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I. What are Capital Aggregation and Capital Allocation? 
A. Why is Capital Aggregation/Allocation Desirable and/or Necessary? 
B. How is Capital Aggregation Typically Done?  Factor Models, Copulas, Factor Copulas, Others 

(note the fully flexible, multiple df t-copula) 

II. Common Real World Constraints, both Empirical and Computational: 
A. Heavy-tailed, Empirical (i.e. nonparametric) Marginal Loss Distributions (HEMLD) 
B. Algorithmic Solution to CDF Inversion: With HEMLD,  

i. Hashing cannot handle memory demands 
ii. Merging takes too long 
iii. CATA has neither problem, and can avoid the need for more complex sampling schemes 

III. Re-examining VaR vs. ES under HEMLD 
A. ES is globally subadditive in theory, but under HEMLD, it can be superadditive EMPIRICALLY! 
B. VaR is not globally subadditive; but this is often moot empirically, especially under HEMLD. 
C. VaR generally is not differentiable, so no Euler allocation … unless we apply a kernel! 
D. VaR IS less variable and typically more robust than ES, especially under HEMLD. 
E. One risk metric (VaR) for both Aggregation and Allocation avoids potential inconsistencies. 
F. ES has nice theoretical properties, but under HEMLD, no practical advantages over VaR. 

IV. Summary and Conclusions 
V. References 

Contents 
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• We have a portfolio with N components, each with a (loss) distribution. 
• We use various risk metrics to assess the riskiness and estimated the capital 

requirements of each component.  Applying a risk metric to each standalone 
component (i.e. to each distribution) typically is straightforward: 
 
 

• Value-at-Risk =  

• Expected Shortfall =  

• Expectile =  
 

• Capital Aggregation: to apply the risk metric(s) to the entire portfolio, we must 
AGGREGATE the components of the portfolio and treat them as a multivariate 
loss distribution. 

I. What are Capital Aggregation & Capital Allocation? 
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• Capital Aggregation: to apply the risk metric(s) to the entire portfolio, we must 
AGGREGATE the components of the portfolio and treat them as a multivariate 
loss distribution. 

• Under perfect dependence, losses across components occur perfectly in 
tandem, so for VaR for example, the 1-in-1000 year loss (α=0.999), on average, 
for all the components will occur in the same time period, and portfolio VaR 
equals their sum: 
 

• Under IMperfect dependence, losses across components DO NOT occur 
perfectly in tandem (i.e. the portfolio possesses some diversification), so: 
  

• The size of the diversification benefit =                                                     depends 
mainly on: 
• The degree to which dependence structure deviates from perfect 

dependence (e.g. if measured by correlation bounded by -1 and 1, the 
greater the deviation from positive 1, the greater the db, ceteris paribus). 

• The selected risk metric & its interaction with the marginal loss distributions 
 

I. What are Capital Aggregation & Capital Allocation? 
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• Capital Aggregation is necessary for an accurate assessment of risk at the 
portfolio level. 

• Capital Aggregation is desirable when diversification benefit is positive and 
material, as should often be the case in real world financial applications.* 

• Across most regulatory settings, capital aggregation largely has been 
acknowledged as appropriate, and has even been encouraged, for obtaining 
accurate assessments of portfolio-level risk. 
 

I. What are Capital Aggregation & Capital Allocation? 

* In operational risk, for example, a widely cited range for typical diversification benefit is 25%-50% of total estimated capital (see 
Incisive Media, OR&R, 2009). 
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• Capital Allocation:  Once capital has been aggregated, it must then be 
(re)allocated back to the components of the portfolio for business-decisioning 
and other strategic purposes. 

• Note that the unarguable platinum standard for capital allocation is the Euler 
allocation principal, which has been shown to be either optimal or ‘most 
appropriate’ from a wide range of perspectives including the economic, game 
theoretic, portfolio optimization, insurance, and axiomatic (see Tasche, 2007). 

• Conceptually, Euler allocation is the unique allocation solution for which the 
gradients of all components of the portfolio are equal.  In other words, under 
Euler allocation, the marginal effect to portfolio-level risk of a dollar allocated 
to one component is equal to that of any other. 
• Euler Allocation principal:  A function,    , that is differentiable and positively 

homogenous satisfies 
  
 

• Note that while standalone VaR is not differentiable, it is positively 
homogeneous with  

I. What are Capital Aggregation & Capital Allocation? 

( ) ( )   where degree of homogeneity; 0.nf x f x nα α α= = >
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• Capital Aggregation:  Methods for aggregation include 
• Copulas (see Luo and Shevchenko, 2011) 
• Factor Models (see Embrechts et al., 1999a) 
• Factor Copulas (see Oh and Patten, 2015) 
• Other (see Arakelian and Karlis 2014; Bernard and Vanduffel 2014; 

Dacoragna et al., 2016; Dhaene et al., 2013; Polanski et al 2013; and 
Reshetar, 2008) 

 
• Of course, factor models can be the platinum standard when extant data and 

methodological implementation permit the estimation of fully specified 
econometric models that adequately incorporate the dependence structure of 
multiple components of the portfolio.  Unfortunately this is often not the case, 
especially when aggregating at the enterprise level. 

I. What are Capital Aggregation & Capital Allocation? 
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• We focus herein on copulas. 
• Copulas are the most widely used method of capital aggregation in part 

because they often have fewer data and methodological requirements 
compared to frameworks relying (solely) on factor models.   

• Their widespread usage also is due to their tractability and an extremely 
convenient and useful characteristic of their estimation and implementation: 
the dependence structure and the marginal loss distributions are completely 
independently specified and/or estimated (see Sklar, 1959; Meucci, 2011).   

• In other words, the dependence structure is in no way related to the marginal 
loss distributions, and each can be specified and/or estimated separately.  
 

 

I. What are Capital Aggregation & Capital Allocation? 
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• We note here that one of the most widely used copulas, the meta t-copula,* 
has one major limitation that is particularly relevant under HEMLD: it assumes 
identical tail dependence across all components of the portfolio, which is 
generally implausible (see Wagner and Wenger, 2009), especially under 
HEMLD for enterprise-level dependence structures. 

• So for practical usage under HEMLD, we note that the varying df meta t-copula 
of Luo and Shevchenko (2011) circumvents this limitation by allowing the 
parameter measuring tail dependence – the degrees of freedom (df) – to vary 
for each component of the portfolio.  This copula nests the standard meta t-
copula (and so its estimation will always be at least as good as the standard 
case), and it is much more straightforward to implement and estimate than 
nested t-copulas (see Wagner and Wenger, 2009).  The copula is presented 
below.  
 

 

I. What are Capital Aggregation & Capital Allocation? 

*  Technically , a “t-copula” whose marginals are not distributed as the student’s t distribution is a meta t-copula.  This almost always  
    is the case in practice, although the copula is widely referred to soley as a “t-copula,” dropping the ‘meta’ prefix. 
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Per Luo and Shevchenko (2011): 
 

 

I. What are Capital Aggregation & Capital Allocation? 
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( ) ( ) ( )( )1

1 10
u , , , ,  ,  with densityv n nC z u s z u s ds∑

∑= Φ∫ 

( ) ( ) ( ) ( )( ) ( ) ( )
1

1 1

1 10
1 11

u
u , , , ,

k

n n n
v

v n n k v k
k kn

C
c z u s z u s w s ds f x

u u
φ

−∑
−∑

∑
= =

∂   =   ∂ ∂  
∏ ∏∫ 



where

( ) ( ) ( ) ( )1 1, ,  1,2, ,   where   is the inverse of the student's t distribution with  df
k kk k v k k v kz u s t u w s k n t v− −= = …

( ) ( ) ( ) ( )1 1 1  where  is the inverse of the cdf of the Chi-square distribution with  df
k k kk v k v v kw s G s v s s vχ χ− − −= =

( )one random draw from the uniform 0,1  distributions =

( )1 ,  1,2, ,
kk v kx t u k n−= = …

( ) ( ) 21
1

1, , exp z z 2 det   is the multivariate standard Normal density
2

n
nz zφ π−

∑
   ′= − ∑ ∑    



( ) ( ) ( )
1

2 2 11 1   is the univariate student's t density*
2 2

v

v
vf x x v v vπ

+
−     = + Γ + Γ    

    

*  Note the preprint contains a typo in this formula. 
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• Capital Allocation:  Common methods for allocation include 
• Euler allocation principal (see Tasche, 2007; Tasche, 2009; and Holden, 

2008) 
• Shapley method (see Shapley, 1953;  Balog, 2010) 
• Haircut principal / Activity based method (see Hamlen et al., 1977) 
• Beta method / Covariance principal (see Panjer, 2002) 
• Incremental method (see Jorion, 2007) 
• Cost gap method (see Driessen and Tijs, 1985) 

• The above are not always mutually exclusive (e.g. a Shapely implementation, 
although often very cumbersome, can be consistent with the Euler principal), 
and highly dependent upon the risk metric used and HOW they are used. 

• For example, Euler consistent allocation requires risk metric that is A. 
positively homogenenous, and B. differentiable.  Standalone VaR satisfies 
condition A. but does not satisfy condition B.  However, when a kernel is 
applied to VaR (see Tasche, 2009), B. is satisfied approximately. 

 

I. What are Capital Aggregation & Capital Allocation? 
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• When aggregating capital at high levels, say, across an institution’s risk types 
(e.g. operational, credit, and market), it is not uncommon for marginal loss 
distributions (themselves often the result of aggregation) to be generated by 
non-trivial simulations, and/or simulations of simulations, which typically will 
have no parametric closed form (see Wagner and Wenger, 2009). 

• Even in the absence of simulation-based loss distributions, the lack of closed-
form distributions often is by design and/or (implicit) regulatory requirement.  
For example, AMA-consistent Operational Risk loss distributions typically 
have no closed form parametric representation under the Loss Distribution 
Approach (which is used, and ‘regulator approved,’ almost ubiquitously).  
Consequently, these are ‘empirical’ loss distributions, and they also typically 
are very heavy-tailed (see Opdyke, 2014).  While not as heavy-tailed as 
Operational risk loss distributions in most cases, Credit risk distributions 
used at the enterprise (portfolio) level certainly tend not to be light-tailed, and 
often aren’t far behind their OpRisk counterparts in terms of the heaviness of 
their tails. 
 

II. Common Real World Constraints: HEMLD 
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• So when aggregating capital at the top-of-the-house, where the diversification 
benefit is often largest in absolute terms, we often have Heavy-tailed, 
Empirical (i.e. nonparametric) Marginal Loss Distributions (HEMLD).  Both of 
these characteristics pose computational challenges when aggregating (and 
allocating) capital. 

• Take the most commonly used aggregation method: copulas. 
• Under HEMLD, the heavy-tailedness and empirical nature of the marginal loss 

distributions interact to increase computational demands of a copula 
simulation* by many orders of magnitude. 

• Due to the fact that the distributions are heavy-tailed, we need larger empirical 
loss distributions (i.e. many more simulated observations), to adequately 
represent the tails of the distributions.  And of course, by definition, the tails 
cannot be extrapolated via parametric estimation.** 

• So we have very large empirical loss distributions (e.g. 10 million 
observations) that when translated into large empirical cumulative loss 
distributions (cdf’s), still are very large (e.g. 1 million ±), and these need to be 
inverted post-copula-simulation to obtain the multivariate loss distribution. 

II. Common Real World Constraints: HEMLD 

*   In practice, almost all copula implementations are based on simulations: very few copulae can be implemented 
with fully analytical representations.  See Dacoragna et al. (2016) for a recent exception. 
 

** Next page. 
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• Inverting the empirical cdf’s is straightforward conceptually – it just requires a 
merge / join of the empirical cdf and the copula.  But because of the heavy-
tailed nature of the marginal loss distributions, the copula ALSO must 
generate large numbers of simulations (e.g. 10 million; the industry standard 
of 1 million is not sufficient) to adequately represent the extreme tails, let 
alone capture any extant tail dependence.  So this becomes a merge / join of 
two very large datasets. 

• These issues remain even when more involved sampling schemes that over-
represent the distributional tails (e.g. Importance Sampling) can be employed. 

• Merge / Join: even when done as efficiently as possible, takes way too long 
(hours/days on a desktop).  

• Hashing: typically is much faster, but due to the SIZE of both the empirical 
cdf’s and simulated copula, memory requirements are too great, and on all but 
the largest computers, it crashes. 
 

II. Common Real World Constraints: HEMLD 

** ‘Curve fitting’ to approximate the empirical loss distribution has never been acceptable practice in Operational Risk from a 
regulatory perspective, and many would argue – whether or not in a regulatory capacity – that this exercise would be characterized 
by very high estimation variance in the tails of the (approximated) loss distributions, which would defeat the purpose of the 
approximation.  In short, attempting to impose a parametric form creates an additional and unnecessary layer of estimation error. 
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• CATA: an alternate approach, based on Opdyke (2011 and 2013), avoids both 
obstacles: it is not only often orders of magnitude faster than merging / 
joining, but also handles memory much more efficiently than hashing and 
does not crash on cdf’s and copulas more than an order of magnitude larger 
than those that hashing can handle. 

• CATA also is so fast (minutes vs. hours on a desktop) that it avoids the need 
for more involved sampling schemes (like Importance Sampling), which, even 
when useable, add an additional layer of distributional approximation. 

• Convergence Algorithm using Temporary Arrays (CATA) is stable, robust, and 
always finds a solution.  It converts the empirical cdf into a temporary array 
per Opdyke (2011 and 2013), thus converting a column of data into a row of 
data which in SAS® resides entirely in very efficiently used memory.  Then bi-
section or a variant* (see Galdino, 2011) is applied to lookup the cdf value that 
corresponds to each copula value that is simulated one value at a time.  Once 
the cdf is inverted, the value is again saved as a field (column) of data. 

• Even when the empirical cdf is over 1 million values, the bi-section typically 
converges in a dozen or so iterations with accuracy to 1.0e-15 (the highest a 
desktop computer chip can achieve). 
 

II. Common Real World Constraints: HEMLD 

* Variants that exploit the approximate shapes of 
the empirical cdf’s (they are very concave) can 
yield additional algorithmic efficiencies here. 
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• As mentioned above, the risk metric used has a very strong effect on capital 
allocation results. 

• The most commonly used risk metric for standalone capital estimation and 
aggregation is VaR, with ES also being widely used; for capital allocation, 
both ES and VaR are widely used, with the former arguably used more widely. 

• ES has nice theoretical properties, mainly that it is a ‘coherent’ risk measure 
per Artzner et al. (1999), where ‘coherent’ is defined as satisfying the four 
axioms of translation invariance, subadditivity, positive homogeneity, and 
monotonicity. 

• It is worth emphasizing that only its lack of global subadditivity prevents VaR 
from being classified as a ‘coherent’ risk measure. 

• Also note that while seminal, the axioms of coherence are not inviolate: some 
have proposed modification or replacement of some of these axioms under 
various real-world conditions, especially in the regulatory realm (see, for 
example, Dhaene et al., 2008; and Föllmer and Weber, 2015, for definitions of 
alternate sets of axioms defining ‘convex’ and ‘monetary’ risk measures). 
 

III. Re-examining VaR vs. ES under HEMLD 
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• Unfortunately, theoretical properties of risk metrics, in this case ES, are not 
always consistent with the empirical results of capital allocations based on 
real-world loss datasets of large financial institutions (i.e. regulated ones): 
this is especially true under HEMLD. 

• It has been well documented in the literature, both analytically and empirically, 
that ES is associated with much greater estimation variance than is VaR, 
ceteris paribus (i.e. using the same percentile values for α; for example, see 
Yamai and Yoshiba, 2002).   

• Under HEMLD, even when ES is finite, this variance can be extremely large, 
and lead to superadditivity EMPIRICALLY, and this result can be reasonably 
stable and consistent (i.e. not simply the result of a few extreme simulations 
out of many millions). 

III. Re-examining VaR vs. ES under HEMLD 
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• Objections to VaR’s use in capital aggregation/allocation are twofold:  
1. not globally subadditive, and  
2. not differentiable, which prevents allocation consistent with the Euler 

allocation principal. 
 

Per 1.: 
• While VaR is not globally subadditive, it has been shown to be subadditive, 

under many conditions, in the relevant range of the loss distribution, i.e. far 
into the tails (see Cumperayot et al., 2000; Danielsson et al., 2005; Danielsson 
et al., 2013; Embrechts et al., 2008; and Klueppelberg and Resnick, 2008). 

• VaR appears to be empirically subadditive under HEMLD for large alpha (i.e. 
out in the tails), which is the only place aggregation and allocation are done  
(see Wagner and Wenger, 2009).  

• Finally, the most widely cited examples of VaR’s superadditivity are 
recognized as not based on real-world loss data from large financial 
institutions (e.g. Gaussian distributions; see Embrechts et al., 1999b), and 
even dismissed as ‘ad hoc’ (see Wagner and Wenger, 2009). 

III. Re-examining VaR vs. ES under HEMLD 
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• So this is arguably somewhat paradoxical: ES is globally subadditive in 
theory, but under HEMLD its empirical results can violate this axiom and 
exhibit superadditivity.  In contrast, VaR is NOT globally subadditive, but 
under HEMLD, empirical results render this axiom moot: VaR appears to be 
subadditive empirically far into the tails, where it matters.  

• For some, however, this may seem less paradoxical than merely very 
intriguing: perhaps this group would include practitioners more familiar with 
provocative divergences between purely theoretical results and challenging, 
empirical realities.   
 

Per 2.: 
• While (standalone) VaR is not differentiable, Tasche (2009) applies a 

Nadayara-Watson kernel to it to make it approximately so. 

III. Re-examining VaR vs. ES under HEMLD 
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Per 2.: 
• While (standalone) VaR is not differentiable, Tasche (2009) applies a Nadarya-

Watson kernel to it to make it approximately so. 
• This allows for allocation approximately consistent with the Euler allocation 

principle, and eliminates the remaining objection to VaR’s use.  
• Finally, VaR is increasingly being cited in the relevant aggregation and 

allocation literatures as being empirically subadditive over the relevant ranges 
of α, and that this result is a robust one (see Wagner and Wenger, 2009)* 
 

III. Re-examining VaR vs. ES under HEMLD 

* p.136 “… In all calculations in these papers, there arises a diversification benefit in the process of aggregating via VaR. Hence 
subadditivity is not violated in the numerical examples arising in these works. Many practitioners have confirmed these conclusions 
in various other settings and parametrizations. Going beyond mere numerical evidence, Danielsson, Jorgensen, Sarma, and 
deVries (2005) provide a class of examples where subadditivity can indeed be proved, both for independent and for dependent 
risks.  …Embrechts, Neshlehova, and Wűthrich (2008) and Klűppelberg and Resnick (2008) prove subadditivity in a large class of 
models typical for OpR and in fact even characterize some classes of models by the subadditivity property.” 
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Per 2.: 
Additional Advantages of VaR over ES under HEMLD: 
• Using a single risk metric for both aggregation and allocation avoids potential 

misunderstanding, misinterpretation, and internal inconsistencies in 
translations between multiple risk metrics (e.g. using VaR with one value of α 
for aggregation, and ES with another value of α that yields the same VaR with 
the original α, is not uncommon).  Using a single risk metric also greatly 
simplifies and makes consistent the cascading of allocations from higher 
levels (e.g. across risk types at the enterprise level) to lower levels (e.g. 
business units). 

• Under HEMLD, in addition to growing evidence shows that VaR is (empirically) 
coherent, while ES, at least in some cases, is not,  VaR also is more stable, 
ceteris paribus (for example, see Yamai and Yoshiba, 2002).  Consequently, 
under HEMLD, VaR maintains notable advantages over ES, and we remain 
unaware of any real advantages of ES over VaR.* 

III. Re-examining VaR vs. ES under HEMLD 

* One possible exception to this are issues related to ease of decomposition, but these may be rendered irrelevant anyway under 
HEMLD, that is, without analytically convenient parametric marginal loss distributions. 
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• Capital Aggregation and Allocation are necessary and desirable for the 
accurate assessment of portfolio level risk and obtaining diversification 
benefit, which at the enterprise level can be substantial ($ billions). 

• Heavy-tailed, Empirical Marginal Loss Distributions (HEMLD), commonly 
encountered when aggregating/allocating capital at the enterprise level, pose 
non-trivial empirical and computational challenges to this exercise. 

• Presented herein is a stable, efficient algorithm, based on widely used and 
proven methods, that circumvents these challenges posed by HEMLD. 

• HEMLD also prompts a re-examination of the selection of risk metrics for 
capital aggregation and allocation.  

• Under HEMLD, VaR is empirically subadditive and coherent, while ES, at least 
in some cases, is not.  VaR also is more stable, ceteris paribus.  We remain 
unaware of any advantages of ES over VaR under HEMLD. 

• Additionally, applying a kernel to VaR a la Tasche (2009) renders capital 
allocation based on it approximately consistent with the Euler allocation 
principal, thus removing the only other objection to the use of VaR over ES for 
either capital aggregation or allocation. 

IV. Summary and Conclusions 
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“Measurement is the first step that leads to control and eventually to 
improvement.  If you can’t measure something, you can’t understand 
it.  If you can’t understand it, you can’t control it.  If you can’t control 
it, you can’t improve it.” 
- H.J. Harrington 
 

Consistent with Harrington’s adage above, we have presented herein 
a very efficient algorithm to utilize a fully flexible copula when faced 
with Heavy-tailed Empirical Marginal Loss Distributions (HEMLD).  
Under these data conditions, which are commonly encountered at the 
enterprise level, VaR is empirically coherent, while ES sometimes is 
not, and VaR is more stable, ceteris paribus.  VaR-based allocation 
also can be consistent with the Euler principal.  The often very large 
diversification benefit generated by capital aggregation makes its 
accurate and stable measurement, let alone its optimal allocation, of 
paramount importance. 

IV. Summary and Conclusions 
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