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For statistical process control, a number of single charts that jointly monitor both process mean and variability 

recently have been developed.  For quality control-related hypothesis testing, however, there has been little analogous 

development of joint mean-variance tests: only one two-sample statistic that is not computationally intensive has been 

designed specifically for the one-sided test of Ho: 2 1µ µ≤  and 2 1σ σ≤   vs.  Ha: 2 1µ µ>  OR 2 1σ σ>  (see Opdyke, 

2006).  Many have proposed other commonly used tests, such as tests of stochastic dominance, exceedance tests, or 

permutation tests for this joint hypothesis, but the first can exhibit prohibitively poor type I error control, and the latter 

two can have virtually no power under many conditions.  This paper further develops and generalizes the maximum test 

proposed in Opdyke (2006) and demonstrates via extensive simulations that, for comparing two independent samples 

under typical quality control conditions, it a) always maintains good type I error control; b) has good power under 

symmetry and modest power under notable asymmetry; and c) often has dramatically more power and much better type I 

error control than the only other widely endorsed competitor.  The statistic (OBMax2) is not computationally intensive, 

and although initially designed for quality control testing in regulatory telecommunications, its range of application is as 

broad as the number of quality control settings requiring a one-sided, joint test of both the mean and the variance. 
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INTRODUCTION 

 

The statistical process control literature recently has seen the development of a number of single control charts that 

jointly monitor both process mean and variability (see Gan et al., 2004; Costa & Rahim, 2004; Wu et al., 2005; Hawkins 

& Zamba, 2005; and Reynolds & Stoumbos, 2005).  This is an important development since both the location and the 

spread of data measuring quality are key characteristics, taken together simultaneously, for assessing, quantifying, and 

monitoring the degree to which the quality goals for a product or service are achieved.  However, quality control-related 

hypothesis testing has seen few developments analogous to those of the statistical process control literature.  Only two 
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statistics known to this author (Opdyke, 2006, and Pesarin, 2001, p.325) have been developed specifically to test the one-

sided, joint mean-variance hypotheses of: 

 Ho: 2 1µ µ≤   and 2 1σ σ≤   vs.  Ha: 2 1µ µ>  OR 2 1σ σ>  (1) 

This is simply a test of whether the mean and/or the variance of one population are larger than those of the other 

population.  This is a very simple and important joint hypothesis from a quality control perspective, and yet no easily 

implemented statistical tests that are robust under real-world data conditions exist to test it.  Although many have 

proposed the use of tests of stochastic dominance when confronted with (1), such as Kolmogorov-Smirnov or similar 

statistics,1 these tests, while often powerful, can exhibit prohibitively poor type I error control under the null hypothesis 

of (1).  In other words, while often providing high rates of true positives, these tests also can provide prohibitively high 

rates of false positives well beyond the acceptable rate (α) set by the researcher (as demonstrated in the simulation study 

below).  Conversely, other tests that have been proposed, such as exceedance tests (e.g. Rosenbaum, 1954) and tests of 

distributional equality (e.g. permutation tests other than that of Pesarin, 2001, p.325) maintain good type I error control, 

but can have virtually no power to detect some effects under the alternate hypothesis of (1) (as shown in the simulation 

study below for Rosenbaum, 1954).  The reason that none of these tests work well for (1) is that none are designed 

specifically for (1): they all are designed to varying degrees to detect distributional characteristics beyond the first two 

moments2 � i.e. beyond the mean and the variance.3  However, for many quality control problems, if the mean and the 

variance of two samples are essentially equal, then higher moments, such as the kurtosis,4 are often of far less concern.  

For example, if two groups of customers are mandated to receive equal quality service, a difference in the kurtosis 

between the two groups� time-to-service � if the means and variances are equal � arguably has a very second-order 

effect, if any, on the perceived �quality� of service they receive.  The tests listed above, however, will either sound false 

alarms when means and variances are equal but higher moments differ, or fail to detect different means or variances 

because of a more general statistical design meant to identify differences in higher moments as well.  While kurtosis, for 

example, can be an important characteristic for some types of quality control issues, such as statistics that identify 

                                                 
1 The one-sided test of whether one sample is �stochastically larger� than another tests the following hypotheses:  
Ho: ( ) ( )=Y XF x F x  for all x,  vs.  Ha: ( ) ( )≥Y XF x F x  for all x and ( ) ( )>Y XF x F x  for some x (see Gibbons & Chakraborti, 2003, 
p.232-246).  Of course, this is different from the hypotheses of (1), but because tests of stochastic dominance have been proposed for 
usage with (1), their performance under (1) is examined in this paper. 
 
2 The term �moment,� for all moments higher than the mean, shall herein refer to �moment about the mean.� 

 
3 The mean and the variance, of course, are not the only measures of location and scale, respectively, but they often are the most 
appropriate for statistical reasons and the most widely used.  
 
4 While the variance of a distribution measures the degree of dispersion around the mean, the kurtosis measures the degree of 
dispersion around the �shoulders� � the points one standard deviation on either side of the mean.  For many distributions this is very 
similar to measuring the thickness of the tails of the distribution, and/or the peakedness of its center, which is how most people 
conceptualize the kurtosis. 
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individual or small clusters of data outliers, when addressing general issues of quality the mean and the variance 

typically are the primary concern.  The customers in the above example would be most concerned with a slower time-to-

service on average, and/or a larger variability in their time-to-service, than with a time-to-service distributional peak that 

was somewhat taller or shorter, all else equal.  And the former is exactly what is tested by the one-sided, two-sample 

statistic developed in this study: whether the mean and/or variance of a quality metric of one population or process are 

larger than those of another similar process. 

PREVIOUS AND RELATED WORK 

 

A number of statistics have been developed for the two-sided, location-scale hypotheses of  

 Ho: ( ) ( )=F x G x   vs.  Ha: ( ) µ
σ
− =  

 

xF x G , with σ > 0, and  µ ≠ 0 and/or  σ ≠ 1 (2)                             

(see O�Brien, 1988; Podgor & Gastwirth, 1994; Buning & Thadewald, 2000; and Manly & Francis, 2002).  But from a 

quality perspective we are more concerned with testing the one-sided hypotheses presented in (1) because the focus is on 

whether the quality of one population or process is worse than (better than) that of the other, not just different from that 

of the other.  One statistic has received widespread attention as a test of (1) in the regulatory telecommunications arena.  

Seven years� worth of expert testimony, as well as multiple Rulings, Opinions, and Orders handed down by various state 

and federal regulatory bodies, have supported use of the �modified� t statistic (3) (Brownie et al., 1990) to compare the 

quality of service provided to two groups of telecommunications customers � competing local exchange carrier (CLEC) 

customers and incumbent local exchange carrier (ILEC) customers.   

 
( ) ( )2 1 2 1

mod 2 2
1 1

1 2

µ µ− − −
=

+

X X
t

s s
n n

  with  df = n1 � 1 (3) 

The point of the test is to ensure that the service quality received by CLEC customers is �at least equal� to that received 

by ILEC customers (see Telecommunications Act of 1996, Pub. LA. No. 104-104, 110 Stat. 56 (1996), at S251 (c) (2) 

(C)), which is necessary to ensure that ILEC customers could and would actually switch to CLEC customers, and that a 

formerly regulated industry can effectively transition to a fully competitive economic market.  The �modified� t statistic 

will be recognized as the widely used separate-variance t statistic (see Appendix) with a slight modification made to the 

denominator: the study group (subscript 2) variance simply is replaced with the control group (subscript 1) variance. 

However, Opdyke (2004) demonstrated, via both analytic derivation and extensive simulation, that several crucial 

assumptions made about this statistic are false, making it inappropriate as a test of (1) in any setting.  Its asymptotic 

distribution was shown not to be standard normal as previously surmised in submitted expert testimony, but rather, to be 
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normal with a variance that is greater than, less than, or equal to unity depending on the relative sizes of the two 

population variances, as shown below.   

 
2 2 2 2
1 2 1 1

mod
1 2 1 2

~ 0,  σ σ σ σ    
+ +            

t N
n n n n

 (4) 

A consequence of this when using standard normal (or student�s t) critical values, as advised in extensive expert 

testimony and Brownie et al. (1990), is that it allows a �trade-off� in average service for variability in service, which 

violates the null hypothesis of (1) with literally zero power to detect these violations.  This is shown very clearly in 

Figures 1a and 1b for (very) unbalanced sample sizes, and Figures 2a and 2b for equal sample sizes.  Normalizing the 

�modified� t in an attempt to take care of this problem yields, not surprisingly, the familiar separate-variance t statistic. 

In addition to this fatal flaw, another problem with using this statistic as a test of (1) is that it has virtually no power 

to detect differences in variances.  For example, under equal means and a study group variance twice as large as that of 

the control group, the asymptotic power of the �modified� t, for α = 0.05, is only 0.09 for equal sample sizes, and only 

0.12 for very unbalanced (n1 / n2 = 100) sample sizes, as shown in Figures 3a and 3b, respectively.  Although Brownie et 

al. (1990) originally proposed the �modified� t for use with a different pair of joint hypotheses (5) for which the statistic 

usually (but not always) has more power than the pooled- and separate-variance t tests, it nonetheless remains essentially 

useless as a test of (1) based on the above findings, extensive expert testimony notwithstanding (see Opdyke, 2004, for 

extensive citations of expert testimony in regulatory rulings and opinions). 

 Ho: 2 1µ µ≤   and 2 1σ σ≤   vs.  Ha: 2 1µ µ>  AND 2 1σ σ>  (5) 

As an alternative to the �modified� t statistic, Opdyke (2004) proposed the collective use of several easily 

implemented conditional statistical procedures.  Four tests are proposed by combining O�Brien�s (1988) generalized t 

test (OBt) or his generalized rank sum test (OBr) with either of two straightforward tests of variances � Shoemaker�s 

(2003) F1 test and the �modified� Levene test (Brown & Forsythe, 1974), which is simply the well-known ANOVA test 

(see Appendix for corresponding formulae).  These easily calculated statistics are combined based on the relative size of 

the two sample means, as shown in the column headings of Table 1. 

 
Table 1. Conditional Statistical Procedures of Opdyke (2004) 

Conditional 
statistical 
procedure 

if 2 1>X X , use� If 2 1≤X X or OB fails 
to reject Ho:, use� 

OBtShoe              OBt Shoemaker�s F1 

OBtLev              OBt �modified� Levene 

OBrShoe              OBr Shoemaker�s F1 

OBrLev              OBr �modified� Levene 
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Figure 1a.  tmod v. Standard Normal, µ2 > µ1, σ2/σ1 = 0.5, n1/n2 = 100 
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Figure 2a.  tmod v. Standard Normal, µ2 > µ1, σ2/σ1 = 0.5, n1/n2 = 1 
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Figure 3a.  tmod v. Standard Normal, µ2 = µ1, σ2/σ1 = 2, n1/n2 = 1 
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Figure 1b.  tmod v. Standard Normal, µ2 < µ1, σ2/σ1 = 2, n1/n2 = 100 
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Figure 2b.  tmod v. Standard Normal, µ2 < µ1, σ2/σ1 = 2, n1/n2 = 1 
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Figure 3a.  tmod v. Standard Normal, µ2 = µ1, σ2/σ1 =
 
 

Table 2.  Implementation of Table 1 Procedures Under Symmetry 

 Kurtosis of Distribution 

Sample Sizes platy- to mesokurtotic (OBt) leptokurtotic (OBr) 
 

Balanced (Shoemaker�s F1) OBtShoe OBrShoe 
 

Unbalanced (�modified� Levene) OBtLev OBrLev 
 

For symmetric data, the choice of which of these four tests to use is based on two criteria � whether the data is a

short-tailed as the normal distribution (platy- to mesokurtotic) vs. long-tailed (leptokurtotic), and whether sam

are balanced (or close) vs. at least moderately unbalanced, as shown in Table 2.5  However, implementing Ta

deciding, for example, how unbalanced long-tailed samples must be before using OBrLev rather than OBrShoe

additional simulations not performed in Opdyke (2004).  Subsequently, Opdyke (2006) bypassed this requ
                                                 

5 Aglina, Olejnik, and Ocanto (1989) make similar distinctions when proposing conditions for the alternate use of two of
tests (O�Brien�s test (1988) and the Brown-Forsythe test (1974)) used herein to develop the test statistic proposed herein (OB
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combining the Table 1 statistics using a maximum-test approach. 

�Maximum tests� � statistics whose scores (p-values) are the maximum (minimum) of two or more other statistics � 

have been devised and studied in a number of settings in the statistics literature with some very favorable results.  

Neuhäuser et al. (2004) compare a maximum test for the non-parametric two-sample location problem to multiple 

adaptive tests, finding the former to be most powerful under the widest range of data conditions.  Algina, Blair, and 

Coombs (1995) propose a maximum test for testing variability in the two-sample case,6 and Blair (2002) constructs a 

maximum test of location that is shown to be only slightly less powerful than each of its constituent tests under their 

respective �ideal� data conditions, but notably more powerful than each under their respective �non-ideal� data 

conditions.  These findings demonstrate the general purpose of maximum tests � to often, but not always, trade-off minor 

power losses under ideal or known data conditions for a more robust statistic with larger power gains across a wider 

range of possible (and usually unknown) data distributions.  

To construct a maximum test for the joint mean-variance hypotheses of (1), it must be recognized that maximum 

tests are conditional statistical procedures, and the additional variance introduced by such conditioning will inflate the 

test�s size over that of its constituent statistics (and if left unadjusted, probably over the nominal level of the test as 

shown in Blair, 2002).  But the constituent statistics in Table 1 are already conditional statistical procedures, so the p-

value adjustment used to maintain validity must be large enough to take this �double conditioning� into account (this 

actually is �triple conditioning� since O�Brien�s tests themselves are conditional statistical procedures).  The adjustment 

used in Opdyke (2006) is simply a multiplication of the p-values by constant factors (β�s), the values of which were 

determined based on extensive simulations across many distributions.  The p-value of the maximum test � OBMax � is 

defined below: 

  (6) 

 

 

 

where 2.8,β β β β= = = =OBtShoe OBtLev OBGShoe OBGLev and 1.8,β =tsv and tsvp  is the p-value corresponding to 

the separate-variance t test with Satterthwaite�s (1946) degrees of freedom (see Appendix for corresponding formulae). 

                                                 
6 Algina et al. (1995) report very good power for their test, which combines two of the variance tests used below in the statistic 
developed herein (OBMax2), but Ramsey & Ramsey (2007) report it is not robust when the nominal level is small (α = 0.01). 

 

  

min
 

            
1.0

,
,
,
,
,
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pp
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 
 
 
 
 
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While analytic derivation of the asymptotic distribution of OBMax would be preferable to reliance on the 

simulation-based β�s, Yang et al. (2005) show that such derivations for maximum tests are non-trivial, even under much 

stronger distributional assumptions than can be made with the conditional statistical procedures of Table 1.  Babu and 

Padmanabhan (1996) describe the exact null distribution of their omnibus maximum test as �intractable� and rely on 

thorough simulation to demonstrate the validity and power of their statistic.  Opdyke (2006) takes a similar approach to 

demonstrate the dramatically greater power of OBMax over the �modified� t under most alternate hypothesis 

configurations of (1).  However, OBMax has two limitations: it can violate the nominal level (α, the type I error control) 

when i) n2 > n1, as well as when, under asymmetry, ii) σ2 < σ 1 and at least moderately large n2 ≈ n1  (the former 

condition was not a problem in the setting for which OBMax originally was developed � the regulatory 

telecommunications arena � since nILEC ≥ nCLEC virtually always).  This paper eliminates these drawbacks with the 

development of a more robust statistic � OBMax2 � which maintains validity under asymmetry and any combination of 

sample sizes, with little loss of power relative to OBMax. 

 

METHODOLOGY 

Development of OBMax2 

If not stylized for specific asymmetric distributions, most two-sample statistics lose power under asymmetric data, 

and the constituent tests of OBMax are no exception to this general rule.  However, under certain conditions under 

asymmetry, OBMax fails to maintain validity: if sample sizes are large and equal (or close) and the study group variance 

is much smaller than the control group variance, OBMax (under asymmetry) will often violate the nominal level of the 

test.  This is due to O�Brien�s rank sum test (OBr) behaving badly under these conditions � surprisingly, skewed-tail 

outliers invalidate the Table 1 statistics that use this test under these specific conditions.  Although data transformations 

toward symmetry can alleviate this problem to some degree, there is no guarantee this will fix the problem altogether, if 

much at all.  Instead, Opdyke (2006) proposes the use of another maximum test � OBMax3 � if symmetry cannot be 

assured.  OBMax3 uses only three constituent tests, eliminating the two that use O�Brien�s rank sum tests, as shown 

below: 

 3
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OBtShoe OBtShoe
OBMax

tsv tsv

p
pp
p

β
β
β

 
 
 
 =
 
 
 
 

⋅
⋅
⋅  (7) 

 where 3.0,β β= =OBtLev OBtShoe   and 1.6β =tsv  
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OBMax3 maintains validity under both symmetric and asymmetric data, and under symmetry the largest power losses it 

suffers relative to OBMax are well under 0.10 (see Opdyke, 2006).  However, it unarguably would be preferable to have, 

rather than two tests, a single test robust to departures from symmetry that also retains most of the power of OBMax.  

And that is what OBMax2 accomplishes, as defined in (8) below: 

 

 pOBMax2  =  pOBMax3   if and only if (8) 
 a) 2 2

2 1≤s s  and 

 b) ( )2 1 10.5≤ +X X s    and 

 c) the null hypothesis of symmetry is rejected for either 
  sample by the test of D�Agostino et al. (1990) at α = 0.01 
 (see Appendix) 

 

 pOBMax2  =  pOBMax otherwise 
 
 

This conditioning on a), b) and c) in (8) causes minor power losses in OBMax2 (�2� for two maximum tests) compared 

to OBMax under symmetry, but the worst level violations, even under asymmetry, are small � far smaller than those of 

the �modified� t and separate-variance t statistics, which is a very important finding.  Before discussing the simulation 

study, however, one other adjustment to OBMax2 is presented below. 

In the regulatory telecommunications arena for which OBMax originally was developed, the size of the ILEC 

customer sample (the �control group,� subscript 1) almost always dwarfs that of the CLEC customer sample (the �study 

group,� subscript 2), so the behavior of OBMax under n2 > n1 was not a concern.  The present development of OBMax2, 

however, seeks to generalize its use under the widest range of possible conditions, making it robust and powerful not 

only under both symmetry and asymmetry, but also under all possible combinations of sample sizes.  Since it turns out 

that, under n2 > n1, increased variation of OBMax�s (and OBMax3�s) constituent statistics causes its violation of the 

nominal level of the test, an additional adjustment is required when (n2 / n1) > 1 for OBMax2 to maintain validity.  This 

is accomplished simply by increasing the size of the β adjustments as a function of the sample size ratio: 

 

The maximum function in (9) ensures that the β�s are increased only if (n2 / n1) > 1, and the minimum function ensures 

that the largest adjustment is +2.5, which was shown in simulations of up to (n2 / n1) = (3,000 / 30) = 100 to be adequate.  

The empirical level and power of OBMax2, as defined in (8) together with (9), are presented in the simulation study 

results below.7 

                                                 
7  It is important to note that when implementing OBMax2, O�Brien�s tests are referenced to the F distribution, rather than Blair�s 
(1991) size-correcting critical values, even though doing so would normally violate the nominal level of the test under some 
conditions, because the p-value β adjustments used here explicitly take this size inflation into account, as described above. 

[ ]( )2 1min 2.5,  max 0, log                                                             (9)X X e n nβ β  = +  
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Simulation Study 

Under a wide range of data distributions, sample size and mean-variance configurations, this study examines the 

empirical level and power of seven statistics:  

(a) OBMax2,  as defined in (8) and (9);   

(b) OBMax, as defined in (6);  

(c) OBMax3,  as defined in (7);  

(d) the �modified� t statistic (tmod),  as defined in (3);  

(e) the separate-variance t statistic (tsv) with Satterthwaite�s (1946) degrees of freedom (see Appendix), to 

provide a well-known basis for comparison;  

(f) Rosenbaum�s (1954) exceedance test (Ros), which counts the number of observations in one sample 

beyond the maximum of the other as a test of Ho: F(x) = G(x) against the general shift alternative;  

(g) and the (one-sided) Kolmogorov-Smirnov statistic (K-S) (using Goodman�s, 1954, Chi-square 

approximation � see Siegel & Castellan, 1988, p.148), a widely used test of stochastic dominance whose 

basic structure, which relies on the difference between the samples� cumulative distribution functions, 

underlies many such tests.   

Although not designed specifically for (1), (f) Ros and (g) K-S are included here because experts have proposed turning 

to these and similar tests, as well as tests of distributional equality (like permutation tests), when confronted with (1), and 

it is important to study their behavior under carefully controlled simulations (for example, K-S has been described as 

being �able to detect not only differences in average but differences in dispersion between the two samples as well.� (see 

Matlack, 1980, p. 359), which easily could be misinterpreted as an endorsement of this statistic for testing (1)). 

The simulation study data was generated from highly disparate distributions, including the normal, uniform, double 

exponential, exponential, and lognormal distributions, for five different pairs of sample sizes (n2 = n1 = 30, 90, & 300; n2 

= 30 & n1 = 300; and n2 = 300 & n1 = 30), seven different variance ratios ( [ 2 2
2 1σ σ ] = 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 

2.00) and seven different location shifts (µ2 = µ1 � 2σ1, µ1 � σ1, µ1 � 0.5σ1, µ1, µ1 + 0.5σ1, µ1 + σ1, µ1 + 2σ1), making 

1,225 scenarios.  N = 10,000 simulations were run for each scenario.   

The normal distribution was chosen as a universal basis for comparison; the uniform and double exponential 

distributions were chosen as examples of very short- and very long-tailed distributions, respectively, to examine the 

possible effects of kurtosis on the tests; and the exponential and lognormal distributions were chosen to examine the 

possible effects of extreme skewness on the tests.  The simulations do not include cross-distributional comparisons: the 

two data samples always are generated from the same distribution.  While this assumption of same (or very similar) 

distributions commonly is made by researchers when using two-sample tests, it arguably has stronger justification in the 

quality control setting since the comparison is of the quality of two otherwise similar or identical processes or 
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populations, not of two processes or populations that are potentially completely dissimilar by any of numerous criteria.  

In the latter case, other statistical tests, or in-depth distributional examinations, are more appropriate. 

Sample sizes were chosen to cover a range considered to be fairly small to moderately large, as well as balanced to 

quite unbalanced, and two common nominal levels were used: α = 0.05 and 0.10, bringing the total number of scenarios 

to 2,450 (600 null hypotheses, and 1,850 alternate hypotheses). 8 

 

RESULTS 

 

The rejection rates under the null and alternate hypotheses of (1) � empirical level and power, respectively � for 

OBMax2 are shown in Figure 4 for α = 0.05 (results for α = 0.10 are similar; complete study results are available from 

the author upon request).  General patterns in power can be observed.  Not surprisingly, OBMax2 has more power for 

detecting mean increases (under equal variances) than for detecting variance increases (under equal means).  Also as 

expected, power increases as sample sizes increase, with slightly greater power under n2 = 300 & n1 = 30 compared to n2 

= 30 & n1 = 300 for σ2 > σ1, but often vice versa for µ2 > µ1.  Power is greatest under short-tailed (uniform) data, 

decreasing steadily for longer-tailed data as kurtosis increases (to normal and then double exponential data).  Power is 

lowest under skewed data, and the greater the asymmetry, the lower the power (the lognormal samples are more skewed 

with these mean-variance configurations than the exponential samples). 

Figure 5 graphs a histogram of the differences in power between OBMax2 and the �modified� t (1,106 of the 1,850 

simulations had a non-zero power difference; the large mass point of zero difference is excluded from all histograms).  

OBMax2 completely dominates the �modified� t whenever the study group variance is larger and the study group mean is 

equal or smaller (which is most of the 79% of alternate hypothesis cases where there is a difference in power).  This is 

simply a demonstration of the modified t�s inability to detect differences in variances, as seen above in Figures 3a and 

3b.  However, when the study group mean is slightly larger � i.e. under slight location shifts � the �modified� t does have 

a slight power advantage over OBMax2 (most of the 21% of alternate hypothesis cases where there is a difference in 

power).  This is the price paid by OBMax2 for its ability to serve simultaneously as a test of differences in either means 

and/or variances.  However, this modest power advantage disappears as samples increase to moderate sizes, as seen in 

Figures 6-8. 

                                                 
8 A permutation test was not included among the competing statistics in this simulation study because, for N=10,000 simulations per 
scenario, 2,450 scenarios, and assuming only half a second of runtime to conduct each computationally intensive permutation test (a 
very conservative estimate for the larger samples in the simulation study), the number of runtime seconds = 2,450 x 10,000 x 0.5 = 
12,250,000 = 141.8 days.  However, what can be said about OBMax2 relative to permutation tests, Persarin�s (2001) in particular, is 
that all else equal, the former would be preferred because it is not computationally intensive. 
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When there is a difference in power between OBMax2 and OBMax3, the former almost always wins, with the 

largest power gains under asymmetry and σ2 > σ1 (0.23 and 0.18 for α = 0.05 and 0.10, respectively).  OBMax3 only has 

more power when n2 > n1, but then it often substantially violates the nominal level.  Compared to OBMax, the largest 

power loss of OBMax2 approaches 0.13 under symmetry, which is the price paid for OBMax2�s very good level control, 

even under asymmetry, as seen in Figure 9 compared to the �modified� t.  Both the �modified� t and separate-variance t 

statistics often substantially violate the nominal level of the test under skewed data (this is a well known result for the 

one-sample t-test � see Chaffin & Rhiel, 1993, Boos & Hughes-Oliver, 2000, and Zhou & Gao, 2000).  The worst level 

violations of OBMax2, on the other hand, are what most researchers would consider reasonable, if not quite good: 

between 0.06 and 0.07 when α = 0.05, and just over 0.11 when α = 0.10.  Regarding the other tests, although the 

Rosenbaum exceedance statistic always maintains validity, it often has dramatically less power than OBMax2, especially 

if the study group mean is smaller than the control group mean, when it often has absolutely no power to detect a larger 

study group variance (which actually is consistent with its design).  This latter finding also is true of the K-S statistic 

which, although sometimes more powerful than OBMax2 under small location shifts, often severely violates the nominal 

level when means are identical but the study group variance is smaller.  This is because the smaller variance causes the 

distance between the empirical cumulative distribution functions of the two samples, which determines the significance 

of K-S, to be sizeable on either side of the common mean (see Figures 10 and 11).  This causes high rejection rates for 

one-sided tests simultaneously in both directions.  In this study, for example, when µ1 = µ2, σ2 / σ1 = 0.50, and n1 = n2 = 

300, the K-S rejection rate, when α = 0.05, is over 0.95 for the uniform, exponential, and lognormal distributions, and 

very large for the double exponential (0.35) and normal (0.57) distributions as well.  This makes it and similarly 

structured tests of stochastic dominance that rely on the difference between cumulative distribution functions unusable 

for the joint hypotheses of (1). 
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Figure 10.  PDFs: K-S Violates Nominal Level when  µ1=µ2, σ2<σ1 
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Figure 11.  CDFs: K-S Violates Nominal Level when  µ1=µ2, σ2<σ1 

 
 

 

DISCUSSION AND CONCLUSIONS 

 

In quality control settings requiring a one-sided test of the joint mean-variance hypotheses of (1), many researchers 

and investigators to date have suggested using inappropriate statistics.  Although supported by extensive expert 

testimony, the �modified� t was shown here and in Opdyke (2004, 2006) to be completely powerless under many, if not 

the majority, of alternate hypothesis scenarios under (1).  Tests of stochastic dominance, too, are inappropriate.  

Arguably the most commonly used of these � the Kolmogorov-Smirnov statistic � was shown in this simulation study 

not only to have no power to detect a larger study group variance when the study group mean is much smaller (which is 

consistent with its design), but also to severely violate the nominal level of the test when means are equal and the study 

group variance is smaller.  The first of these two drawbacks also was shown to be true for a common exceedance test.  

The one type of test not examined here that researchers and quality investigators sometimes turn to when confronted with 

(1) are permutation tests.  Permutation tests are computationally intensive, nonparametric, rank-based statistics that test 

whether the entire distributions of two populations are equal: Ho: F(x) = G(x) vs. Ha: F(x) ≠ G(x).  As such, they are not 

particularly powerful for detecting differences in variances alone (see Good, 2000, pp.32-33), and only one permutation 

test has been designed specifically as a joint mean-variance test of (1).  Pesarin (2001) develops such a statistic by 

combining two permutation tests � one of scale and one of location � using any of several p-value combining functions 

(pp.147-148, 325).  However, his test has one, and potentially two drawbacks relative to OBMax2: first, it is 

computationally intensive which, all else equal, is a limitation, and even runtime prohibitive for larger samples.  

Secondly, the combining function it relies upon must be chosen with care since many in common usage (e.g. Fisher and 

Liptak) would decrease the power of the test under many situations due to their �trade-off� nature: a small and 

significant p-value from one of the constituent tests can be �undone� by a large p-value from the other test when the two 

are combined, in which case the overall test will lose power under (1).  While the Tippet function, which is itself a 
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maximum-test approach, appears to avoid this problem, OBMax2 never suffers from a �trade-off� problem and thus, 

may be �safer� (i.e. more powerful, all else equal) if the Tippet function cannot be used with Pesarin�s test for some 

reason (see Pesarin, 2001, pp.147-149, for further details). 

Thus, only OBMax2 remains as a generally powerful, valid, and easily implemented test of (1) � whether the mean 

and/or variance of one process or population are larger than (worse than) those of another.  For many quality control 

problems, like the equal service requirement in the regulatory telecommunications arena, this is the specific hypothesis 

that matters.  The simulation study presented above demonstrates OBMax2�s notable power under symmetry, and its 

much more modest power under asymmetry, which unfortunately is common among two-sample statistics and is the 

price paid for OBMax2�s good level control under all conditions.  Still, improving its power under skewed data is a 

worthy objective, and remains the subject of continuing research, as is the derivation of its asymptotic distribution.   

To end on a cautionary note, it should be (re)emphasized that OBMax2 was developed specifically for hypothesis 

testing, for which it was shown to have good level control for (1) at commonly used nominal levels.  In other words, its 

p-values appear to be uniformly distributed (at or under the appropriate �height�) in the range that matters for most 

hypothesis tests.  It would not be advisable, however, to use OBMax2�s p-values for other purposes requiring a 

presumption of uniformity across its entire domain of zero to one.  As one might expect, �β-inflating� the p-values of 

OBMax2�s constituent statistics to maintain its overall validity has the consequence of �bunching up� its otherwise 

uniform p-value distribution at 1.0, as seen in Figure 12.  One positive note from this finding, however, is that an 

examination of all of the 600 null distributions of OBMax2�s p-values that were generated in this study reveals good 

level control for even larger nominal levels, such as α = 0.15 and 0.20.  And power given robust level control is all that 

matters for a hypothesis test, and this is the criterion by which OBMax2 far surpasses any of its competitors. 
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APPENDIX:  Statistical Formulae 
 

OBt and OBr: O�Brien�s OBt test involves running the 
following ordinary least squares regression on pooled data 
including both samples:  

                           2
0 1 2i i i iy x xβ β β ε= + + + ,                   (10)  

where y is a dummy variable indicating inclusion in the study 
group sample, and x is the performance metric variable.  If the 
parameter on the quadratic term (β2) is (positively) statistically 
significant at the 0.25 level, use the critical value of the overall 
equation (an F test of β1=β2=0) to reject or fail to reject the null 
hypothesis; if it is not, use the critical value of the overall 
equation of the following ordinary least squares regression 
instead:  

                               0 1i i iy xβ β ε= + +                              (11) 

(Of course, this latter test of β1=0 is equivalent to a two-sample 
t test.)  O�Brien�s OBr test is identical to the OBt test except 
that the pooled-sample ranks of x are used in the regressions 
instead of the x data values themselves. 
 

�modified� Levene test: The �modified� Levene test requires a 
simple data transformation: take the absolute value of each 
data point�s deviation from its respective sample median (as 
per Brown & Forsythe (1974)), and then calculate the usual 
one-way ANOVA statistic using these transformed values (as 
per Levene (1960)).  The resulting statistic (12) is referenced 
to the F distribution as usual.  

Let = − !ij ij iz x x  where !ix is sample i�s median 

    
( ) ( )

( ) ( ) ( ) ( )

2

2 1 , 1

1

1

⋅ ⋅⋅

− −
⋅

− −
=

− − ∑

∑

∑∑ ∑
∼

i
i

i i
i

o g n
ij i i

i j i

n z z g
W F

z z n
    (12) 

where =∑i ij iz z n  and  ⋅⋅ =∑∑ ij iz z n  

However, because this test is designed as a two-tailed test, and 
the hypotheses being tested in (1) are one-tailed, the p-value 
resulting from this test, when used conditionally with 
O�Brien�s tests as in Table 1, must be subtracted from 1.0 if 
the study group sample variance is less than the control group 
sample variance. 
 

Shoemaker�s F1 test: Shoemaker�s F1 test is simply the usual 
ratio of sample variances referenced to the F distribution, but 
using different degrees of freedom:   

2 1

2 2
2 1 ,∼ df dfs s F     where   4

4
� 12
� 3

i
i i

i

ndf n
n

µ
σ
 −= − − 

,   (13) 

i = 1, 2 corresponds to the two samples, and 4µ  and 4σ  are 
estimated from the two samples when pooled:  
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            ( ) ( )( ) ( )
24 2 2

1 1 2 2 1 2� 1 1n s n s n nσ  = − + − +           (15) 

 
Shoemaker (2003) notes that the biased estimate for 4σ  is used 
for improved accuracy. 
 
separate-variance t test:  The separate-variance t test, also 
known as the Welch or Behrens-Fisher t test, is below: 
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Satterthwaite�s (1946) degrees of freedom for tsv is:   
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If df is not an integer, it should be rounded down to the next 
smallest integer (see Zar (1999), p.129) 
 
test of D�Agostino et al. (1990):  The test of D�Agostino et al. 
(1990) is calculated as follows: 
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For one-tailed testing of skewness to the left, check 

( )1
Pr ≤ gZ Z ; for skewness to the right, check ( )1

Pr ≥ gZ Z .  

See Zar (1999), pp.115-116, for further details. 
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