T. Graphs 6 and 7 below present
g(n1, n2, r, T) � the product of 1/p in Graph 2 and
PPRT in Graph 5 above � and demonstrate an
optimal r, r* = 1,908, for T = 1,901, n1 = 4, and n2
= 68 (and).

Graph 6: Expected Runtime (1/p * each runtime) by r
(for n1=4, n2=68, and T=1,901)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1,901 1,902 1,903 1,904 1,905 1,906 1,907 1,908 1,909 1,910 1,911 1,912 1,913 1,914 1,915 1,916

r

Ex
pe

ct
ed

 R
un

tim
e

(s
ec

on
ds

)

Graph 7 magnifies the relevant expected runtime
range.

Graph 7: Expected Runtime (1/p * each runtime) by r
(for n1=4, n2=68, and T=1,901)

0.0582

0.0584

0.0586

0.0588

0.0590

0.0592

0.0594

1,901 1,902 1,903 1,904 1,905 1,906 1,907 1,908 1,909 1,910 1,911 1,912 1,913 1,914 1,915 1,916

r

E
xp

ec
te

d
Ru

nt
im

e
(s

ec
on

ds
)

Unfortunately, the high level of precision needed
to calculate numeric solutions for r* based on (15),
for different sample sizes and different values of
T, requires use of a symbolic programming
language (the Mathematica® v4.1 code used to
obtain the exact probabilities in Table 1 is
available from the author upon request). Thus,
exact solutions cannot be implemented �on the
fly� in SAS, or any statistical software package,
for encountered values of n1 and n2. Good
approximations to the probability mass function of
the collector�s problem, however, do exist (see
Kuonen (2000) and Read (1998), as well as
Lindsay (1992) for a unique approach to the
problem), but whether using exact or approximate
probabilities, for all practical purposes r* need not
be calculated for each and every combination of
values of n1 and n2. Nearly optimal r can be
calculated for ranges of C because, as shown in
Graph 7, the marginal runtime cost of drawing r
slightly larger than r* is negligible (though the

r*

1n nC

()
() ()
() ()

1

1 1

1

0

1 !

! ! ! !

jr i r
n n

r
n nj T i n n

C j j i

j C j i j i C

−

= =

 − −

 − −

∑ ∑

1
C 1,028,790n nC = =

r*

37 J.D. OPDYKE

marginal runtime cost of drawing r smaller than r*
is relatively large). Thus, if we define appropriate
ranges of C, and for the lower bound of each range
identify r*, these �low-end� r*s always will be
larger than any other r* corresponding to any of
the sample pairs within their respective ranges. In
other words, though not optimal for every
combination of sample sizes within its range, the
�low-end� r* will be nearly optimal because it will
be slightly larger (never smaller) than all other r*
for sample size pairs within its range, and the
marginal runtime cost of being slightly larger than
r* is negligible.

Table 1 below shows the values of r used in the
permutation test program � the �low-end� r*s � for
ranges of C. Although g(n1, n2, r, T) is a function
of both C and n1 + n2, and n1 + n2 does vary for
(essentially) constant C, the effect of this can be
ignored since, as an empirical matter, it never
affects the calculation of each of the �low-end�
r*s. In other words, CTPP (13) strongly
dominates PPRT (14) because 1/p converges to
one so quickly.

The code in Appendix C proposes an efficient
method for generalizing the results from Table 1,
i.e. for obtaining estimates of the optimal �low-
end� r*s for any value of T. This method is very
fast, perhaps even faster than Kuonen (2000),
although it provides only estimates to the exact
solution. It first utilizes optimal �low-end� r*s
already calculated for a particular value of T (as in
Table 1) as the basis for conservative estimates of
the distance (standard deviations) between a new
T and the mean of the collector�s problem mass
function. Different r*s are tested via any of
several straightforward convergence algorithms
(false position converges more quickly than
bisection and, surprisingly, Newton-Raphson in
this context) to find those r*s yielding distances
arbitrarily close to the original conservative
distance estimates, typically within just several
iterations. The method performs well in practice
because of the shape of the runtime function
(Graph 7): as long as the original distance
estimates are conservative, i.e. slightly larger than
necessary, the corresponding estimates of the
optimal �low-end� r*s also will be slightly larger
than necessary, causing only negligible runtime
increases over use of the true optimal �low-end�

r*s.

TABLE 1.
Nearly Optimal r (�low-end� r*),
Probability (p) of T ≥ 1,901 Unique Samples,
and Expected # of Calls to PROC PLAN (1/p)
by Ranges of # of Sample Combinations, C

C

�low-
end�

r*

p (lower
bound)

1/p (lower
bound)

C < 10,626 C
1.0
(assuming
C ≥ T)

1.0

10,626
≤ C <
52,360

2,138 0.9979293
20330667

1.00207497
6280530

52,360
≤ C <
101,270

1,956 0.9990583
42955471

1.00094254
4598290

101,270
≤ C <
521,855

1,934 0.9994297
17692296

1.00057060
7715190

521,855
≤ C <
1,028,790

1,912 0.9997265
55240808

1.00027351
9551680

1,028,790
≤ C <
10,009,125

1,908 0.9995128
39120371

1.00048739
8321020

10,009,125
≤ C <
25,637,001

1,904 0.9999615
94180711

1.00003840
7294350

25,637,001
≤ C <
100,290,905

1,903 0.9999446
15376581

1.00005538
7691050

100,290,905
≤ C <
5,031,771,045

1,902 0.9998396
91379204

1.00016033
4323770

5,031,771,045
≤ C

1,901 0.9996411
54940541

1.00035897
3875460

It is worth noting that, for T = 1,901, the largest
value of C for which one has to actually
�oversample� (although one must still check for
duplicate samples and redraw if necessary) is
relatively small � about 5x109. This corresponds
to sample sizes of only n1 = 17 and n2 = 18 for
small n = n1 + n2, and n1 = 2 and n2 = 100,000 for
large n. This is due, of course, to the fantastic
combinatorial growth of C, which causes 1/p�s
rapid convergence to one. This convergence

1n nC=

FAST PERMUTATION TESTS 38

indicates that using �oversampling� as outlined
above to perform NR sampling should be
applicable to any WR sampling procedure, even if
its runtime function, unlike (13), is not linear in n
(i.e. even if it is convex and steep in n).

Results

How Fast Is It?

Relative Speed – Some Benchmarks

The start-to-finish runtime of the permutation test
program using �oversampling� with PROC PLAN
to perform NR sampling is fast relative to other
programs and WR procedures, as shown below:

Graph 8: Relative Start-to-Finish Runtime (T = 1,901)

19.7
11.7

2.5
1.5

0.5
14.2

7.7
1.6

1.2
0.5

1.3
1.5
1.4

0.6
0.2

1.0

12.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r

q

p

o

n

m

l

k

j

i

h

g

f

e

d

c

b

a

a = PROC PLAN with �oversampling�
b = TWOSAMPL, (n1+n2)<10,000, R = 1
c = TWOSAMPL, (n1+n2)<10,000, R > 1
d = TWOSAMPL, 10,000<(n1+n2)<100,000, R = 1
e = TWOSAMPL, 100,000<(n1+n2)<150,000, R=1
f = TWOSAMPL, 1M < (n1+n2) < 1.5M, R = 1
g = TWOSAMPL, 1M < (n1+n2) < 1.5M, R > 1
h = NPAR1WAY, (n1+n2)<10,000, R = 1
i = NPAR1WAY, (n1+n2)<10,000, R > 1
j = NPAR1WAY, 10,000<(n1+n2)<100,000, R = 1
k = NPAR1WAY, 100,000<(n1+n2)<150,000, R=1
l = NPAR1WAY, 1M < (n1+n2) < 1.5M, R = 1
m = MULTTEST, (n1+n2)<10,000, R = 1
n = MULTTEST, (n1+n2)<10,000, R > 1

o = MULTTEST, 10,000<(n1+n2)<100,000, R = 1
p = MULTTEST, 100,000<(n1+n2)<150,000, R=1
q = MULTTEST, 1M < (n1+n2) < 1.5M, R = 1
r = looping in SAS, 1<(n1+n2)<1.5M, R > 1

where R = # Study Groups / # Control Groups

(For r above, see Jackson (1998). Beware,
however, that this code enters an infinite loop if
the number of possible sample combinations for a
given sample pair is less than T. Also note that the
code, unlike the standard definition of a
permutation test which includes �ties� in the
numerator of the p-value, splits ties at the
boundary after assuming exactly one tie at the
boundary (apparently with the intent of making the
test less statistically conservative)). The only
procedures or programs faster than PROC PLAN
with �oversampling� are PROC MULTTEST and
PROC NPAR1WAY with small samples and one
study group per control group, as well as PROC
TWOSAMPL with small samples, regardless of
the study-control group ratio. For larger samples,
the relative speed of PROC PLAN with
�oversampling� over MULTTEST and
NPAR1WAY increases rapidly and nonlinearly,
even with a study-control group ratio of one. The
relative speeds for large samples and larger study-
control group ratios (not shown in Graph 8) are
many times larger still (note that MULTTEST
runtimes reflect only the time required for sample
generation, not p-value calculation, which would
increase relative runtime by an additional several
multiples for larger samples). The relative speed
advantage over TWOSAMPL is only pronounced
when one sample is large and the study-control
group ratio exceeds one.

On the one hand, smaller samples are where one is
most likely to need permutation tests. However,
this is where the speed differential matters the
least in absolute terms � even when performing
two hundred permutation tests with these smaller
sample sizes and a study/control group ratio equal
to one, none of the other three procedures was ever
more than five minutes faster than PROC PLAN
with �oversampling.� So the tradeoff in this case
is several minutes per run with MULTTEST,
NPAR1WAY, or TWOSAMPL, versus maximum
power with PROC PLAN with �oversampling.�

 → 75.8

39 J.D. OPDYKE

In contrast, when samples are larger, relative
runtimes matter most because even small
differences become large in absolute terms. These
are precisely the conditions under which PROC
PLAN with �oversampling� maintains a very large
relative speed advantage over MULTTEST and
NPAR1WAY, as well as TWOSAMPL when the
study-control group ratio exceeds one.

In addition to the speed of PROC PLAN itself, a
number of factors contribute to the speed of the
entire SAS program used to perform permutation
tests with PROC PLAN and �oversampling,�
including:

• Use of PROC APPEND to �SET� two large

datasets together (one on top of the other)
 whenever possible.

• Judicious use of multiple PROC

TRANSPOSE�s to evaluate the summarized
results of the permutation sampling.

• Most test statistics can be constructed based
on just one of the two samples in a pair and, if
necessary, the pooled summary statistics of the
pair. Thus, when conducting permutation
sampling, sample only the smaller of the two
samples, but keep track of which sample is
used (study or control) when constructing the
test statistics based on the permutation
samples.

• To quickly SET together the potentially large
and numerous output dataset lists from PROC
PLAN (one set of T samples for every
permutation test), use a looping macro that
returns all the dataset names into a single SET
statement (see code in Appendix C).
Alternately, looping on the SET statement and
SETting the datasets together cumulatively,
one at a time, is extremely inefficient and

 runtime costly.

• If the dataset is large and contains a large

percentage of records with the same response
variable value (say, zero), delete these records
to avoid sorting and later merging them with
the PROC PLAN output. After merging the
remaining data with the PROC PLAN output

and retaining all PROC PLAN records in the
merge, reassign this value to the response
variable when it is missing (i.e. when that
record did not merge with the PROC PLAN
output because it had been deleted).

• Most importantly, if the data contains multiple
study groups per control group, there is no
need to output control group records multiple
times, once for each corresponding study
group, when using PROC PLAN with
�oversampling.� The original data simply can
be divided into two datasets � one for control
group(s) and one for study groups � and each
merged separately to the PROC PLAN output
(then (PROC) APPENDed together after the
merges). Unless one constructs a separate
dataset for each permutation test, PROC
MULTTEST, PROC NPAR1WAY, and
PROC TWOSAMPL require control group
records duplicated in the input dataset for each
study group against which they are being
compared. This is what gives PROC PLAN
with �oversampling� an additional speed
premium in these situations, and similarly, for
multiple comparisons. To test a complete null
hypothesis under a multiple testing
framework, the number of pairwise
comparisons required is s (s-1)/2, where s is
the number of samples. This means that for
the other three procedures, a much larger
number of observations (16) must be output
and sorted compared to the number similarly
processed by PROC PLAN with

 �oversampling� (17).

(16)

(17)

where
s = the number of samples, and
n(i) = the number of observations in the sample
with the ith largest number of observations

If many permutation tests must be conducted
and at least some of these contain large

() ()

1

3 PROCs #obs 1
s

i

i

s n
=

= − ∑

() () () ()1

2

PROC PLAN #obs 1 1
s

s i

i

n s n i−

=

= − −∑

FAST PERMUTATION TESTS 40

samples, the runtime advantage of (17) over
(16) can be extremely large, as seen in Graph
8. However, (17) does not assume the code
exploits the fact that with multiple
comparisons, the same groups of observations
are being used repeatedly in different
comparisons. Although the other sampling
procedures examined in this study cannot take
advantage of this, code based on PROC PLAN
can, allowing the researcher to achieve
computational efficiencies even beyond those

 gained by (17) over (16).

Absolute Speed

When run on data containing 220 sample pairs
where the smaller sample was less than 30
observations but the larger sample was sometimes
as large as 64,000 observations, the runtime of the
program was 7 minutes, 45 seconds on a desktop
PC with two gigabytes of random-access memory
and a two gigahertz Pentium® processor. For data
containing 6,682 sample pairs where the smaller
sample was less than 30 observations but the
larger was sometimes over 5,000,000
observations, the runtime was 8 hours, 36 minutes.
The former example obviously is more typical of
the contexts in which permutation tests are used,
but the latter is instructive for demonstrating the
limits of the methods and software being relied
upon. This study shows that the runtime of PROC
PLAN with �oversampling� is not prohibitive even
when applied to sample sizes as large (if not far
larger) than would ever be used with permutation
tests. The same cannot be said for the four
alternate methods. (One notable and widespread
example of the current application of permutation
tests to sample pairs where one sample can be
quite large is the telecommuncations regulatory
arena. Incumbent local exchange carriers have
been required by a number of state public service
commissions to perform permutation tests on
performance measurement data if one sample
(typically the CLEC sample) is small, even if the
other (typically the ILEC sample) contains many
millions of observations.)

NR Sampling � How Much Power Gain?

The asymptotic approximation of the power
differential between NR sampling and WR
sampling for a single pairwise comparison is
calculated below (Table 2 and Graph 9) based on
the Central Limit Theorem ((6.2 � (6.3)). There
are two notable findings: first, the power gains
from using NR sampling over WR sampling are
small, even for small values of δ (the location
difference) and , and even taking into
consideration that these asymptotic power
differences represent lower bounds for the actual
power differences. Secondly, these gains decrease
rapidly in . Why is this the case? Recall that
the only difference between NR sampling and WR
sampling is the variance of the estimated p-value;
the former is based on the hypergeometric
distribution (5.6) and the latter is based on the
binomial distribution (5.7).

(5.6)

(5.7)

These variances differ only by the finite
population correction factor (fpc) of
 . As n1 and n2 increase,
 increases dramatically, causing the rapid
convergence of the fpc to one and thus, the
practical equivalence of NR sampling and WR
sampling. Intuitively, this makes sense as it is
clear that the probability of drawing any of a few
thousand samples (np) more than once quickly
approaches zero as the number of possible samples

Permutation Sampling: With (WR) vs. No (NR) Replacement
 Asymptotic Difference in Power at α = 0.05 by nCn1 by δ

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000 13,000

nCn1 = # Possible Samples

D
iff

er
en

ce
 in

 P
ow

er
 a

t α
 =

 0
.0

5

1,001 Samples Draw n 1,938 3,876 1,001 1,938 3,876

δ = 0.5σ

δ = 1.0σ

()2 1bin pn p pσ = −

()() ()1 1

2 1 / 1hyp p n n p n nn p p C n Cσ = − − −

() ()1 1
/ 1n n p n nC n C− −

1n nC

1n nC

1n nC

41 J.D. OPDYKE

from which to randomly draw rapidly surpasses
trillions and quadrillions of possibilities (the exact
probability is given by one minus (12) when T=r).
Therefore, if sample sizes are not very small, it is
fair to say that such small power gains would only
make NR sampling worth considering if there was
little or no runtime cost associated with its
implementation. Otherwise, unless the cost of
Type II error is astronomically high, NR sampling
may not be worth the trouble (however, note NR
sampling�s more obvious benefit of shorter
confidence intervals on the permutation p-values
themselves compared to (3), which is based on
WR sampling).

NR Sampling � Power Gains at What Cost?

A good metric for evaluating the runtime cost of
employing NR sampling via �oversampling� is its
start-to-finish runtime compared to that associated
with WR sampling � i.e. just drawing T samples
and ignoring the duplicate sample problem. This
difference is a function of the number of tests
performed and their sample sizes. When only two
hundred permutation tests were conducted on
small sample pairs (both less than 30
observations), NR sampling was 20%-30% slower
than WR sampling. However, in absolute terms,
this was less than two minutes. When 1,862 tests
were conducted, including some sample pairs with
one large sample, the runtime cost was always
under 2%; for all 6,682 tests, the runtime cost was
always well below 1%. Maximizing power via
NR sampling arguably is worth this relatively
small increase in runtime.

Conclusion

This study provides a) statistical code that
performs fast continuous-data permutation tests
even if one sample is large, and which often is
more than an order of magnitude faster than
widely available commercial alternatives under
these conditions, and b) an answer to the question:
does drawing a set of permutation samples
containing no duplicate samples increase the
power of the permutation test for a single pairwise
comparison? If so, by how much, and are there
also power gains for multiple comparisons? It is
analytically shown that �no-replacement� (NR)
sampling of the permutation sample space
provides a small power gain over the usual method
of �with-replacement� (WR) sampling when using
a conventional Monte Carlo approach (this power
gain attains, by definition, maximum power under
conventional Monte Carlo). This finding holds for
pairwise comparisons, as well as for multiple
comparisons � specifically, permutation-style p-
value adjustments of permutation test p-values �
which are made runtime feasible by an additional
speed premium built into the code. The power
gain for such multiple comparisons, however, may
be larger in absolute terms because these
procedures achieve variance reduction from two
sources rather than just one. Simulating these
gains is the focus of ongoing research. The power
gains of both pairwise and multiple comparisons,
however, quickly diminish as sample sizes
increase. This is due to the rapid convergence of
the conditional variance of the estimated
permutation p-value (based on the hypergeometric
distribution) to that of WR sampling (based on the
binomial distribution). However, the runtime cost
of implementing NR sampling via the proposed
method of �oversampling� is negligible � less than
1% of runtime when many tests are conducted and
at least some of the sample pairs contain one large
sample (which is when runtime matters most in
absolute terms). So under a conventional Monte
Carlo approach, if the cost of Type II error is not
negligible and even if the power gains of NR
sampling may be small, there seems to be no
reason not to use this straightforward and readily
applied method in order to maximize power.

FAST PERMUTATION TESTS 42

 TABLE 2. Asymptotic Approximation of Power Difference Between NR Sampling vs. WR Sampling
 for a Pairwise Permutation Test

np 1,001 1,001 1,001 1,938 1,938 3,876

nCn1
 2,002 5,005 8,008 3,876 11,628 11,628

(nCn1
 - np)/(nCn1

 - 1) 0.5002 0.8002 0.8751 0.5001 0.8334 0.6667

aslNR 0.0511734 0.0513080 0.0513416 0.0501677 0.0502451 0.0501290
aslWR 0.0513977 0.0513977 0.0513977 0.0502838 0.0502838 0.0501677
C*

α
NR

 0.0493837 0.0493128 0.0492950 0.0498490 0.0497793 0.0498968

C*
α
WR

 0.0492655 0.0492655 0.0492655 0.0497445 0.0497445 0.0498658

δ = 0.5 0.5870526 0.6121541 0.6361821 0.7030284 0.7027937 0.7031889 PowerNR δ = 1.0 0.9817270 0.9868391 0.9905697 0.9966619 0.9966550 0.9966665
δ = 0.5 0.5866014 0.6119764 0.6360733 0.7026762 0.7026762 0.7030848 PowerWR δ = 1.0 0.9816750 0.9868234 0.9905623 0.9966516 0.9966516 0.9966635
δ = 0.5 0.0004512 0.0001777 0.0001089 0.0003522 0.0001175 0.0001041 Power

difference δ = 1.0 0.0000520 0.0000157 0.0000073 0.0000103 0.0000034 0.0000030

References

Andersen, M.J. & P. Legendre (1999), An

empirical comparison of permutation methods for
tests of partial regression coefficients in a linear
model, Journal of Statistical Computation &
Simulation, Vol. 62, No. 3.

Berry, K. & P. Mielke (1983), Moment
approximations as an alternative to the f test in
analysis of variance, British Journal of
Mathematical & Statistical Psychology, 36:
pp.202-206.

Boos, D., & J. Zhang (June 2000), Monte
carlo evaluation of resampling-based hypothesis
tests, Journal of the American Statistical
Association, Vol. 95, No. 450.

Brown, L., T. Cai, & A. DasGupta, Interval
estimation for a binomial proportion, Statistical
Science, Vol. 16, No. 2: pp.101-133.

Cochran, W. (1977), Sampling techniques, 2nd
ed., New York: John Wiley & Sons.

Evans, M., N. Hastings, & B. Peacock (1993),
Statistical distributions, 2nd ed., New York: John
Wiley & Sons.

Fisher, Sir R.A. (1935), Design of
experiments, Edinburgh, Oliver & Boyd.

Efron, Bradley & Robert Tibshirani (1993),
An introduction to the bootstap, Chapman & Hall,
London & New York.

Affidavit of John Jackson, On Behalf of MCI-

Worldcom, Before the Michigan Public Service
Commission, Case No. U-11830, November 18,
1998, ATTACHMENT A, �Using Permutation
Tests to Evaluate the Significance of CLEC vs.
ILEC Service Quality Differentials�

Kuonen, D. (August 2000), A saddlepoint
approximation for the collector�s problem, The
American Statistician, Vol. 54, No. 3.

Lindsay, J.D. (1992), A new solution for the
probability of completing sets in random
sampling: definition of the �two-dimensional
factorial�, The Mathematical Scientist, 17: 101-
110.

Mehta, C., & N. Patel (June 1983), A network
algorithm for performing fisher�s exact test in r x c
contingency tables, Journal of the American
Statistical Association, Vol. 78, No. 382.

Mielke, P. & K. Berry (2001), Permutation
methods: a distance function approach, Springer-
Verlag, New York.

Naiman, D. & C. Priebe (2001), Computing
scan statistic p values using importance sampling,
with applications to genetics and medical image
analysis, Journal of Computational and Graphical
Statistics, Vol. 10, No. 2.

43 J.D. OPDYKE

Opdyke, J.D. (May 5-8, 2002a),
PharmaSUG2002: Conference of the
Pharmaceutical SAS Users� Group, Salt Lake City,
UT, http://www.pharmasug.org/psug2002/bp2002/
psug2002_html

Opdyke, J.D. (August 5-7, 2002b), MCP 2002:
The 3rd International Conference on Multiple
Comparisons, Bethesda, Maryland,
http://www.ba.ttu.edu/isqs/westfall/Program.htm

Ortiz, L. & L. Kaelbling (2000), Sampling
methods for action selection in influence
diagrams, Proceedings of the Seventeenth National
Conference on Artificial Intelligence.

Owen, A. & Y. Zhou (March 2000), Safe &
effective importance sampling, Journal of the
American Statistical Association, Vol. 95, No. 449.

Pesarin, F. (2001), Multivariate permutation
tests with applications in biostatistics, John Wiley
& Sons, Ltd., New York.

Read, K.L.Q. (May 1998), A lognormal
approximation for the collector�s problem, The
American Statistician, Vol. 52, No. 2.

Westfall, P., & S. Young (1993), Resampling-
based multiple testing – examples & methods for
p-value adjustment, New York, John Wiley &
Sons, Inc.

Appendix A

To estimate PROC PLAN real runtime,

SAS® v.8.2 was used on a desktop PC with 2GB
RAM and a 2GHz Pentium processor. Sample
sizes were generated by assigning values of 3, 16,
and 27 to the smaller of the two samples, and,
beginning at 100, assigning values by 100
increments to the larger sample up to 100,000,
after which point increments of 10,000 were used
up to 1.5 million (though the program has been run
on sample pairs as large as 29 and 5,000,029).
Three values of r were used: 1,901, 2,700, and
3,500.

Appendix B

PROC PLAN RunTime, PPRT(n1, n2, r),
regression results:
Left hand side variable = real runtime seconds
adjusted R2 = 0.9927

Variable
Key Variable

A Intercept
B (n1 + n2)
C r
D (n1 + n2) * r
E [(n1 + n2) < 65.5K]
F [(n1 + n2) < 65.5K] * (n1 + n2)
G [(n1 + n2) < 65.5K] * r
H [(n1 + n2) < 65.5K] * (n1 + n2) * r
I [65.5K £ (n1 +n2) £ 73.5K]
J [65.5K £ (n1 +n2) £ 73.5K] * (n1 + n2)
K [65.5K £ (n1 +n2) £ 73.5K] * r
L [65.5K £ (n1 +n2) £ 73.5K] * (n1 + n2) * r

Variable
Key Parameter Estimate t value

A 0.0432387277000000 1.80
B -0.0000001298032000 -2.88
C 0.0000838185000000 9.68
D 0.0000000038095955 234.72
E -0.0340413560000000 -0.89
F 0.0000004543242500 0.58
G -0.0000581740000000 -4.24
H -0.0000000024994500 -8.86
I -0.4873557050000000 -0.38
J 0.0000071862352000 0.39
K -0.0016941670000000 -3.70
L 0.0000000228154240 3.47

FAST PERMUTATION TESTS 44

Appendix C

options = nomprint nomlogic nomrecall;

%MACRO RUN_PRG;

*** the By Variables and npermsampT normally
would be passed in the main macro (RUN_PRG).;

%let byvars=byvar1 byvar2 byvar3 byvar4
byvar5;

*** npermsampT = # of permutation samples;
%let npermsampT=1901;

*** count the number of byvars for parsing;
%let byvars=%cmpres(&byvars);
%let num_byvars=
 %eval(%length(&byvars)-
 %length(%cmpres(&byvars))+1);

*** summarized data (SUMDINPT) contains study
group identifier (stdy), control group
identifier (cntl), # study group obs, #
control group obs, and any By Variables.;

%let noconverge=0;
data sumdinpt(keep=combins nsamp minrcomb
 minof3 bigcomb ncalls2pp
 topdraws lastdraw smaller
 nobsmalr studynobs contrlnobs
 sumofnobs stdy cntl &byvars);
 set sumdinpt;

*** create variables to be passed to CREATSMP,
which generates the permutation samples
corresponding to each record on SUMDINPT;

 if "&npermsampT"="1901" then
 maxcombins=5031771045;
 else maxcombins=9*10**16;

*** for versions of SAS v6.12 and older,
comb(,) terminates for results of
approximately 10E70 and higher, so use the
loop below instead;

 if ("&sysver"*1)<8 then do;
 combins=1;
 minnobs=min(studynobs,contrlnobs);
 bothnobs=sum(studynobs,contrlnobs);
 do j=minnobs to 1 by -1;
 combins=combins*(bothnobs-j+1)/j;
 if combins>maxcombins then goto enufcomb;
 end;
 enufcomb: combins=round(combins);
 end;
 else do;
 combins=comb(sum(studynobs,contrlnobs),
 min(studynobs,contrlnobs));
*** if still too large, assign large number;
 if combins=. then combins=maxcombins;
 end;

*** The 'table' below was calculated based on
the exact probabilities of the Collectors
Problem distribution and presents the optimal
"low-end" sample sizes by ranges of nCn1 (p.7
above) only for npermsampT = 1901.;

 IF “&npermsampT” = “1901” THEN DO;
 if combins<&npermsampT then
 nsamp=&npermsampT;
 else if combins<10626 then nsamp=combins;
 else if combins<52360 then nsamp=2138;
 else if combins<101270 then nsamp=1956;
 else if combins<521855 then nsamp=1934;
 else if combins<1028790 then nsamp=1912;
 else if combins<10009125 then nsamp=1908;
 else if combins<25637001 then nsamp=1904;
 else if combins<100290905 then nsamp=1903;
 else if combins<5031771045 then nsamp=1902;
 else if combins>=5031771045 then nsamp=1901;
 END;

*** For npermsampT other than 1901, obtain
nsamp with a convergence routine based on the
first and second moments of the Collectors
Problem distribution and using the nsamp
calculated above as a basis for the starting
values. Even for large npermsampT (e.g.
32,000) and conservatively defined Xstdev,
convergence (based on false position)
typically is achieved in less than five
iterations;

 ELSE DO;

*** Define X*stdev (Xstdev) here
conservatively, based on the size of
npermsampT compared to 1901 (the base would be
Xstdev = 2.875 since this is (approximately)
true when npermsampT = 1901). Larger
npermsampT allows for the use of smaller
Xstdev, but smaller npermsampT requires larger
Xstdev to maintain the same (approximate)
probability of a redraw. Any functional
relationship between Xstdev and npermsampT
similar to the one below can be used (the
exponent below (0.25) was chosen based on a
wide range of values for npermsampT).;

 Xstdev= (1901/&npermsampT)**0.25;

 if combins<&npermsampT
 then startratio=-999;
 else if combins<(&npermsampT*10626/1901)
 * Xstdev then startratio=-888;
 else if combins<(&npermsampT*52360/1901)
 * Xstdev then startratio=2138/1901;
 else if combins<(&npermsampT*101270/1901)
 * Xstdev then startratio=1956/1901;
 else if combins<(&npermsampT*521855/1901)
 * Xstdev then startratio=1934/1901;
 else if combins<(&npermsampT*1028790/1901)
 * Xstdev then startratio=1912/1901;
 else if combins<&npermsampT*10009125/1901
 * Xstdev then startratio=1908/1901;
 else if combins<&npermsampT*25637001/1901
 * Xstdev then startratio=1904/1901;

45 J.D. OPDYKE

 else if combins<&npermsampT*100290905/1901
 * Xstdev then startratio=1903/1901;
 else if combins<&npermsampT*5031771045/1901
 * Xstdev then startratio=1902/1901;
 else if combins>=&npermsampT*5031771045/1901
 * Xstdev then startratio=1.0;

 IF startratio=-999 | startratio=1
 THEN nsamp=&npermsampT;
 ELSE IF startratio=-888
 THEN nsamp=combins;
 ELSE IF startratio>1 THEN DO;

*** Starting value for nsamp.;
 nsamp=ceil(startratio*&nresamp);
 nsampoldhigh=nsamp;
 nsampoldlow=(&nresamp*1);
 initgap=nsampoldhigh-nsampoldlow;

 colldist_avg = combins*(1-
 (1-1/combins)**nsampoldlow);

*** Numeric precision constraints prevent
calculation of the second moment for large
inputs, but a conservative (i.e. larger-than-
actual) approximation suffices in these
cases.;
 if (combins*(combins-1)*
 (1- 2/combins)**nsampoldlow) >
 100144465758007
 then colldist_stdev = 0.4;
 else
 colldist_stdev =
 sqrt(combins*(combins-1)*
 (1-2/combins)**nsampoldlow+
 combins*(1-1/combins)**nsampoldlow-
 combins**2*(1-1/combins)**
 (2*nsampoldlow));

 lowpoint =(colldist_avg – Xstdev *
 colldist_stdev - &nresamp*1);

 colldist_avg = combins*(1-
 (1-1/combins)**nsampoldhigh);

 if (combins*(combins-1)*
 (1- 2/combins)**nsampoldhigh) >
 100144465758007
 then colldist_stdev = 0.4;
 else
 colldist_stdev =
 sqrt(combins*(combins-1)*
 (1-2/combins)**nsampoldhigh+
 combins*(1-1/combins)**nsampoldhigh-
 combins**2*(1-1/combins)**
 (2*nsampoldhigh));

 highpoint = (colldist_avg – Xstdev *
 colldist_stdev-&nresamp*1);
 point=highpoint;

*** Use counter only to eliminate the
possibility of infinite loop.;

 DO z=1 to 1000;

*** Obtain nsamp only to within 4 of optimal
nsamp (when converging on nsamp from upper

bound) to prevent unnecessary looping.;

 TOPLOOPNSAMP:
 if point>4 then do;
 nsampoldhigh=nsamp;
 nsamp=ceil((nsampoldlow * highpoint –
 nsampoldhigh * lowpoint)
 /
 (highpoint-lowpoint));
 end;

*** If necessary, get upper bound above zero
on 1st loop (& increment lower bound
concurrently);

 else if z=1 & point<-1 then
 do y=1 to 1000;
 nsampoldlow = nsamp;
 nsamp = ceil(nsamp+initgap);
 colldist_avg = combins*(1-
 (1-1/combins)**nsamp);
 if (combins*(combins-1)*
 (1- 2/combins)**nsamp) >
 100144465758007
 then colldist_stdev = 0.4;
 else
 colldist_stdev =
 sqrt(combins*(combins-1)*
 (1-2/combins)**nsamp+
 combins*(1-1/combins)**nsamp-
 combins**2*(1-1/combins)**
 (2*nsamp));
 highpoint = (colldist_avg - Xstdev *
 colldist_stdev -
 &nresamp*1);
 point = highpoint;

 if point>4 then do;
 colldist_avg = combins*(1-
 (1-1/combins)**nsampoldlow);
 if (combins*(combins-1)*
 (1- 2/combins)**nsampoldlow) >
 100144465758007
 then colldist_stdev = 0.4;
 else
 colldist_stdev =
 sqrt(combins*(combins-1)*
 (1-2/combins)**nsampoldlow+
 combins*
 (1-1/combins)**nsampoldlow-
 combins**2*(1-1/combins)**
 (2*nsampoldlow));

 lowpoint = (colldist_avg -
 Xstdev*colldist_stdev -
 &nresamp*1);
 goto TOPLOOPNSAMP;
 end;

 else if -1<=point<=4
 then goto STOPCNVG;
 end;

*** Require a stricter convergence criterion
on optimal nsamp when converging from lower
bound;

FAST PERMUTATION TESTS 46

 else if point<-1 then do;
 nsampoldlow=nsamp;
 nsamp=ceil((nsampoldlow*highpoint –
 nsampoldhigh*lowpoint)
 /
 (highpoint-lowpoint));
 end;

 else if -1<=point<=4 then goto
 STOPCNVG;

 if z = 1000 then do;
 noconverge = 1;
 goto STOPCNVG;
 end;

*** For next iteration;
 temp_avg = combins*
 (1-(1-1/combins)**nsamp);
 if (combins*(combins-1)*
 (1- 2/combins)**nsamp) >
 100144465758007
 then temp_stdev = 0.4;
 else
 temp_stdev = sqrt(combins*(combins-1)*
 (1-2/combins)**nsamp
 + combins*(1-
 1/combins)**nsamp -
 combins**2*
 (1-1/combins)**(2*nsamp));

 temp_point = (temp_avg - Xstdev *
 temp_stdev - &nresamp*1);
 if temp_point >= 0 then do;
 highpoint = temp_point;
 point = highpoint;
 end;
 else do;
 lowpoint = temp_point;
 point = lowpoint;
 end;
 END;

 STOPCNVG:
 if noconverge = 1 then do;
 call symput('noconverge',
 compress(noconverge));
 stop;
 end;
 END;
 END;

 minrcomb=min(combins,nsamp);

 minof3=min(combins,nsamp,&npermsampT);

 if combins=minrcomb then bigcomb=0;
 else if combins>minrcomb then bigcomb=1;

 ncalls2pp=ceil(minrcomb*
 sum(studynobs,contrlnobs)/2**31);
 topdraws=floor(nsamp/ncalls2pp);
 lastdraw=topdraws+mod(nsamp,ncalls2pp);

 if studynobs<=contrlnobs then
 smaller="stdy";
 else smaller="cntl";

 nobsmalr=min(studynobs,contrlnobs);
 sumofnobs=sum(studynobs,contrlnobs);

 run;

*** Although algorithm should always converge,
code should account for any contingency.;
 %if &noconverge=1 %then %do;
 %put;
 %put WARNING: The permutation sample-size
algorithm did not converge.;
 %put Scrutinize the data and/or adjust the
functional relationship between Xstdev and
npermsampT.;
 %put;
 %goto EXITALL;
 %end;

*** define outside of CREATSMP (which is
called in a loop) four macros used for
assigning By Variables and their values
(exactly as they exist on both the original
data (FULLDATA) and SUMDINPT) to the sampling
datasets generated by PROC PLAN in CREATSMP;

%MACRO GETVARLEN(varname=);
 %let dsetid=%sysfunc(open(fulldata));
 %let len=%sysfunc(varlen(&dsetid,
 %sysfunc(varnum(&dsetid,&varname))));
 %let dsetid=%sysfunc(close(&dsetid));
 &len
%MEND GETVARLEN;

%MACRO ASSIGNBYVRLENS;
 %do p=1 %to &num_byvars;
 &&byvar&p $%GETVARLEN(varname=&&byvar&p)
 %end;
%MEND ASSIGNBYVRLENS;

%MACRO ASSIGNBYVRVALS;
 %do q=1 %to &num_byvars;
 %let x=%scan(&byvars,&q,' ');
 %str(&x=resolve("&"||"&x");)
 %end;
%MEND ASSIGNBYVRVALS;

%MACRO GETBYVARVALUES;
 %do q=1 %to &num_byvars;
 %let x=%scan(&byvars,&q,' ');
 %str(byvarval=resolve("&"||"&x"); output;)
 %end;
%MEND GETBYVARVALUES;

*** When multiple loops on PROC PLAN
required...;
*** ...use for combining datasets.;
%MACRO COMBBIGSAMPS;
 %do s=2 %to &ncalls2pp;
 ptemp&s.(in=in&s)
 %end;
%MEND COMBBIGSAMPS;

*** ...use for assigning DRAWNUM values.;
%MACRO ASSIGNDRAWNUM;

47 J.D. OPDYKE

 %if &ncalls2pp>2 %then
 %do k=3 %to &ncalls2pp;
 %str(else if in&k then drawnum =
 drawnum+(&k-1)*&topdraws;)
 %end;
%MEND ASSIGNDRAWNUM;

*** Obtains # of records in a dataset.;
%MACRO NOBS(dset);
 %if %sysfunc(exist(&dset)) %then %do;
 %let dsid=%sysfunc(open(&dset));
 %let nobs=%sysfunc(attrn(&dsid,nobs));
 %let dsid=%sysfunc(close(&dsid));
 %end;
 %else %let nobs=0;
 &nobs
%MEND NOBS;

%let seednum =-1;

%MACRO CREATSMP(recountr =);

*** The automatic random seed for PROC PLAN,
based on the time of day, does not update as
fast as PROC PLAN is repeatedly called in the
loops below. Hence, ranuni() is used to
generate the seed, & its value is explicitly
checked to ensure the current random number is
different from the previous one. This ensures
random sampling is unrelated across tests.;

*** if combins <= r, choose all sample
combinations, then select npermsampT samples
from them.;

%if &bigcomb=0 %then %do;

 data _null_;
 x=1000000000*ranuni(-1);
 if compress(&seednum)=compress(" "||x)
 then x=x+1;
 call symput('seednum',compress(x));
 run;

 %if &nobsmalr=1 %then %do;
 proc plan seed=&seednum;
 factors drawnum = 1
 dataobsid = &minof3 of &combins
 random / noprint;
 output out = psamp&recountr;
 run;
 %end;

 %if &nobsmalr>1 %then %do;

*** cannot just select first npermsampT draws
because the comb option orders them, and the
data may be ordered in some way;

 proc plan seed=&seednum;
 factors drawnum = &combins
 dataobsid =&nobsmalr of &sumofnobs
 comb / noprint;
 output out = psamp&recountr;
 run;

 %if &combins>&npermsampT %then %do;
 data _null_;
 x=1000000000*ranuni(-1);
 if compress(&seednum)=
 compress(" "||x) then x=x+1;
 call symput('seednum',compress(x));
 run;

 proc plan seed=&seednum;
 factors drawnum = 1
 dataobsid=&npermsampT of &combins
 random / noprint;
 output out = choosmp;
 run;

 data choosmp(keep=drawnum);
 set choosmp(drop=drawnum);
 drawnum=dataobsid;
 run;

 proc sort data=choosmp;
 by drawnum;
 run;

 proc sort data=psamp&recountr;
 by drawnum;
 run;

 data psamp&recountr;
 merge psamp&recountr
 choosmp(in=inchoos);
 by drawnum;
 if inchoos then output psamp&recountr;
 run;

 data psamp&recountr(drop=drawnum2);
 set psamp&recountr(drop=drawnum);
 retain drawnum2 0;
 if mod(_n_,&nobsmalr)=1
 then drawnum2 = drawnum2+1;
 drawnum=drawnum2;
 run;
 %end;
 %end;
%end;

*** if combins > r, check whether PROC PLAN
needs to be looped multiple times -- if not,
simply select r samples, delete duplicates,
and keep npermsampT samples. If so, loop it
first to select r samples. In either case,
redraw samples if fewer than npermsampT unique
samples are drawn the first time around.;

%if &bigcomb=1 %then %do;

 %redraw1:
 data _null_;
 x=1000000000*ranuni(-1);
 if compress(&seednum)=
 compress(" "||x) then x=x+1;
 call symput('seednum',compress(x));
 run;

 %if &ncalls2pp=1 %then %do;

FAST PERMUTATION TESTS 48

 proc plan seed=&seednum;
 factors drawnum = &minrcomb
 dataobsid= &nobsmalr of &sumofnobs
 random / noprint;
 output out = psamp&recountr;
 run;

 proc sort data=psamp&recountr;
 by drawnum;
 run;

 proc transpose data=psamp&recountr
 out=temp prefix=stdy;
 var dataobsid;
 by drawnum;
 run;

 proc sort data=temp out=temp nodupkey;
 by stdy1-stdy&nobsmalr;
 run;

 %let ndrawn=%nobs(temp);
 %if &ndrawn < &npermsampT %then %do;
 %put;
 %put Fewer than &npermsampT unique
permutation samples (only &ndrawn) were drawn
in a &sumofnobs-choose-&nobsmalr draw;
 %put for the study - control group pair
and "by variable" values listed below:;
 %put
====================================;
 %put Study Control &byvars;

 data holdvals;
 %GETBYVARVALUES
 run;

 proc sql noprint;
 select byvarval into
 :byvarvals separated by ' '
 from holdvals;
 quit;

 proc datasets library=work nolist;
 delete holdvals temp;
 run;

 %put &stdy &cntl &byvarvals;
 %put;
 %put A redraw has been performed.;
 %put;
 %goto redraw1;
 %end;

 %else %do;
 proc datasets library=work nolist;
 delete temp;
 run;
 %if &ndrawn>&npermsampT %then %do;
 data psamp&recountr;
 set psamp&recountr
 (where=(drawnum<=&npermsampT));
 run;

 %end;
 %end;
 %end;

 %redraw2:
 %if &ncalls2pp>1 %then
 %do q=1 %to &ncalls2pp;

 %if &q<&ncalls2pp %then %do;
 data _null_;
 x=1000000000*ranuni(-1);
 if compress(&seednum)=compress(" "||x)
 then x=x+1;
 call symput('seednum',compress(x));
 run;

 proc plan seed=&seednum;
 factors drawnum = &topdraws
 dataobsid = &nobsmalr of
 &sumofnobs random / noprint;
 output out = ptemp&q;
 run;
 %end;

 %if &q=&ncalls2pp %then %do;
 data _null_;
 x=1000000000*ranuni(-1);
 if compress(&seednum)=
 compress(" "||x) then x=x+1;
 call symput('seednum',compress(x));
 run;

 proc plan seed=&seednum;
 factors drawnum = &lastdraw
 dataobsid = &nobsmalr of
 &sumofnobs random / noprint;
 output out = ptemp&q;
 run;

 data psamp&recountr;
 set ptemp1 %COMBBIGSAMPS;
 if in2 then drawnum=drawnum+&topdraws;
 %ASSIGNDRAWNUM
 run;

 proc sort data=psamp&recountr;
 by drawnum;
 run;

 proc transpose data=psamp&recountr
 out=temp prefix=stdyn;
 var dataobsid;
 by drawnum;
 run;

 proc sort data=temp out=temp nodupkey;
 by stdyn1-stdyn&nobsmalr;
 run;

 %let ndrawn=%nobs(temp);
 %if &ndrawn < &npermsampT %then %do;
 %put;
 %put Fewer than &npermsampT unique
permutation samples (only &ndrawn) were drawn
in a &sumofnobs-choose-&nobsmalr draw;

49 J.D. OPDYKE

 %put for the study - control group
pair and "by variable" values listed below:;
 %put
==================================;
 %put Study Control &byvars;

 data holdvals;
 %GETBYVARVALUES
 run;

 proc sql noprint;
 select byvarval into
 :byvarvals separated by ' '
 from holdvals;
 quit;

 proc datasets library=work nolist;
 delete holdvals temp;
 run;

 %put &stdy &cntl &byvarvals;
 %put;
 %put A redraw has been performed.;
 %put;
 %goto redraw2;
 %end;

 %else %do;
 proc datasets library=work nolist;
 delete temp;
 run;
 %if &ndrawn>&npermsampT %then %do;
 data psamp&recountr;
 set psamp&recountr
 (where=(drawnum<=&npermsampT));
 run;
 %end;
 %end;
 %end;
 %end;
%end;

*** assign By Variable values on the sampling
datasets generated by PROC PLAN in CREATSMP.;

data psamp&recountr;
 length %ASSIGNBYVRLENS;
 set psamp&recountr;
 %ASSIGNBYVRVALS
 run;

%MEND CREATSMP;

*** In a loop, generate permutation samples
for each record of SUMDINPT.;

%let sumdsid=%sysfunc(open(sumdinpt));
%let topofloop=%sysfunc(attrn(&sumdsid,nobs));
%syscall set(sumdsid);
%do i=1 %to &topofloop;
 %let fo=%sysfunc(fetchobs(&sumdsid,&i));
 %CREATSMP(recountr=&i);
%end;
%let sumdsid=%sysfunc(close(&sumdsid));

*** After looping above, combine PROC PLAN
output datasets to merge with the original
unsummarized dataset (FULLDATA) by By
Variables & record id variable (dataobsid).
Use the variable “smaller” when calculating
the test statistic for every permutation
sample.;

%MACRO COMBSAMPS;
 %do i=1 %to &totsamps; psamp&i %end;
%MEND COMBSAMPS;

data samples; set %COMBSAMPS; run;

proc datasets library=work nolist;
 delete %COMBSAMPS;
 run;

%EXITALL:
%MEND RUN_PRG;

%RUN_PRG;

