
Journal of Modern Applied Statistical Methods   Copyright   2003 JMASM, Inc. 
May  2003, Vol. 2, No 1, 27-49  1538 � 9472/02/$30.00 

27 

REGULAR ARTICLES 
Fast Permutation Tests that Maximize Power Under Conventional Monte Carlo 

Sampling for Pairwise and Multiple Comparisons 
 

J.D. Opdyke 
DataMineIt 

Marblehead, MA 
 

 
While the distribution-free nature of permutation tests makes them the most appropriate method for 
hypothesis testing under a wide range of conditions, their computational demands can be runtime prohibitive, 
especially if samples are not very small and/or many tests must be conducted (e.g. all pairwise comparisons).  
This paper presents statistical code that performs continuous-data permutation tests under such conditions 
very quickly � often more than an order of magnitude faster than widely available commercial alternatives 
when many tests must be performed and some of the sample pairs contain a large sample.  Also presented is 
an efficient method for obtaining a set of permutation samples containing no duplicates, thus maximizing the 
power of a pairwise permutation test under a conventional Monte Carlo approach with negligible runtime cost 
(well under 1% when runtimes are greatest).  For multiple comparisons, the code is structured to provide an 
additional speed premium, making permutation-style p-value adjustments practical to use with permutation 
test p-values (although for relatively few comparisons at a time).   �No-replacement� sampling also provides a 
power gain for such multiple comparisons, with similarly negligible runtime cost. 
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Introduction 

 
Permutation tests are as old as modern statistics 
(see Fisher (1935)), and their statistical properties 
are well understood and thoroughly documented in 
the statistics literature (see Pesarin (2001) and 
Mielke and Berry (2001) for extensive 
bibliographies).  Though not always as powerful 
as their parametric counterparts that rely on 
asymptotic theory, they sometimes have equal or 
even greater power (see Andersen and Legendre 
(1999) for just one example).  In addition to their 
utility when asymptotic theory falls short (e.g. 
small samples and the Central Limit Theorem), 
permutation tests are unbiased, and when fully  
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enumerated, they provide gratifyingly exact 
results.  Most important, however, is that with few 
exceptions, valid permutation tests rely on no 
distributional assumptions � only the requirement 
that the data satisfies the condition of 
exchangeability (i.e. distributional invariance 
under the null hypothesis to permutations of the 
subscripts of the data points).  This gives 
permutation tests a very broad range of 
application. 
 
Until recently the major drawback of permutation 
tests has been their high computational demands.  
Even when sampling from the permutation sample 
space, as is typically done, rather than fully 
enumerating it, computer runtimes still have been 
prohibitive, especially if samples are not very 
small.  Recent advances in computing speed and 
capacity increasingly have relaxed this constraint, 
but the continual development of new and 
computationally intensive statistical methods is 
easily keeping pace with such advances.   
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For example, Westfall and Young (1993) 
convincingly demonstrated, under a broad range of 
real-world data conditions, the need for 
resampling-based multiple testing procedures.  
However, if the unadjusted p-values themselves 
are derived from resampling methods, such as 
permutation tests, the multiple comparisons p-
value adjustment requires a computationally 
intensive nested loop, where a large number 
(thousands) of additional permutation tests must 
be performed for each original permutation test to 
properly adjust its p-value.  Obviously, even if 
each permutation test requires just a few seconds, 
runtimes quickly become prohibitive if there are 
many p-values that need to be adjusted. 
 
Similarly, power estimation of tests based on 
resampling methods require the same intensive 
nested loop structure (see Boos and Zhang (2000) 
for a useful computation reduction technique), 
while power estimation of the multiple 
comparisons adjustment procedure mentioned 
above requires an additional (third) loop. 
 
Such examples clearly demonstrate the ongoing 
need to develop faster code and algorithms that are 
also increasingly statistically efficient, since 
variance reduction lessens sampling requirements 
which, all else equal, increases speed.  The goal of 
the methods described below is to contribute to 
these efforts. 
 
Widely Available Permutation Sampling 
Procedures  
 
Three procedures in SAS® v8.2 � PROC 
NPAR1WAY, PROC MULTTEST, and PROC 
PLAN � and one procedure in Cytel�s Proc 
StatXact® v5.0 � PROC TWOSAMPL � can be 
used to perform two-sample nonparametric 
permutation tests.  All but PROC PLAN sample 
the input dataset itself, while PROC PLAN 
generates a record-by-record list, each record 
containing a number identifying the corresponding 
record on the input dataset to include in the 
�permutation� samples.  This list subsequently 
must be merged with the original data to obtain the 
corresponding data points, something PROC 
MULTTEST does automatically by directly 
generating all the �permutation� samples it uses 
for permutation-style p-value adjustments (these 

samples, however, can be used instead as the 
samples for the actual permutation tests).  In 
contrast, both PROC NPAR1WAY and PROC 
TWOSAMPL actually conduct the permutation 
test and provide a p-value, whereas the samples 
from both PROC MULTTEST and PROC PLAN 
must be manipulated �by hand� to calculate the 
value of the test statistic associated with the 
original sample pair, and then compare it to all 
those associated with each of the �permutation� 
samples to obtain a p-value.   
 
Nonetheless, effective use of PROC PLAN, as 
shown in benchmarks in the Results section below, 
is much faster than these other procedures � often 
more than an order of magnitude faster when one 
of the samples is large.  The only potential 
problem with using PROC PLAN is that it has a 
sample size constraint � the product of the sum of 
the two sample sizes (n1 + n2) and the number of 
�permutation� samples being drawn (T) cannot 
exceed 231 (about 2.1 billion, the largest 
representable integer in SAS) or the procedure 
terminates.  However, this can be circumvented by 
inserting calls to PROC PLAN in a loop which 
cycles roundup((n1 + n2)* T / 231) times, each loop 
drawing T * [roundup((n1 + n2)* T / 231)]-1 samples 
until T samples have been drawn (see code in 
Appendix C).  This looping in and of itself does 
not slow execution of the procedure. 
 
All of the abovementioned procedures can perform 
conventional Monte Carlo sampling without 
replacement within a sample, as required of all but 
a few stylized permutation tests, but none can 
avoid the possibility of drawing the same sample 
more than once.  In other words, when drawing the 
sample of �permutation� samples, these 
procedures can only draw from the sample space 
of samples (conditional on the data) with 
replacement (WR).  This problem of drawing 
duplicate samples, its effect on the statistical 
power of the permutation test, and a proposed 
solution that maximizes power under conventional 
Monte Carlo sampling for both pairwise and 
multiple comparisons are discussed in the 
Methodology section below.  First, the background 
issues of determining the number of �permutation� 
samples to draw, and sampling approaches other 
than conventional Monte Carlo, are addressed 
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below. 
 
Determining the Number of Permutation Samples 
 
When drawing samples from the permutation 
sample space, one must determine how many 
samples should be drawn.  Obtaining an exact p-
value from a permutation test via full enumeration 
� i.e. by generating all possible sample 
combinations by reshuffling the data points of the 
samples at hand � quickly becomes infeasible as 
sample sizes increase. As shown in (1), the 
number of possible sample combinations becomes 
very large even for relatively small sample sizes 
(two samples of 29 observations each, for 
example, have 30,067,266,499,541,000 possible 
sample combinations).  

(1) 
 
# of two-sample combinations 
 
where         sample one�s size,         sample two�s 
size, and       
 
Network algorithms (see Mehta and Patel (1983)) 
expand the sample size range over which exact p-
values realistically may be obtained, but the rapid 
combinatorial expansion of the �permutation� 
sample space � defined as conditional on the data 
in (1) �  still limits the full enumeration of 
continuous data samples to relatively small sample 
sizes.   
 
Sampling from the permutation sample space, 
however, can provide an estimate of the exact p-
value via a conventional Monte Carlo approach, 
whereby the probability of drawing any particular 
sample is equal to one divided by the number of 
possible sample combinations, as in (2) below: 
 

(2) 
 
 
(Note that permutations of the same sample do not 
affect this probability.)  A (one-sided) permutation 
test p-value is simply the number of test statistic 
values, each corresponding to a �permutation� 
sample, at least as large as that based on the 
observed data samples; therefore, the estimated p-
value based on conventional Monte Carlo 
sampling is simply an estimated proportion 

distributed binomially.  The normal approximation 
to the binomial distribution allows one easily to 
obtain specified levels of precision for this 
estimate, based either on the standard error (se) or 
the coefficient of variation (cv), as a function of T 
= the number of samples drawn.  This is done by 
straightforward solutions of (3) and (4) 
respectively (see Brown et al. (2001) for 
descriptions of the �Agresti-Coull� and �Wilson� 
intervals � superior, if slightly more complex, 
alternatives to the commonly used Wald 
approximation shown in (3)). 
 
 
                                                                                                 

(3) 
 
 
                                                                                             
   
                                                                                                 

(4) 
 
 
 
 
 
 
             and for                   ,            . 
 
For example, if cv<0.10 is needed, one would 
solve for T in (4) using the most relevant p-value 
(p-value = α) and adding one to the solution so 
that the inequality holds (see Efron and Tibshirani, 
1993, pp. 208-211 for an identical calculation).  If 
α = 0.05, then T=1,901, which also yields an 
approximate 95% confidence interval, based on 
(3), of just under 0.01 on either side of p-value = α 
= 0.05.  While this may be sufficiently precise for 
many applications, increased precision is 
obtainable with larger T, though as shown in 
Graph 1, marginal gains in precision decrease 
rapidly in T.  (Note that the normal approximation 
to the binomial distribution easily satisfies the 
strictest criteria in the statistical literature for T = 
1,901 and p-value = 0.05 (see Cochran (1977), p. 
58, and Evans, et al. (1993), p. 39)).  
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Graph 1: Permutation p-value -- cv and 1.96*se 
by T (# permutation samples) for p-value = alpha = 0.05
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An efficient alternative to a fixed level of 
precision, however, especially when conducting 
many permutation tests, is increasing T only when 
the confidence interval of a specific test includes 
the critical value.  Selectively tightening the 
confidence interval in this way avoids wasteful 
sampling when p-values are nowhere near the 
critical value of the test. 
 
Other Sampling Methods  
 
The level of precision a method provides for a 
given number of samples is its efficiency.  The 
efficiency, as well as speed, of conventional 
Monte Carlo sampling as described above 
typically are inferior to other sampling methods, 
such as various forms of importance sampling, 
which recently have received considerable 
attention and development (see Owen (2000) for a 
current survey and recent developments).  The 
idea is that samples are selected not with a 
uniform probability over the entire sample space, 
but rather, based on their �importance� for 
reducing the variance of the estimated p-value.  
While these and similar variance reduction 
methods are extremely effective under a wide and 
growing range of conditions, this paper focuses on 
conventional Monte Carlo sampling for several 
reasons:  first, some conditions remain under 
which such methods cannot (yet) be implemented 
reliably, and results based on quickly implemented 
conventional Monte Carlo should serve at least as 
an important verification of the validity of these 
more efficient methods when their results are 
suspect; secondly, to date there is little research on 
the use of such methods in resampling-based 

multiple testing procedures (see Naiman and 
Priebe (2001) and Ortiz and Kaelbling (2000) for 
related work in this area); and lastly, the sampling 
procedures in most statistical software packages 
utilize conventional Monte Carlo, making it much 
easier to implement when applying resampling 
methods to stylized statistical tests. 
   
Thus, this paper addresses the need for fast 
statistical code that quickly performs permutation 
tests based on conventional Monte Carlo sampling 
for pairwise and multiple comparisons.  It also 
proposes a simple modification to how most 
researchers implement conventional Monte Carlo 
permutation tests: it proposes sampling from the 
permutation sample space without replacement 
rather than with replacement which, by definition 
of conventional Monte Carlo, maximizes power 
under this sampling approach through variance 
reduction.  The proposed method 
(�oversampling�) can utilize any �with-
replacement� (WR) sampling procedure to 
accomplish this, in effect efficiently converting 
any WR sampling procedure into a �no-
replacement� (NR) sampling procedure.  Before 
describing �oversampling,� however, the power 
differential between WR sampling and NR 
sampling is examined below. 
 
 

Methodology 
 
Duplicate Permutation Samples and Power 
 
As mentioned above, all of the procedures 
examined in this study � PROC PLAN, PROC 
MULTTEST, PROC NPAR1WAY, and PROC 
TWOSAMPL � can perform conventional Monte 
Carlo sampling without replacement within a 
sample, as is required of almost all permutation 
tests (see Pesarin (2001), Ch. 10, for a notable 
exception).  In other words, no duplicates of the 
same data point exist within a single sample.  This 
reference to sampling �without replacement� is 
distinct from drawing an entire set of 
�permutation� samples that contains no entire 
sample more than once; this is referred to below as 
no-replacement (NR) sampling, while generating a 
set of �permutation� samples that may contain 
duplicate samples is referred to as �with 
replacement� (WR) sampling. 

  1,901 
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No-replacement (NR) Sampling and Pairwise 
Comparisons 
 
Regardless of the number of permutation samples 
drawn (T), a single pairwise permutation will lose 
statistical power if there are duplicate samples 
among the T samples drawn.  Intuitively, this 
makes sense because the fewer duplicates 
contained in the sample of �permutation� samples, 
the better represented is the empirical distribution 
function, and more information almost always 
implies greater power.  In other words, if a 
difference between population distributions truly 
exists, more information (i.e. fewer duplicates), on 
average, should allow us to more readily detect it.  
And drawing a sample that contains no duplicates 
will yield the greatest power attainable under 
conventional Monte Carlo. 
 
Statistically, the greater power attributable to NR 
sampling over WR sampling is due to variance 
reduction in the estimated p-value ((5.1) � (5.5)).  
Any permutation test relying on sampling rather 
than full enumeration will yield an actual 
significance level (asl) larger than α due to Monte 
Carlo error (see Berry & Mielke (1983)).  This 
(one-sided) sampling-based asl is simply the 
probability under the null hypothesis that the value 
of the test statistic, based on the �permutation� 
samples, is equal to or greater than that 
corresponding to the critical value of the test 
conditional on the true p-value (the conditional 
nature of this probability requires summing over 
all possible values of p, as in (5.8) and (5.9)).  The 
asl under NR sampling is smaller than the asl 
under WR sampling because the abovementioned 
conditional distribution of the former is based on 
the hypergeometric distribution: this has smaller 
variance than the conditional distribution of WR 
sampling, which is based on the binomial 
distribution ((5.6) and (5.7)).  This means that 
once the critical p-values are adjusted to account 
for asl>α (the Monte Carlo error), the adjusted 
critical  value for NR sampling will be larger than 
that of WR sampling ((5.10) � (5.13)).  This gives 
permutation tests based on NR sampling greater 
power.                                                                                        
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     = number of permutation samples drawn, 

                           
(5.8) 

 
 
 
 

(5.9) 
 
 
 
 
 
 
where 
 
    = number of �successes� (number of 
�permutation� sample test statistic values ≥ 
observed sample test statistic value) among  
       permutation samples drawn, 
 
 
         is an integer, and 
 
 
      = the critical value adjusted for Monte Carlo 
error. 
 
(Note that above, the critical p-value of the test is 
adjusted, rather than the p-values themselves, 
solely for heuristic and computational purposes 
when demonstrating the power differential 
between NR and WR sampling in (5.1)-(5.5).  In 
practice, it is the p-values themselves which 
should be adjusted for ease of interpretation of the 
test results.  Both adjustments yield identical 
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results statistically.)  The discreteness of both the 
binomial and hypergeometric distributions prevent 
the attainment of adjusted critical p-values 
yielding asl = α exactly.  However, interpolation 
between α and the largest p-value yielding asl<α, 
based on the percentage change in the 
corresponding asl�s, provides a reasonable 
approximation of the critical p-values that would 
yield asl = α if the distributions were continuous.  
Although this interpolation was used when 
calculating the asymptotic power differential 
between NR sampling and WR sampling ((6.2) vs. 
(6.3) and Table 2), a convenient shorthand 
provides similar results.  If (asl / α) is assumed to 
be constant for p-values close to α, then 
 

(5.10) 
 

so 
                                                                                         
(5.11) 

                 
and  

(5.12) 
                 
 
 

(5.13) 
                 

 
The power differential resulting from use of the 
two different critical values can be obtained by 
simulation.  An asymptotic approximation, 
however, provides, as a lower bound, a good idea 
of its order of magnitude, as well as a useful 
benchmark against which simulations based on 
different distributions can be compared to 
demonstrate relative rates of convergence 
(efficient use of Boos and Zhang (2000) to 
perform these simulations is the subject of 
continuing research). 
  
By the Central Limit Theorem, we know that 
asymptotically, 
 

                                                                                           
(6.1) 

 
where  
 
 
      = size of effect (a location shift) 
      = population variance 
(see Pesarin (2001), p. 65) 

Therefore 
                           

(6.2) 
 
 

                           
(6.3) 

 
 
(Note that knowledge of      is unnecessary if      is 
expressed in terms of     .)  The empirical results of 
this asymptotic analysis, which are lower bounds 
for the actual power gains provided by NR 
sampling, are included in the Results section 
below in Table 2 (the derivations shown in (5.1) � 
(6.3) were first presented in Opdyke (2002b)). 
 
NR Sampling and Multiple Comparisons 
 
The above rationale for the power gains of NR 
sampling applies to multiple comparisons as well.  
However, for permutation-style p-value 
adjustments of permutation test p-values, there are 
two sources of power gain:  a) a stochastically 
larger distribution of the minimum p-value under 
NR sampling, and b) smaller original p-values of 
the permutation tests themselves, after adjustment 
for Monte Carlo error as described above (note 
that here, the p-values themselves are adjusted, 
rather than the critical p-values). 
 
Take the single step multiple testing adjustment 
procedure described by Westfall and Young 
(1993) (Algorithm 2.5, pp. 46-48).  If we have, 
say, a family of ten permutation test p-values that 
need adjustment, we need to generate, under the 
complete null hypothesis, a vector of ten new p-
values by the same process (permutation test) 
some large number of times, and for each original 
p-value count the number of times the minimum p-
value of each vector is smaller than or equal to that 
original p-value.  Dividing each of these ten 
counts by the number of times the simulation is 
run yields ten proportions, which are the ten 
adjusted p-values.   
 
a) Note that since each p-value in each vector is 
simply another permutation test, NR sampling will 
yield a smaller variance for each of these p-values 
compared to WR sampling, as described in the 
previous section ((5.1) � (5.2), (5.6) � (5.7)).  As a 
consequence, the minimum p-value will be 
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stochastically larger when the p-values in each 
vector are generated using NR sampling than 
when using WR sampling (7.1).  Therefore, the 
probability that the minimum p-value will be 
smaller than a given original p-value will be 
smaller for NR sampling than for WR sampling 
(7.2).  This makes the corresponding numerator 
(the count) of the adjusted p-value smaller on 
average, and the adjusted p-value itself smaller on 
average (7.3), giving the p-value adjustment under 
NR sampling more power (7.4). 
 

(7.1) 
               is stochastically larger than                               
 

(7.2) 
 
fi 
 
fi  (7.3) 
 
fi  (7.4) 
 
where 
 
      = original p-value 
 
      = data-based p-value vector of j p-values 
 
      = joint random variable of j p-values 
 
       =   the complete null hypothesis, i.e. assuming 
that all null hypotheses included in the family of 
multiple comparisons are true 
 
       =  the adjusted p-value of  
 
 
b) Another source of power gain from NR 
sampling is the smaller p-values of the original 
permutation tests themselves, after adjustment for 
Monte Carlo error as described in the previous 
section.  Assume that none of the �simulated� p-
values in each vector are generated using NR 
sampling, but that the original p-values are 
generated, and then Monte Carlo-error adjusted, 
using NR sampling instead of WR sampling.  
Because the p-values of the former are smaller 
(8.1), the probability of the same minimum p-
value being less than or equal to the original p-
value is smaller for NR sampling (8.2).  This 
means the corresponding numerator (the count) of 

the adjusted p-value will be smaller on average, 
and the adjusted p-value itself will be smaller on 
average (8.3), giving the p-value adjustment under 
NR sampling more power (8.4). 

                           
(8.1) 

 
(8.2) 

 
fi  
 
 
fi  (8.3) 
 
 
fi  (8.4) 
 
 
Therefore, to maximize NR sampling power gains 
when using permutation-style p-value adjustments 
in multiple comparisons of permutation test p-
values, combine both a) and b) � use NR sampling 
to generate both the original Monte Carlo-error 
adjusted p-values, as well as the �simulated� p-
value vectors when making the multiple 
comparisons adjustment ((9.1) � (9.3)). 

                           
(9.1) 

 
 
 
fi  (9.2) 
 
fi  (9.3) 
 
The same rationale applies to stepwise multiple 
comparisons adjustments.  Whenever NR 
sampling is used to generate either or both the 
minimum p-value and the original Monte Carlo 
error-adjusted p-values, its variance reduction will 
yield greater power (these derivations, (7.1)-(9.3), 
were first presented in Opdyke (2002b)). 
 
Efficient simulation of the power differential 
shown in (9.1) � (9.3), which requires a 
computationally intensive nested loop with three 
levels, is the topic of continuing research.  
However, its magnitude may very well be larger 
than that of a single pairwise comparison since 
variance reduction is achieved from two sources � 
both a) and b) above � rather than from b) alone.   
 
Before presenting the asymptotic power 
calculations for a single pairwise comparison, the 
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next section derives and presents an efficient 
method for performing NR sampling based on any 
procedure which uses WR sampling, as do all the 
�permutation� sampling procedures examined in 
this paper and known to this author.  
�Oversampling,� in effect, efficiently converts any 
WR sampling procedure into an NR sampling 
procedure, as shown below. 
 
�Oversampling� to Avoid Duplicate Samples 
 
�Oversampling� involves simply drawing more 
than the desired T samples (say, r samples), 
deleting any duplicate samples, and then randomly 
selecting T samples from the remaining set (this 
method, and its results in Table 1, were first 
presented in Opdyke (2002a)).  This approach 
does not alter the probability of drawing any 
particular sample (see (2)), so �oversampling� is a 
statistically valid approach for obtaining T distinct 
samples.   
 
The next question to address is, what is the 
optimal size of (r-T)?  The goal is to minimize 
expected runtime, which is a function of (r-T), or 
simply r, and the size of r involves the following 
runtime tradeoff: larger r will contribute to longer 
runtimes due to the extra time required to generate 
more samples, but also will diminish the 
probability that fewer than T unique samples will 
be drawn, which would require another draw of r 
samples and increase overall runtime; smaller r 
will require less time to generate fewer samples, 
but at the price of an increased probability of 
being left with fewer than T unique samples and 
having to redraw the samples all over again.  
Expected runtime is simply the product of a) the 
expected number of times r samples need to be 
drawn to obtain at least T unique samples, and b) 
the time it takes to draw r samples.  So if expected 
runtime = g(r, x, y�), we seek r such that ∂g/∂r = 

0 (and ∂2g/∂r > 0). 
 
Minimizing Expected Runtime 
 
a) The number of times r samples must be drawn 
before obtaining at least T unique samples is a 
random variable that follows the geometric 
distribution, which identifies the number of events 
occurring before the first success: 

 
(10) 

                                                                                         
where p indicates the probability of success (of 
obtaining at least T unique samples) for each event 
(each call to PROC PLAN, or whichever WR 
sampling procedure is being used).  The expected 
value of the geometric distribution is E[S] = 1/p, 
and p is derived from a general form of the 
familiar (coupon or baseball card) collector�s 
problem.  This problem asks the question, �How 
many card packets must one purchase to collect a 
complete set of baseball cards?� or equivalently, 
�How many samples must one draw, when 
sampling with replacement (because the sample 
size is so large), to obtain a complete set of all 
samples from the sampling distribution?�  The 
more general problem, which is the relevant one 
for this analysis, is �How many samples are 
required, when sampling with replacement, to 
obtain T distinct samples from the sampling 
distribution?�  The number of samples �required� 
follows a probability mass function (11) which is 
the sum of geometric random variables. 
 

(11) 
 
                                                                                                    
 
 
where r = # of samples drawn and j ≤ r 
 
However, we are interested in the probability of 
obtaining at least T unique samples, which is 
simply the cumulative probability of obtaining T, 
T+1, T+2, � , r-1, and r unique samples, as shown 
below: 

(12) 
 
 
 
 
 
where T ≤ r. 
 
Thus, the expected number of times r samples 
must be drawn to obtain at least T unique samples 
is a function of the number of possible sample 
combinations and r, as shown in (13) below: 
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(13) 
expected # of calls to PROC PLAN =  
CTPP(         , r, T) =  
 
 
 
 
 
Graph 2 illustrates the functional relationship 
between p, 1/p, and r for n1 = 68, n2= 4, and T = 
1,901: 
 

Graph 2: Probability of at least T Unique Samples (p)
and Expected # of calls to Proc Plan (1/p) 

by r (for n1=4, n2=68, and T=1,901)
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b) Now to return to the other factor determining 
expected sampling runtime � the time it takes 
PROC PLAN to draw a sample of r samples.  This 
is simply the runtime of PROC PLAN as a 
function of, interestingly, not the number of 
possible two-sample combinations, but rather the 
sum of the two sample sizes (n1 + n2), as well as 
the number of samples drawn, r.  This is shown in 
Graph 3 (see Appendix A for simulation details).  
Obviously, r and (n1 + n2) are correlated, but 
runtime is very well predicted (adj R2 = 0.9884) by 
the simple ordinary least squares multivariate 
regression equation in (14): 
 

Graph 3: PROC PLAN Runtime by n1+n2 by r
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(14) 
PROC PLAN Runtime =  
PPRT(n1, n2, r) =  
β0 + β1*(n1 + n2) + β2*r + β3*(n1 + n2)*r 
 
Nonlinearity at about (n1 + n2) = 65,500 and (n1 + 
n2) = 73,500  prompted the inclusion of dummy 
and interaction terms, leading to the near perfect 
prediction (adjusted R2 = 0.9927) for PPRT(n1, n2, 
r) presented in Appendix B (see Graph 4, which is 
simply a magnification of Graph 3 up to (n1 + 
n2)=100,000). 
 

Graph 4: PROC PLAN Runtime by n1+n2 by r
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Thus, expected runtime g(n1, n2, r, T) is the 
product of PROC PLAN Runtime and the 
expected number of calls to PROC PLAN: 
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 (15) 
expected runtime = g(n1, n2, r, T) = (14) x (13) = 
PPRT(n1, n2, r) * CTPP(          , r, T) = 
[  
β0 + β1*(n1 + n2) + β2*r + β3*(n1 + n2)*r  
+ d1*β4 + d1*β5*(n1+n2)+ d1*β6*r+d1*β7*(n1+n2)*r 
+ d2*β8+d2*β9*(n1+n2)+d2*β10*r+d2*β11*(n1+n2)*r 
] 
* 
  
 
 
 
 
To get an intuitive feel for r as a function of n1 and 
n2 (for a given T), note again that the second term 
of (15) is a combinatorial function of the sample 
sizes while the first term is merely a linear 
function of the sample sizes (see Graph 5).   
 

Graph 5: Estimated PROC PLAN Runtime by r 
(for n1=4, n2=68, and T=1,901 -- based on PPRT in Appendix B)
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The combinatorial terms in the second term of (15) 
end up dominating as sample sizes increase, 
asymptotically converging to 1.0 (one call to 
PROC PLAN) faster than the first term (each 
PROC PLAN runtime) diverges.  Hence, for all 
but very small sample sizes, an optimal r in terms 
of expected runtime (where ∂g/∂r = 0) will be 
fairly close to T.  Graphs 6 and 7 below present 
g(n1, n2, r, T) � the product of 1/p in Graph 2 and 
PPRT in Graph 5 above � and demonstrate an 
optimal r, r* = 1,908, for T = 1,901, n1 = 4, and n2 
= 68 (and                               ). 
 

Graph 6: Expected Runtime (1/p * each runtime) by r
(for n1=4, n2=68, and T=1,901)
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Graph 7 magnifies the relevant expected runtime 
range. 
 

Graph 7: Expected Runtime (1/p * each runtime) by r
(for n1=4, n2=68, and T=1,901)
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Unfortunately, the high level of precision needed 
to calculate numeric solutions for r* based on (15), 
for different sample sizes and different values of 
T, requires use of a symbolic programming 
language (the Mathematica® v4.1 code used to 
obtain the exact probabilities in Table 1 is 
available from the author upon request).  Thus, 
exact solutions cannot be implemented �on the 
fly� in SAS, or any statistical software package, 
for encountered values of n1 and n2.  Good 
approximations to the probability mass function of 
the collector�s problem, however, do exist (see 
Kuonen (2000) and Read (1998), as well as 
Lindsay (1992) for a unique approach to the 
problem), but whether using exact or approximate 
probabilities, for all practical purposes r* need not 
be calculated for each and every combination of 
values of n1 and n2.  Nearly optimal r can be 
calculated for ranges of C because, as shown in 
Graph 7, the marginal runtime cost of drawing r 
slightly larger than r* is negligible (though the 
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marginal runtime cost of drawing r smaller than r* 
is relatively large).  Thus, if we define appropriate 
ranges of C, and for the lower bound of each range 
identify r*, these �low-end� r*s always will be 
larger than any other r* corresponding to any of 
the sample pairs within their respective ranges.  In 
other words, though not optimal for every 
combination of sample sizes within its range, the 
�low-end� r* will be nearly optimal because it will 
be slightly larger (never smaller) than all other r* 
for sample size pairs within its range, and the 
marginal runtime cost of being slightly larger than 
r* is negligible. 
   
Table 1 below shows the values of r used in the 
permutation test program � the �low-end� r*s � for 
ranges of C.  Although g(n1, n2, r, T) is a function 
of both C and n1 + n2, and n1 + n2 does vary for 
(essentially) constant C, the effect of this can be 
ignored since, as an empirical matter, it never 
affects the calculation of each of the �low-end� 
r*s.  In other words, CTPP (13) strongly 
dominates PPRT (14) because 1/p converges to 
one so quickly.  
 
The code in Appendix C proposes an efficient 
method for generalizing the results from Table 1, 
i.e. for obtaining estimates of the optimal �low-
end� r*s for any value of T.  This method is very 
fast, perhaps even faster than Kuonen (2000), 
although it provides only estimates to the exact 
solution.  It first utilizes optimal �low-end� r*s 
already calculated for a particular value of T (as in 
Table 1) as the basis for conservative estimates of 
the distance (standard deviations) between a new 
T and the mean of the collector�s problem mass 
function.  Different r*s are tested via any of 
several straightforward convergence algorithms 
(false position converges more quickly than 
bisection and, surprisingly, Newton-Raphson in 
this context) to find those r*s yielding distances 
arbitrarily close to the original conservative 
distance estimates, typically within just several 
iterations.  The method performs well in practice 
because of the shape of the runtime function 
(Graph 7): as long as the original distance 
estimates are conservative, i.e. slightly larger than 
necessary, the corresponding estimates of the 
optimal �low-end� r*s also will be slightly larger 
than necessary, causing only negligible runtime 
increases over use of the true optimal �low-end� 

r*s. 
 
TABLE 1.  
Nearly Optimal r (�low-end� r*),  
Probability (p) of T ≥ 1,901 Unique Samples,  
and Expected # of Calls to PROC PLAN (1/p)  
by Ranges of # of Sample Combinations, C 

 
C 

�low-
end� 

r* 

p (lower 
bound) 

1/p (lower 
bound) 

C < 10,626 C 
1.0 
(assuming 
C ≥ T) 

1.0 

10,626 
≤ C <  
52,360 

2,138 0.9979293
20330667 

1.00207497
6280530  
 

52,360 
≤ C <  
101,270 

1,956 0.9990583
42955471 
 

1.00094254
4598290 
 

101,270  
≤ C <  
521,855 

1,934 0.9994297
17692296 
 

1.00057060
7715190 
 

521,855  
≤ C < 
1,028,790 

1,912 0.9997265
55240808 
 

1.00027351
9551680 
 

1,028,790  
≤ C < 
10,009,125 

1,908 0.9995128
39120371 

1.00048739
8321020 

10,009,125  
≤ C < 
25,637,001 

1,904 0.9999615
94180711 

1.00003840
7294350 

25,637,001  
≤ C < 
100,290,905 

1,903 0.9999446
15376581 

1.00005538
7691050 

100,290,905  
≤ C < 
5,031,771,045 

1,902 0.9998396
91379204 

1.00016033
4323770 

5,031,771,045 
≤ C  

1,901 0.9996411
54940541 

1.00035897
3875460 

 
It is worth noting that, for T = 1,901, the largest 
value of C for which one has to actually 
�oversample� (although one must still check for 
duplicate samples and redraw if necessary) is 
relatively small � about 5x109.  This corresponds 
to sample sizes of only n1 = 17 and n2 = 18 for 
small n = n1 + n2, and n1 = 2 and n2 = 100,000 for 
large n.  This is due, of course, to the fantastic 
combinatorial growth of C, which causes 1/p�s 
rapid convergence to one.  This convergence 

1n nC=



FAST PERMUTATION TESTS                                                 38

 

 

indicates that using �oversampling� as outlined 
above to perform NR sampling should be 
applicable to any WR sampling procedure, even if 
its runtime function, unlike (13), is not linear in n 
(i.e. even if it is convex and steep in n).   
 
 

Results 
 
How Fast Is It? 
 
Relative Speed – Some Benchmarks 
 
The start-to-finish runtime of the permutation test 
program using �oversampling� with PROC PLAN 
to perform NR sampling is fast relative to other 
programs and WR procedures, as shown below: 
 

Graph 8: Relative Start-to-Finish Runtime (T = 1,901)
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a = PROC PLAN with �oversampling� 
b = TWOSAMPL, (n1+n2)<10,000,                R = 1 
c = TWOSAMPL, (n1+n2)<10,000,                R > 1 
d = TWOSAMPL, 10,000<(n1+n2)<100,000, R = 1 
e = TWOSAMPL, 100,000<(n1+n2)<150,000, R=1 
f = TWOSAMPL, 1M < (n1+n2) < 1.5M,       R = 1 
g = TWOSAMPL, 1M < (n1+n2) < 1.5M,       R > 1 
h = NPAR1WAY, (n1+n2)<10,000,                R = 1 
i = NPAR1WAY, (n1+n2)<10,000,                 R > 1 
j = NPAR1WAY, 10,000<(n1+n2)<100,000, R = 1 
k = NPAR1WAY, 100,000<(n1+n2)<150,000, R=1 
l = NPAR1WAY, 1M < (n1+n2) < 1.5M,        R = 1 
m = MULTTEST, (n1+n2)<10,000,                R = 1 
n = MULTTEST, (n1+n2)<10,000,                  R > 1 

o = MULTTEST, 10,000<(n1+n2)<100,000,  R = 1 
p = MULTTEST, 100,000<(n1+n2)<150,000,  R=1 
q = MULTTEST, 1M < (n1+n2) < 1.5M,        R = 1 
r = looping in SAS, 1<(n1+n2)<1.5M,             R > 1 
 
where R = # Study Groups / # Control Groups 
 
(For r above, see Jackson (1998).  Beware, 
however, that this code enters an infinite loop if 
the number of possible sample combinations for a 
given sample pair is less than T.  Also note that the 
code, unlike the standard definition of a 
permutation test which includes �ties� in the 
numerator of the p-value, splits ties at the 
boundary after assuming exactly one tie at the 
boundary (apparently with the intent of making the 
test less statistically conservative)).  The only 
procedures or programs faster than PROC PLAN 
with �oversampling� are PROC MULTTEST and 
PROC NPAR1WAY with small samples and one 
study group per control group, as well as PROC 
TWOSAMPL with small samples, regardless of 
the study-control group ratio.  For larger samples, 
the relative speed of PROC PLAN with 
�oversampling� over MULTTEST and 
NPAR1WAY increases rapidly and nonlinearly, 
even with a study-control group ratio of one.  The 
relative speeds for large samples and larger study-
control group ratios (not shown in Graph 8) are 
many times larger still (note that MULTTEST 
runtimes reflect only the time required for sample 
generation, not p-value calculation, which would 
increase relative runtime by an additional several 
multiples for larger samples).  The relative speed 
advantage over TWOSAMPL is only pronounced 
when one sample is large and the study-control 
group ratio exceeds one. 
 
On the one hand, smaller samples are where one is 
most likely to need permutation tests.  However, 
this is where the speed differential matters the 
least in absolute terms � even when performing 
two hundred permutation tests with these smaller 
sample sizes and a study/control group ratio equal 
to one, none of the other three procedures was ever 
more than five minutes faster than PROC PLAN 
with �oversampling.�  So the tradeoff in this case 
is several minutes per run with MULTTEST, 
NPAR1WAY, or TWOSAMPL, versus maximum 
power with PROC PLAN with �oversampling.� 
 

          
       → 75.8 
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In contrast, when samples are larger, relative 
runtimes matter most because even small 
differences become large in absolute terms.  These 
are precisely the conditions under which PROC 
PLAN with �oversampling� maintains a very large 
relative speed advantage over MULTTEST and 
NPAR1WAY, as well as TWOSAMPL when the 
study-control group ratio exceeds one. 
 
In addition to the speed of PROC PLAN itself, a 
number of factors contribute to the speed of the 
entire SAS program used to perform permutation 
tests with PROC PLAN and �oversampling,� 
including: 
 
•  Use of PROC APPEND to �SET� two large 

datasets together (one on top of the other) 
      whenever possible. 
 
•  Judicious use of multiple PROC 

TRANSPOSE�s to evaluate the summarized 
results of the permutation sampling. 
 

•  Most test statistics can be constructed based 
on just one of the two samples in a pair and, if 
necessary, the pooled summary statistics of the 
pair.  Thus, when conducting permutation 
sampling, sample only the smaller of the two 
samples, but keep track of which sample is 
used (study or control) when constructing the 
test statistics based on the permutation 
samples.  
 

•  To quickly SET together the potentially large 
and numerous output dataset lists from PROC 
PLAN (one set of T samples for every 
permutation test), use a looping macro that 
returns all the dataset names into a single SET 
statement (see code in Appendix C).  
Alternately, looping on the SET statement and 
SETting the datasets together cumulatively, 
one at a time, is extremely inefficient and 

      runtime costly.  
 
•  If the dataset is large and contains a large 

percentage of records with the same response 
variable value (say, zero), delete these records 
to avoid sorting and later merging them with 
the PROC PLAN output.  After merging the 
remaining data with the PROC PLAN output 

and retaining all PROC PLAN records in the 
merge, reassign this value to the response 
variable when it is missing (i.e. when that 
record did not merge with the PROC PLAN 
output because it had been deleted). 
 

•  Most importantly, if the data contains multiple 
study groups per control group, there is no 
need to output control group records multiple 
times, once for each corresponding study 
group, when using PROC PLAN with 
�oversampling.�  The original data simply can 
be divided into two datasets � one for control 
group(s) and one for study groups � and each 
merged separately to the PROC PLAN output 
(then (PROC) APPENDed together after the 
merges).  Unless one constructs a separate 
dataset for each permutation test, PROC 
MULTTEST, PROC NPAR1WAY, and 
PROC TWOSAMPL require control group 
records duplicated in the input dataset for each 
study group against which they are being 
compared.  This is what gives PROC PLAN 
with �oversampling� an additional speed 
premium in these situations, and similarly, for 
multiple comparisons.  To test a complete null 
hypothesis under a multiple testing 
framework, the number of pairwise 
comparisons required is s (s-1)/2, where s is 
the number of samples.  This means that for 
the other three procedures, a much larger 
number of observations (16) must be output 
and sorted compared to the number similarly 
processed by PROC PLAN with 

      �oversampling� (17). 
 
 

(16) 
 

  
 
(17) 

 
 

 
where  
s = the number of samples, and  
n(i) = the number of observations in the sample 
with the ith largest number of observations 
 
If many permutation tests must be conducted 
and at least some of these contain large 
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samples, the runtime advantage of (17) over 
(16) can be extremely large, as seen in Graph 
8.  However, (17) does not assume the code 
exploits the fact that with multiple 
comparisons, the same groups of observations 
are being used repeatedly in different 
comparisons.  Although the other sampling 
procedures examined in this study cannot take 
advantage of this, code based on PROC PLAN 
can, allowing the researcher to achieve 
computational efficiencies even beyond those 

      gained by (17) over (16). 
 

Absolute Speed 
 
When run on data containing 220 sample pairs 
where the smaller sample was less than 30 
observations but the larger sample was sometimes 
as large as 64,000 observations, the runtime of the 
program was 7 minutes, 45 seconds on a desktop 
PC with two gigabytes of random-access memory 
and a two gigahertz Pentium® processor.  For data 
containing 6,682 sample pairs where the smaller 
sample was less than 30 observations but the 
larger was sometimes over 5,000,000 
observations, the runtime was 8 hours, 36 minutes.  
The former example obviously is more typical of 
the contexts in which permutation tests are used, 
but the latter is instructive for demonstrating the 
limits of the methods and software being relied 
upon.  This study shows that the runtime of PROC 
PLAN with �oversampling� is not prohibitive even 
when applied to sample sizes as large (if not far 
larger) than would ever be used with permutation 
tests.  The same cannot be said for the four 
alternate methods. (One notable and widespread 
example of the current application of permutation 
tests to sample pairs where one sample can be 
quite large is the telecommuncations regulatory 
arena.  Incumbent local exchange carriers have 
been required by a number of state public service 
commissions to perform permutation tests on 
performance measurement data if one sample 
(typically the CLEC sample) is small, even if the 
other (typically the ILEC sample) contains many 
millions of observations.) 
 
 
 
 

NR Sampling � How Much Power Gain? 
 
The asymptotic approximation of the power 
differential between NR sampling and WR 
sampling for a single pairwise comparison is 
calculated below (Table 2 and Graph 9) based on 
the Central Limit Theorem ((6.2 � (6.3)).  There 
are two notable findings: first, the power gains 
from using NR sampling over WR sampling are 
small, even for small values of δ (the location 
difference) and  ,  and even taking into 
consideration that these asymptotic power 
differences represent lower bounds for the actual 
power differences.  Secondly, these gains decrease 
rapidly in        .  Why is this the case?  Recall that 
the only difference between NR sampling and WR 
sampling is the variance of the estimated p-value;  
the former is based on the hypergeometric 
distribution (5.6) and the latter is based on the 
binomial distribution (5.7). 
 

 
 

(5.6) 
 
 

(5.7) 
 
 
These variances differ only by the finite 
population correction factor (fpc) of 
                          . As n1 and n2 increase,        
          increases dramatically, causing the rapid 
convergence of the fpc to one and thus, the 
practical equivalence of NR sampling and WR 
sampling.  Intuitively, this makes sense as it is 
clear that the probability of drawing any of a few 
thousand samples (np) more than once quickly 
approaches zero as the number of possible samples 

Permutation Sampling: With (WR) vs. No (NR) Replacement 
 Asymptotic Difference in Power at α = 0.05 by nCn1 by δ

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000 13,000

nCn1 = # Possible Samples

D
iff

er
en

ce
 in

 P
ow

er
 a

t α
 =

 0
.0

5

1,001 Samples Draw n  1,938  3,876  1,001  1,938  3,876 

δ = 0.5σ 

δ = 1.0σ 

( )2 1bin pn p pσ = −

( )( ) ( )1 1

2 1 / 1hyp p n n p n nn p p C n Cσ = − − −

( ) ( )1 1
/ 1n n p n nC n C− −

1n nC

1n nC

1n nC



41                                                               J.D. OPDYKE

 

from which to randomly draw rapidly surpasses 
trillions and quadrillions of possibilities (the exact 
probability is given by one minus (12) when T=r).  
Therefore, if sample sizes are not very small, it is 
fair to say that such small power gains would only 
make NR sampling worth considering if there was 
little or no runtime cost associated with its 
implementation.  Otherwise, unless the cost of 
Type II error is astronomically high, NR sampling 
may not be worth the trouble (however, note NR 
sampling�s more obvious benefit of shorter 
confidence intervals on the permutation p-values 
themselves compared to (3), which is based on 
WR sampling). 
 
NR Sampling � Power Gains at What Cost? 
 
A good metric for evaluating the runtime cost of 
employing NR sampling via �oversampling� is its 
start-to-finish runtime compared to that associated 
with WR sampling � i.e. just drawing T samples 
and ignoring the duplicate sample problem.  This 
difference is a function of the number of tests 
performed and their sample sizes.  When only two 
hundred permutation tests were conducted on 
small sample pairs (both less than 30 
observations), NR sampling was 20%-30% slower 
than WR sampling.  However, in absolute terms, 
this was less than two minutes.  When 1,862 tests 
were conducted, including some sample pairs with 
one large sample, the runtime cost was always 
under 2%; for all 6,682 tests, the runtime cost was 
always well below 1%.  Maximizing power via 
NR sampling arguably is worth this relatively 
small increase in runtime. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 
This study provides a) statistical code that 
performs fast continuous-data permutation tests 
even if one sample is large, and which often is 
more than an order of magnitude faster than 
widely available commercial alternatives under 
these conditions, and b) an answer to the question: 
does drawing a set of permutation samples 
containing no duplicate samples increase the 
power of the permutation test for a single pairwise 
comparison?  If so, by how much, and are there 
also power gains for multiple comparisons?  It is 
analytically shown that �no-replacement� (NR) 
sampling of the permutation sample space 
provides a small power gain over the usual method 
of �with-replacement� (WR) sampling when using 
a conventional Monte Carlo approach (this power 
gain attains, by definition, maximum power under 
conventional Monte Carlo).  This finding holds for 
pairwise comparisons, as well as for multiple 
comparisons � specifically, permutation-style p-
value adjustments of permutation test p-values � 
which are made runtime feasible by an additional 
speed premium built into the code.  The power 
gain for such multiple comparisons, however, may 
be larger in absolute terms because these 
procedures achieve variance reduction from two 
sources rather than just one.  Simulating these 
gains is the focus of ongoing research.  The power 
gains of both pairwise and multiple comparisons, 
however, quickly diminish as sample sizes 
increase.  This is due to the rapid convergence of 
the conditional variance of the estimated 
permutation p-value (based on the hypergeometric 
distribution) to that of WR sampling (based on the 
binomial distribution).  However, the runtime cost 
of implementing NR sampling via the proposed 
method of �oversampling� is negligible � less than 
1% of runtime when many tests are conducted and 
at least some of the sample pairs contain one large 
sample (which is when runtime matters most in 
absolute terms).  So under a conventional Monte 
Carlo approach, if the cost of Type II error is not 
negligible and even if the power gains of NR 
sampling may be small, there seems to be no 
reason not to use this straightforward and readily 
applied method in order to maximize power. 
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      TABLE 2.  Asymptotic Approximation of Power Difference Between NR Sampling vs. WR Sampling  
                         for a Pairwise Permutation Test 

 
np 1,001 1,001 1,001 1,938 1,938 3,876 

nCn1
 2,002 5,005 8,008 3,876 11,628 11,628 

(nCn1
 - np)/( nCn1

 - 1) 0.5002 0.8002 0.8751 0.5001 0.8334 0.6667 

aslNR 0.0511734 0.0513080 0.0513416 0.0501677 0.0502451 0.0501290 
aslWR 0.0513977 0.0513977 0.0513977 0.0502838 0.0502838 0.0501677 
C*

α
NR

 0.0493837 0.0493128 0.0492950 0.0498490 0.0497793 0.0498968 

C*
α
WR

 0.0492655 0.0492655 0.0492655 0.0497445 0.0497445 0.0498658 

δ = 0.5 0.5870526 0.6121541 0.6361821 0.7030284 0.7027937 0.7031889 PowerNR δ = 1.0 0.9817270 0.9868391 0.9905697 0.9966619 0.9966550 0.9966665 
δ = 0.5 0.5866014 0.6119764 0.6360733 0.7026762 0.7026762 0.7030848 PowerWR δ = 1.0 0.9816750 0.9868234 0.9905623 0.9966516 0.9966516 0.9966635 
δ = 0.5 0.0004512 0.0001777 0.0001089 0.0003522 0.0001175 0.0001041 Power 

difference δ = 1.0 0.0000520 0.0000157 0.0000073 0.0000103 0.0000034 0.0000030 
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Appendix A 

 
To estimate PROC PLAN real runtime, 

SAS® v.8.2 was used on a desktop PC with 2GB 
RAM and a 2GHz Pentium processor.  Sample 
sizes were generated by assigning values of 3, 16, 
and 27 to the smaller of the two samples, and, 
beginning at 100, assigning values by 100 
increments to the larger sample up to 100,000, 
after which point increments of 10,000 were used 
up to 1.5 million (though the program has been run 
on sample pairs as large as 29 and 5,000,029).  
Three values of r were used: 1,901, 2,700, and 
3,500. 

 
 
 
 
 
 
 
 

Appendix B 
 

PROC PLAN RunTime, PPRT(n1, n2, r), 
regression results: 
Left hand side variable = real runtime seconds 
adjusted R2 = 0.9927 
 

Variable 
Key Variable 

A Intercept 
B (n1 + n2) 
C r 
D (n1 + n2) * r 
E [(n1 + n2) < 65.5K] 
F [(n1 + n2) < 65.5K] * (n1 + n2) 
G [(n1 + n2) < 65.5K] * r 
H [(n1 + n2) < 65.5K] * (n1 + n2) * r 
I [65.5K £ (n1 +n2) £ 73.5K] 
J [65.5K £ (n1 +n2) £ 73.5K] * (n1 + n2) 
K [65.5K £ (n1 +n2) £ 73.5K] * r 
L [65.5K £ (n1 +n2) £ 73.5K] * (n1 + n2) * r 

 
 

Variable 
Key Parameter Estimate t value

A 0.0432387277000000 1.80
B -0.0000001298032000 -2.88
C 0.0000838185000000 9.68
D 0.0000000038095955 234.72
E -0.0340413560000000 -0.89
F 0.0000004543242500 0.58
G -0.0000581740000000 -4.24
H -0.0000000024994500 -8.86
I -0.4873557050000000 -0.38
J 0.0000071862352000 0.39
K -0.0016941670000000 -3.70
L 0.0000000228154240 3.47
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Appendix C 
 

options = nomprint nomlogic nomrecall; 
 
%MACRO RUN_PRG; 
   
*** the By Variables and npermsampT normally 
would be passed in the main macro (RUN_PRG).; 
 
%let byvars=byvar1 byvar2 byvar3 byvar4 
byvar5; 
 
*** npermsampT = # of permutation samples; 
%let npermsampT=1901; 
 
*** count the number of byvars for parsing; 
%let byvars=%cmpres(&byvars); 
%let num_byvars= 
  %eval(%length(&byvars)- 
        %length(%cmpres(&byvars))+1); 
 
*** summarized data (SUMDINPT) contains study 
group identifier (stdy), control group 
identifier (cntl), # study group obs, # 
control group obs, and any By Variables.; 
 
%let noconverge=0; 
data sumdinpt(keep=combins  nsamp    minrcomb 
                   minof3   bigcomb  ncalls2pp 
                   topdraws lastdraw smaller  
                 nobsmalr studynobs contrlnobs 
                 sumofnobs stdy cntl &byvars); 
  set sumdinpt;  
 
*** create variables to be passed to CREATSMP, 
which generates the permutation samples 
corresponding to each record on SUMDINPT; 
 
  if "&npermsampT"="1901" then 
    maxcombins=5031771045; 
  else maxcombins=9*10**16; 
 
*** for versions of SAS v6.12 and older, 
comb(,) terminates for results of 
approximately 10E70 and higher, so use the 
loop below instead; 
 
  if ("&sysver"*1)<8 then do; 
    combins=1; 
    minnobs=min(studynobs,contrlnobs); 
    bothnobs=sum(studynobs,contrlnobs); 
    do j=minnobs to 1 by -1; 
     combins=combins*(bothnobs-j+1)/j; 
     if combins>maxcombins then goto enufcomb; 
    end; 
    enufcomb: combins=round(combins); 
  end; 
  else do; 
    combins=comb(sum(studynobs,contrlnobs), 
                 min(studynobs,contrlnobs)); 
*** if still too large, assign large number; 
    if combins=. then combins=maxcombins; 
  end; 
 

*** The 'table' below was calculated based on 
the exact probabilities of the Collectors 
Problem distribution and presents the optimal 
"low-end" sample sizes by ranges of nCn1 (p.7 
above) only for npermsampT = 1901.; 
 
  IF “&npermsampT” = “1901” THEN DO;  
  if combins<&npermsampT then 
    nsamp=&npermsampT; 
  else if combins<10626 then nsamp=combins; 
  else if combins<52360 then nsamp=2138; 
  else if combins<101270 then nsamp=1956; 
  else if combins<521855 then nsamp=1934; 
  else if combins<1028790 then nsamp=1912; 
  else if combins<10009125 then nsamp=1908; 
  else if combins<25637001 then nsamp=1904; 
  else if combins<100290905 then nsamp=1903; 
  else if combins<5031771045 then nsamp=1902; 
  else if combins>=5031771045 then nsamp=1901; 
  END; 
 
*** For npermsampT other than 1901, obtain 
nsamp with a convergence routine based on the 
first and second moments of the Collectors 
Problem distribution and using the nsamp 
calculated above as a basis for the starting 
values.  Even for large npermsampT (e.g. 
32,000) and conservatively defined Xstdev, 
convergence (based on false position) 
typically is achieved in less than five 
iterations; 
 
  ELSE DO; 
 
*** Define X*stdev (Xstdev) here 
conservatively, based on the size of 
npermsampT compared to 1901 (the base would be 
Xstdev = 2.875 since this is (approximately) 
true when npermsampT = 1901).  Larger 
npermsampT allows for the use of smaller 
Xstdev, but smaller npermsampT requires larger 
Xstdev to maintain the same (approximate) 
probability of a redraw.  Any functional 
relationship between Xstdev and npermsampT 
similar to the one below can be used (the 
exponent below (0.25) was chosen based on a 
wide range of values for npermsampT).; 
   
    Xstdev= (1901/&npermsampT)**0.25; 
     
    if combins<&npermsampT  
      then startratio=-999; 
    else if combins<(&npermsampT*10626/1901)  
      * Xstdev then startratio=-888; 
    else if combins<(&npermsampT*52360/1901)  
      * Xstdev then startratio=2138/1901; 
    else if combins<(&npermsampT*101270/1901) 
      * Xstdev then startratio=1956/1901; 
    else if combins<(&npermsampT*521855/1901)  
      * Xstdev then startratio=1934/1901; 
    else if combins<(&npermsampT*1028790/1901)  
      * Xstdev then startratio=1912/1901; 
    else if combins<&npermsampT*10009125/1901  
      * Xstdev then startratio=1908/1901; 
    else if combins<&npermsampT*25637001/1901  
      * Xstdev then startratio=1904/1901; 
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    else if combins<&npermsampT*100290905/1901  
      * Xstdev then startratio=1903/1901; 
   else if combins<&npermsampT*5031771045/1901  
      * Xstdev then startratio=1902/1901; 
  else if combins>=&npermsampT*5031771045/1901 
      * Xstdev then startratio=1.0; 
     
    IF startratio=-999 | startratio=1  
      THEN nsamp=&npermsampT; 
    ELSE IF startratio=-888  
      THEN nsamp=combins; 
    ELSE IF startratio>1 THEN DO;   
 
*** Starting value for nsamp.; 
      nsamp=ceil(startratio*&nresamp); 
      nsampoldhigh=nsamp; 
      nsampoldlow=(&nresamp*1); 
      initgap=nsampoldhigh-nsampoldlow; 
  
      colldist_avg = combins*(1- 
                  (1-1/combins)**nsampoldlow); 
 
*** Numeric precision constraints prevent 
calculation of the second moment for large 
inputs, but a conservative (i.e. larger-than-
actual) approximation suffices in these 
cases.;  
      if (combins*(combins-1)* 
          (1- 2/combins)**nsampoldlow) >  
         100144465758007  
      then colldist_stdev = 0.4; 
      else  
      colldist_stdev =  
        sqrt(combins*(combins-1)* 
        (1-2/combins)**nsampoldlow+ 
        combins*(1-1/combins)**nsampoldlow- 
        combins**2*(1-1/combins)** 
        (2*nsampoldlow)); 
 
      lowpoint =(colldist_avg – Xstdev *  
                 colldist_stdev - &nresamp*1); 
 
      colldist_avg = combins*(1- 
                 (1-1/combins)**nsampoldhigh); 
 
      if (combins*(combins-1)* 
          (1- 2/combins)**nsampoldhigh) >  
         100144465758007  
      then colldist_stdev = 0.4; 
      else  
      colldist_stdev =  
        sqrt(combins*(combins-1)* 
        (1-2/combins)**nsampoldhigh+ 
        combins*(1-1/combins)**nsampoldhigh- 
        combins**2*(1-1/combins)** 
        (2*nsampoldhigh)); 
 
      highpoint = (colldist_avg – Xstdev *  
                   colldist_stdev-&nresamp*1); 
      point=highpoint; 
 
*** Use counter only to eliminate the 
possibility of infinite loop.; 
 
      DO z=1 to 1000; 
 
*** Obtain nsamp only to within 4 of optimal 
nsamp (when converging on nsamp from upper 

bound) to prevent unnecessary looping.; 
 
        TOPLOOPNSAMP: 
        if point>4 then do;  
    nsampoldhigh=nsamp; 
   nsamp=ceil((nsampoldlow * highpoint –  
                      nsampoldhigh * lowpoint) 
                     / 
                     (highpoint-lowpoint)); 
        end; 
 
*** If necessary, get upper bound above zero 
on 1st loop (& increment lower bound 
concurrently); 
 
        else if z=1 & point<-1 then  
        do y=1 to 1000; 
          nsampoldlow = nsamp; 
          nsamp = ceil(nsamp+initgap); 
          colldist_avg = combins*(1- 
                        (1-1/combins)**nsamp); 
          if (combins*(combins-1)* 
             (1- 2/combins)**nsamp) >  
             100144465758007  
          then colldist_stdev = 0.4; 
          else  
          colldist_stdev =  
            sqrt(combins*(combins-1)* 
                 (1-2/combins)**nsamp+ 
                 combins*(1-1/combins)**nsamp- 
                 combins**2*(1-1/combins)** 
                 (2*nsamp)); 
          highpoint = (colldist_avg - Xstdev *  
                       colldist_stdev -  
                       &nresamp*1); 
          point = highpoint; 
 
          if point>4 then do; 
            colldist_avg = combins*(1-  
                  (1-1/combins)**nsampoldlow); 
            if (combins*(combins-1)* 
               (1- 2/combins)**nsampoldlow) >  
               100144465758007  
            then colldist_stdev = 0.4; 
            else  
            colldist_stdev =  
              sqrt(combins*(combins-1)*  
                  (1-2/combins)**nsampoldlow+ 
                  combins* 
                  (1-1/combins)**nsampoldlow- 
                  combins**2*(1-1/combins)** 
                  (2*nsampoldlow)); 
 
            lowpoint = (colldist_avg - 
                       Xstdev*colldist_stdev - 
                       &nresamp*1); 
            goto TOPLOOPNSAMP; 
          end; 
 
          else if -1<=point<=4  
            then goto STOPCNVG; 
        end; 
 
*** Require a stricter convergence criterion 
on optimal nsamp when converging from lower 
bound; 
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        else if point<-1 then do;  
          nsampoldlow=nsamp; 
          nsamp=ceil((nsampoldlow*highpoint – 
                       nsampoldhigh*lowpoint) 
                     / 
               (highpoint-lowpoint)); 
        end; 
 
        else if -1<=point<=4 then goto 
         STOPCNVG; 
 
        if z = 1000 then do; 
          noconverge = 1; 
          goto STOPCNVG; 
        end; 
 
*** For next iteration; 
        temp_avg = combins* 
                   (1-(1-1/combins)**nsamp); 
        if (combins*(combins-1)* 
           (1- 2/combins)**nsamp) >  
           100144465758007  
        then temp_stdev = 0.4; 
        else  
        temp_stdev = sqrt(combins*(combins-1)* 
                          (1-2/combins)**nsamp 
                           + combins*(1-  
                           1/combins)**nsamp -   
                           combins**2* 
                    (1-1/combins)**(2*nsamp)); 
 
        temp_point = (temp_avg - Xstdev *  
                     temp_stdev - &nresamp*1); 
        if temp_point >= 0 then do; 
          highpoint = temp_point; 
          point = highpoint; 
        end; 
        else do; 
          lowpoint = temp_point; 
          point = lowpoint; 
        end; 
      END; 
 
      STOPCNVG: 
      if noconverge = 1 then do; 
        call symput('noconverge', 
                     compress(noconverge)); 
        stop; 
      end; 
    END; 
  END; 
 
  minrcomb=min(combins,nsamp); 
 
  minof3=min(combins,nsamp,&npermsampT); 
 
  if combins=minrcomb then bigcomb=0; 
  else if combins>minrcomb then bigcomb=1; 
 
  ncalls2pp=ceil(minrcomb* 
             sum(studynobs,contrlnobs)/2**31); 
  topdraws=floor(nsamp/ncalls2pp); 
  lastdraw=topdraws+mod(nsamp,ncalls2pp); 
 
  if studynobs<=contrlnobs then  
    smaller="stdy"; 
  else smaller="cntl"; 

 
  nobsmalr=min(studynobs,contrlnobs); 
  sumofnobs=sum(studynobs,contrlnobs); 
 
  run; 
 
 
*** Although algorithm should always converge, 
code should account for any contingency.; 
  %if &noconverge=1 %then %do; 
    %put; 
    %put WARNING: The permutation sample-size 
algorithm did not converge.; 
    %put Scrutinize the data and/or adjust the 
functional relationship between Xstdev and 
npermsampT.; 
    %put; 
    %goto EXITALL; 
  %end; 

 
*** define outside of CREATSMP (which is 
called in a loop) four macros used for 
assigning By Variables and their values 
(exactly as they exist on both the original 
data (FULLDATA) and SUMDINPT) to the sampling 
datasets generated by PROC PLAN in CREATSMP; 
 
%MACRO GETVARLEN(varname=); 
  %let dsetid=%sysfunc(open(fulldata)); 
  %let len=%sysfunc(varlen(&dsetid, 
         %sysfunc(varnum(&dsetid,&varname)))); 
  %let dsetid=%sysfunc(close(&dsetid)); 
  &len 
%MEND GETVARLEN; 
 
%MACRO ASSIGNBYVRLENS; 
  %do p=1 %to &num_byvars; 
    &&byvar&p $%GETVARLEN(varname=&&byvar&p) 
  %end; 
%MEND ASSIGNBYVRLENS; 
 
%MACRO ASSIGNBYVRVALS; 
  %do q=1 %to &num_byvars; 
    %let x=%scan(&byvars,&q,' '); 
    %str(&x=resolve("&"||"&x");) 
  %end; 
%MEND ASSIGNBYVRVALS; 
 
%MACRO GETBYVARVALUES; 
  %do q=1 %to &num_byvars; 
    %let x=%scan(&byvars,&q,' '); 
    %str(byvarval=resolve("&"||"&x"); output;) 
  %end; 
%MEND GETBYVARVALUES; 
 
*** When multiple loops on PROC PLAN 
required...; 
*** ...use for combining datasets.; 
%MACRO COMBBIGSAMPS; 
  %do s=2 %to &ncalls2pp; 
    ptemp&s.(in=in&s) 
  %end; 
%MEND COMBBIGSAMPS; 
 
*** ...use for assigning DRAWNUM values.; 
%MACRO ASSIGNDRAWNUM; 
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  %if &ncalls2pp>2 %then  
    %do k=3 %to &ncalls2pp; 
      %str(else if in&k then drawnum = 
                    drawnum+(&k-1)*&topdraws;) 
    %end; 
%MEND ASSIGNDRAWNUM; 
 
*** Obtains # of records in a dataset.; 
%MACRO NOBS(dset); 
  %if %sysfunc(exist(&dset)) %then %do; 
    %let dsid=%sysfunc(open(&dset)); 
    %let nobs=%sysfunc(attrn(&dsid,nobs)); 
    %let dsid=%sysfunc(close(&dsid)); 
  %end; 
  %else %let nobs=0; 
  &nobs 
%MEND NOBS; 
 
%let seednum   =-1; 
 
%MACRO CREATSMP(recountr = ); 
 
*** The automatic random seed for PROC PLAN, 
based on the time of day, does not update as 
fast as PROC PLAN is repeatedly called in the 
loops below.  Hence, ranuni() is used to 
generate the seed, & its value is explicitly 
checked to ensure the current random number is 
different from the previous one.  This ensures 
random sampling is unrelated across tests.; 
 
*** if combins <= r, choose all sample 
combinations, then select npermsampT samples 
from them.; 
 
%if &bigcomb=0 %then %do;  
 
  data _null_; 
    x=1000000000*ranuni(-1); 
    if compress(&seednum)=compress(" "||x)  
      then x=x+1; 
    call symput('seednum',compress(x)); 
    run; 
 
  %if &nobsmalr=1 %then %do; 
    proc plan seed=&seednum; 
    factors drawnum   = 1 
            dataobsid = &minof3 of &combins  
                        random / noprint; 
    output  out       = psamp&recountr; 
    run; 
  %end; 
 
  %if &nobsmalr>1 %then %do; 
     
*** cannot just select first npermsampT draws 
because the comb option orders them, and the 
data may be ordered in some way; 
 
    proc plan seed=&seednum; 
    factors drawnum   = &combins 
            dataobsid =&nobsmalr of &sumofnobs  
                        comb / noprint; 
    output  out       = psamp&recountr; 
    run; 
   

    %if &combins>&npermsampT %then %do; 
      data _null_; 
        x=1000000000*ranuni(-1); 
        if compress(&seednum)= 
           compress(" "||x) then x=x+1; 
        call symput('seednum',compress(x)); 
        run; 
   
      proc plan seed=&seednum; 
      factors drawnum   = 1 
             dataobsid=&npermsampT of &combins 
                         random / noprint; 
      output  out       = choosmp; 
      run; 
       
      data choosmp(keep=drawnum); 
        set choosmp(drop=drawnum); 
        drawnum=dataobsid; 
        run; 
       
      proc sort data=choosmp; 
        by drawnum; 
        run; 
       
      proc sort data=psamp&recountr; 
        by drawnum; 
        run; 
       
      data psamp&recountr; 
        merge psamp&recountr 
              choosmp(in=inchoos); 
        by drawnum; 
        if inchoos then output psamp&recountr; 
        run; 
       
      data psamp&recountr(drop=drawnum2); 
        set psamp&recountr(drop=drawnum); 
        retain drawnum2 0; 
        if mod(_n_,&nobsmalr)=1  
           then drawnum2 = drawnum2+1; 
        drawnum=drawnum2; 
        run; 
    %end; 
  %end; 
%end; 
 
*** if combins > r, check whether PROC PLAN 
needs to be looped multiple times -- if not, 
simply select r samples, delete duplicates, 
and keep npermsampT samples.  If so, loop it 
first to select r samples.  In either case, 
redraw samples if fewer than npermsampT unique 
samples are drawn the first time around.; 
 
%if &bigcomb=1 %then %do;  
 
  %redraw1: 
  data _null_; 
    x=1000000000*ranuni(-1); 
    if compress(&seednum)= 
       compress(" "||x) then x=x+1; 
    call symput('seednum',compress(x)); 
    run; 
 
  %if &ncalls2pp=1 %then %do; 
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    proc plan seed=&seednum; 
    factors drawnum   = &minrcomb 
            dataobsid= &nobsmalr of &sumofnobs  
                        random / noprint; 
    output  out       = psamp&recountr; 
    run; 
 
    proc sort data=psamp&recountr; 
      by drawnum; 
      run; 
 
    proc transpose data=psamp&recountr  
                    out=temp prefix=stdy; 
      var dataobsid; 
      by drawnum; 
      run; 
 
    proc sort data=temp out=temp nodupkey; 
      by stdy1-stdy&nobsmalr; 
      run; 
 
    %let ndrawn=%nobs(temp);  
    %if &ndrawn < &npermsampT %then %do; 
      %put; 
      %put Fewer than &npermsampT unique 
permutation samples (only &ndrawn) were drawn 
in a &sumofnobs-choose-&nobsmalr draw; 
      %put for the study - control group pair 
and "by variable" values listed below:; 
      %put 
====================================; 
      %put Study Control &byvars; 
 
      data holdvals; 
        %GETBYVARVALUES 
        run; 
 
      proc sql noprint; 
        select byvarval into  
               :byvarvals separated by ' ' 
        from holdvals; 
        quit; 
 
      proc datasets library=work nolist; 
        delete holdvals temp; 
        run; 
 
      %put &stdy &cntl &byvarvals; 
      %put; 
      %put A redraw has been performed.; 
      %put; 
      %goto redraw1; 
    %end; 
 
    %else %do; 
      proc datasets library=work nolist; 
        delete temp; 
        run; 
      %if &ndrawn>&npermsampT %then %do; 
   data psamp&recountr; 
         set psamp&recountr 
           (where=(drawnum<=&npermsampT)); 
     run; 

      %end; 
    %end; 
  %end; 
 
  %redraw2: 
  %if &ncalls2pp>1 %then  
    %do q=1 %to &ncalls2pp; 
 
    %if &q<&ncalls2pp %then %do; 
      data _null_; 
        x=1000000000*ranuni(-1); 
        if compress(&seednum)=compress(" "||x)  
           then x=x+1; 
        call symput('seednum',compress(x)); 
        run; 
 
      proc plan seed=&seednum; 
        factors drawnum   = &topdraws  
                dataobsid = &nobsmalr of  
                  &sumofnobs random / noprint; 
        output  out       = ptemp&q; 
        run; 
    %end; 
 
    %if &q=&ncalls2pp %then %do; 
      data _null_; 
        x=1000000000*ranuni(-1); 
        if compress(&seednum)= 
           compress(" "||x) then x=x+1; 
        call symput('seednum',compress(x)); 
        run; 
 
      proc plan seed=&seednum; 
        factors drawnum   = &lastdraw  
                dataobsid = &nobsmalr of  
                  &sumofnobs random / noprint; 
        output  out       = ptemp&q; 
        run; 
 
      data psamp&recountr; 
 set ptemp1 %COMBBIGSAMPS; 
        if in2 then drawnum=drawnum+&topdraws; 
 %ASSIGNDRAWNUM 
 run; 
 
      proc sort data=psamp&recountr; 
        by drawnum; 
        run; 
     
      proc transpose data=psamp&recountr  
                      out=temp prefix=stdyn; 
        var dataobsid; 
        by drawnum; 
        run; 
     
      proc sort data=temp out=temp nodupkey; 
        by stdyn1-stdyn&nobsmalr; 
        run; 
 
      %let ndrawn=%nobs(temp);  
      %if &ndrawn < &npermsampT %then %do; 
        %put; 
        %put Fewer than &npermsampT unique 
permutation samples (only &ndrawn) were drawn 
in a &sumofnobs-choose-&nobsmalr draw; 
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        %put for the study - control group 
pair and "by variable" values listed below:; 
        %put 
==================================; 
        %put Study Control &byvars; 
 
        data holdvals; 
          %GETBYVARVALUES 
          run; 
 
        proc sql noprint; 
          select byvarval into  
                 :byvarvals separated by ' ' 
          from holdvals; 
          quit; 
 
        proc datasets library=work nolist; 
          delete holdvals temp; 
          run; 
 
        %put &stdy &cntl &byvarvals; 
        %put; 
        %put A redraw has been performed.; 
        %put; 
        %goto redraw2; 
      %end; 
 
      %else %do; 
        proc datasets library=work nolist; 
          delete temp; 
          run; 
        %if &ndrawn>&npermsampT %then %do; 
      data psamp&recountr; 
        set psamp&recountr                     
              (where=(drawnum<=&npermsampT)); 
        run; 
        %end; 
      %end; 
    %end;  
  %end; 
%end; 
 
*** assign By Variable values on the sampling 
datasets generated by PROC PLAN in CREATSMP.; 
 
data psamp&recountr; 
  length %ASSIGNBYVRLENS; 
  set psamp&recountr; 
  %ASSIGNBYVRVALS   
  run;  
 
%MEND CREATSMP; 
 
*** In a loop, generate permutation samples 
for each record of SUMDINPT.; 
 
%let sumdsid=%sysfunc(open(sumdinpt)); 
%let topofloop=%sysfunc(attrn(&sumdsid,nobs)); 
%syscall set(sumdsid); 
%do i=1 %to &topofloop; 
  %let fo=%sysfunc(fetchobs(&sumdsid,&i)); 
  %CREATSMP(recountr=&i);  
%end; 
%let sumdsid=%sysfunc(close(&sumdsid)); 
 

*** After looping above, combine PROC PLAN 
output datasets to merge with the original 
unsummarized dataset (FULLDATA) by By 
Variables & record id variable (dataobsid).  
Use the variable “smaller” when calculating 
the test statistic for every permutation 
sample.; 
 
%MACRO COMBSAMPS; 
  %do i=1 %to &totsamps; psamp&i %end; 
%MEND COMBSAMPS; 
 
data samples; set %COMBSAMPS; run; 
 
proc datasets library=work nolist; 
  delete %COMBSAMPS; 
  run; 
 
%EXITALL: 
%MEND RUN_PRG; 
 
%RUN_PRG;  

 
 
 
 
 
 
 
 


