
J.D. Opdyke, Managing Director, DataMineit, LLC Page 1 of 61 Computational Statistics: WIRE, May, 2013

Bootstraps, Permutation Tests, and Sampling Orders of Magnitude Faster Using SAS®

John Douglas (“J.D.”) Opdyke*

Abstract

While permutation tests and bootstraps have very wide-ranging application, both share a common
potential drawback: as data-intensive resampling methods, both can be runtime prohibitive when applied to
large or even medium-sized data samples drawn from large datasets. The data explosion over the past few
decades has made this a common occurrence, and it highlights the increasing need for faster, and more
efficient and scalable, permutation test and bootstrap algorithms.

Seven bootstrap and six permutation test algorithms coded in SAS (the largest privately owned software
firm globally) are compared. The fastest algorithms (“OPDY” for the bootstrap, “OPDN” for permutation
tests) are new, use no modules beyond Base SAS, and achieve speed increases orders of magnitude faster
than the relevant “built-in” SAS procedures (OPDY is over 200x faster than Proc SurveySelect; OPDN is
over 240x faster than Proc SurveySelect, over 350x faster than NPAR1WAY (which crashes on datasets less
than a tenth the size OPDN can handle), and over 720x faster than Proc Multtest). OPDY also is much faster
than hashing, which crashes on datasets smaller – sometimes by orders of magnitude – than OPDY can
handle. OPDY is easily generalizable to multivariate regression models, and OPDN, which uses an
extremely efficient draw-by-draw random-sampling-without-replacement algorithm, can use virtually any
permutation statistic, so both have a very wide range of application. And the time complexity of both OPDY
and OPDN is sub-linear, making them not only the fastest, but also the only truly scalable bootstrap and
permutation test algorithms, respectively, in SAS.

Keywords:
Bootstrap, Permutation, SAS, Scalable, Hashing, With Replacement, Without Replacement, Sampling

JEL Classifications: C12, C13, C14, C15, C63, C88

Mathematics Subject Classifications: 62F40, 62G09, 62G10

* J.D. Opdyke is Managing Director, DataMineit, LLC, a consultancy specializing in advanced statistical and econometric
modeling, risk analytics, and algorithm development for the banking, finance, and consulting sectors. J.D. has been a SAS user for
over 20 years and routinely writes SAS code faster (often orders of magnitude faster) than SAS Procs (including but not limited to
Proc Logistic, Proc MultTest, Proc Summary, Proc NPAR1WAY, Proc Freq, Proc Plan, and Proc SurveySelect). He earned his
undergraduate degree with honors from Yale University, his graduate degree from Harvard University where he was both a
Kennedy Fellow and a Social Policy Research Fellow, and he has completed post-graduate work as an ASP Fellow in the graduate
mathematics department at MIT. His peer reviewed publications span number theory/combinatorics, robust statistics and high-
convexity VaR modeling for regulatory and economic capital estimation, statistical finance, statistical computation, applied
econometrics, and hypothesis testing for statistical quality control. Most are available upon request from J.D. at
jdopdyke@datamineit.com.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. Other brand and product names are trademarks of their respective companies.

Introduction

Permutation tests are as old as modern statistics (see Fisher, 1935), and their statistical properties are well
understood and well documented in the literature (see Mielke & Berry, 2001, and Pesarin, 2001, for
comprehensive treatments and extensive bibliographies1). They typically are nonparametric hypothesis tests

1 Other widely used texts include Edgington (2007), Good (2004), and Manly (2007).

mailto:jdopdyke@datamineit.com

J.D. Opdyke, Managing Director, DataMineit, LLC Page 2 of 61 Computational Statistics: WIRE, May, 2013

that avoid making restrictive, and often unrealistic parametric (distributional) assumptions about the data
being tested.2 As such, permutation tests are the most appropriate statistic of choice in a very wide range of
scientific and industry settings.

Since its more recent introduction just over three decades ago, the bootstrap (see Efron, 1979) has become a
ubiquitous statistical procedure used mainly to obtain standard errors or confidence intervals for statistical
estimates. Its popularity, too, is largely due to the fact that it typically is applied nonparametrically, allowing
analyses unencumbered by restrictive and often unrealistic distributional data assumptions or mathematically
intractable variance estimators.

While permutation tests and bootstraps have very wide-ranging application, both share a common potential
drawback: as data-intensive resampling methods, both can be runtime prohibitive when applied to large or
even medium-sized data samples drawn from large datasets. The data explosion over the past few decades
has made this a common occurrence, and it highlights the increasing need for faster, and more efficient and
scalable,3 permutation test and bootstrap algorithms.

During the same time period as the rise of the bootstrap, SAS has grown to become one of the most widely
used statistical computing platforms globally.4 The footprint of researchers and analysts using SAS to
perform both bootstraps and permutation tests, therefore, is considerable. This, and SAS’s reputation for
speed, make it a very good choice as a platform for developing fast, scalable bootstrap and permutation test
algorithms, and probing and expanding the limits on the speed with which they can be executed on large
datasets. Key to this effort, of course, is developing scalable, fast algorithms for simple random sampling
with replacement (SRSWR) and simple random sampling without replacement (SRSWOR), which serve as
the core of the bootstrap and permutation test algorithms, respectively.

This paper compares seven bootstrap and six permutation test algorithms coded in SAS. Among the
permutation test algorithms, three (OPDN, OPDN-Alt, and Bebb-Sim) require only the Base SAS module,
and three (PROCSS, PROCMT, and PROCNPAR) rely on SAS Procedures available as part of the
SAS/STAT module. All implement the conventional sampling-without-replacement permutation test, where
the null hypothesis is the equality of the two population distributions represented by the two samples, and the
permuted statistic is the sample sum.5 However, four of the algorithms (OPDN, OPDN-Alt, Bebb-Sim, and
PROCSS) easily can be modified to permute any statistic, and the remaining two (PROCNPAR, which uses

2 The only assumption made by all but very stylized permutation tests is that the subscripts of the data samples are exchangeable
under the null hypothesis.

3 An algorithm is “scalable” if it continues to function in reasonable timeframes when its inputs (here, the numbers of observations
in the datasets or strata (N), and samples being tested (n), increase in scale. For example, if the sample sizes increase by a factor of
ten, does the algorithm take ten times as long to complete? Only half as long? Or over one hundred times as long? Many
consider an algorithm that increases by a factor of n^2 or greater NOT to be “scalable.” The OPDY and OPDN algorithms
designed herein have sub-linear time complexity, that is, as n increases, the runtimes increase merely by approximately the square
root of n, which generally is undeniably viewed as very “scalable.”

4 See www.SAS.com. SAS is arguably the largest privately owned software firm in the world, and with over 45,000 registered
user sites, it is arguably the most widely used statistical platform globally, even without including users of the many SAS “clones”
that exist as well (see WPS (from World Programming – see http://teamwpc.co.uk/home), Dap (see
http://www.gnu.org/software/dap/ and http://en.wikipedia.org/wiki/DAP_(software)), and arguably Carolina (see DullesOpen.com,
a unit of Dulles Research LLC), and formerly, PRODAS (from Conceptual Software) and BASS (from Bass Institute)).

5 Proc Multtest, as used in PROCMT, uses pooled-variance t-statistics, which provide a permutation p-value mathematically
identical to that provided by sample sums.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 3 of 61 Computational Statistics: WIRE, May, 2013

Proc NPAR1WAY, and PROCMT, which uses Proc Multtest) have a finite number of choices for
permutation test statistics.

Among the bootstrap algorithms, five (OPDY, HTPS, HTHI, DA, Out-SM, and A4.8) require only the Base
SAS module, and one (PSS) relies on a SAS Procedure (Proc SurveySelect) available as part of the
SAS/STAT module. All implement the conventional sampling-with-replacement bootstrap.

Throughout this paper, N is the number of observations in the dataset or the stratum, and n is the size of the
bootstrap or permutation test sample (and when m is presented, it represents the number of bootstrap or
permutation test samples (of size n) being drawn).

Background: Exploiting the Fast Sequential Access of SAS

Key to this paper is the fact that SAS is not a “matrix” language (like MATLAB or Gauss) or a “vector”
language (like S-Plus or R), but rather, with a few exceptions, it processes data sequentially, record-by-
record. Since the late 1970’s SAS has become extremely fast and efficient at such sequential record
processing,6 and naturally, this strongly shapes the algorithms presented herein. It also leads to a bit of a
paradox when comparing the time complexity of these algorithms: the real runtime ranking of these
algorithms, when implemented in SAS, can deviate notably from a ranking based on their theoretical time
complexity. In other words, due to SAS’s fast sequential access, O(N) algorithms are often “better” in SAS
than O(n) algorithms, even when N>>n. While this is important to note, and an example is explained in the
paper, the focus of this paper is real runtimes, and the speed with which SAS users can obtain actual results.
Resource constraints such as I/O speeds, storage space, and memory are discussed below, and CPU runtimes
are presented alongside real runtimes in the Results section, but the goal here is not to develop or compare
algorithms based on their theoretical time complexity (although the time complexity of both OPDY and
OPDN are presented and estimated, based on their empirical runtimes).

The Six Permutation Test Algorithms

The six algorithms include: OPDN (“One Pass, Duplicates? No”), OPDN-Alt (“One Pass, Duplicates-No -
Alternate”), PROCSS (Proc SurveySelect), PROCMT (Proc Multtest), PROCNPAR (Proc NPAR1WAY),
and Bebb-Sim (Simultaneous Bebbington). SAS v.9.2 code for all the algorithms is presented in Appendix
A, along with code that generates the datasets on which the algorithms are run to produce the runtimes
shown in the Results section. Each algorithm is a macro that is completely modular and takes input values
for six macro variables: the name of the input dataset, the name of the output dataset, the name of the
variable to be permuted, the “by variables” defining the strata, the name of the variable designating the
“Control” and “Treatment” samples, the number of permutation samples to be used in the permutation test,
and a value (optional) for a random number generation seed (one of the macros, PROCMT, takes a value for
a seventh macro variable specifying upper or lower p-values). Aside from general SAS programming
language rules (e.g. file naming conventions), assumptions made by the code are minimal (e.g. the variable
designating the “Control” and “Treatment” samples contains corresponding values of “C” and “T”, “by
variables” are assumed to be character variables, and input datasets are presumed to be sorted by the
specified “by variables” for all algorithms). Each algorithm is discussed below.

6 To quote the author of a previous SAS® bootstrap paper that extols the virtues of PROC SurveySelect, “Tools like bootstrapping
and simulation are very useful, and will run very quickly in SAS .. if we just write them in an efficient manner.” (Cassell, 2007).

J.D. Opdyke, Managing Director, DataMineit, LLC Page 4 of 61 Computational Statistics: WIRE, May, 2013

OPDN:
As first published in Opdyke (2011), this is a completely new and original memory-intensive algorithm,
which is one of the reasons it is so fast. It uses no storage space, other than the original input dataset and a
summary dataset of the record counts for each stratum. OPDN makes one pass through the dataset, record
by record, stratum by stratum, and efficiently builds a large array of data values, essentially converting a
column of data into a row of data (for one stratum at a time).7 The fast sequential access of SAS ensures that
the N-celled array (where N is the size of the current stratum) is loaded with data values automatically, and
very quickly, simply by using a SET statement and a _TEMPORARY_ array (which automatically retains
values across records as each record is being read). Then SRSWOR is performed, in memory, using this
array. The approach for SRSWOR is essentially that of Goodman & Hedetniemi (1977) which, as defined
by Tille (2006), is a draw-by-draw algorithm.8 While Tille (2006) describes the standard draw-by-draw
approach for SRSWOR as having the major drawback of being “quite complex” (p.47), the draw-by-draw
SRSWOR algorithm used by OPDN unarguably is not: as shown below in pseudo code, it is straightforward
and easily understood.

OPDN implementation #1 of Goodman & Hedetniemi (1977) for Permutation Tests:

*** temp[] is the array filled with all the data values, for the current stratum, of the variable being permuted
*** psums[] is the array containing the permutation sample statistic values for every permutation sample

do m = 1 to #permutation tests
 x ← 0
 tot_FREQ_hold ← # records in current stratum
 tot_FREQ ← tot_FREQ_hold
 do n = 1 to # records in smaller of Control and Treatment samples
 cell ← uniform random variate on 1 to tot_FREQ
 x ← temp[cell] + x
 hold ← temp[cell]
 temp[cell] ← temp[tot_FREQ]
 temp[tot_FREQ] ← hold
 tot_FREQ ← tot_FREQ -1
 end;
 psums[m] ← x
end;

An explanation of the SRSWOR algorithm is as follows: random draws are made from the array using a
uniform random variate, cell, drawn initially from 1 to N (where N is the size of the current stratum). The
value from temp[cell] is used in the calculation of the sample statistic, and then swapped with that of
temp[N]. This is repeated in a loop that iterates n times, where n is the size of the permutation sample (for
efficiency, n is always the smaller of either the Control or Treatment sample, by design), but in each loop N
is decremented by 1, so selected values cannot be selected more than once as they are placed at the end of the

7 The “One Pass” referenced in the name of this algorithm refers to SAS® making one sequential pass through the dataset when
reading it. The sampling without replacement that is done using the N-celled array (row), after the entire stratum of N data values
has been read into the array, obviously is not sequential or “one-pass.”

8 “Definition 37. A sampling design of fixed sample size n is said to be draw by draw if, at each one of the n steps of the
procedure, a unit is definitively selected in the sample” (p. 35).

J.D. Opdyke, Managing Director, DataMineit, LLC Page 5 of 61 Computational Statistics: WIRE, May, 2013

array which is never again touched by the random number generator (see Appendix B for a simple proof of
this algorithm as a valid SRSWOR algorithm).

An alternate presentation of the SRSWOR algorithm is shown below, and it utilizes the fact that even if
statistical calculations are not being performed as the sample is being selected (as the sample sum is
cumulatively calculated above), the entire without-replacement-sample ends up in the last n cells of the
array. So if applying a function to this collective set of cells is faster or more efficient than cumulatively
calculating the sample statistic, it would be the preferable approach.

OPDN implementation #2 of Goodman & Hedetniemi (1977) for Permutation Tests:

*** temp[] is the array filled with all the data values, for current stratum, of the variable being permuted
*** psums[] is the array containing the permutation sample statistic values for every permutation sample

do m = 1 to #permutation tests
 tot_FREQ_hold ← # records in current stratum
 tot_FREQ ← tot_FREQ_hold
 do n = 1 to # records in smaller of Control and Treatment samples
 cell ← uniform random variate on 1 to tot_FREQ
 hold ← temp[cell]
 temp[cell] ← temp[tot_FREQ]
 temp[tot_FREQ] ← hold
 tot_FREQ ← tot_FREQ -1
 end;
 psums[m] ← sum(temp[tot_FREQ] to temp[tot_FREQ_hold])
end;

While use of this general algorithm appears to be reasonably widespread (for example, see Pesarin, 2001,
p.81), it does not appear to be common in some areas of statistics where it would be of benefit (for example,
Tille (2006), which is an authoritative statistical sampling resource, does not appear to present it), nor does it
appear to be in common usage within the SAS community.

In addition to its efficiency for drawing a single without-replacement sample, another crucially important
advantage of using this particular SRSWOR algorithm for performing permutation tests, or any statistical
procedure requiring many without-replacement samples, is that the same array of data values can be used
repeatedly, for generating all the permutation (SRSWOR) samples, even though it has been reordered by the
selection of the previous sample. Fortunately, the order of the data values in the array does not matter for
SRSWOR: the selection of each item is random, so sampling on the array can be performed regardless of the
initial order of the data values in its cells. This means that no additional storage space is required when
generating all the permutation samples – for each new without-replacement sample, the array simply can be
used as it was left from the previous sample. This makes the repeated implementation of SRSWOR, as
required by permutation tests, extremely fast and efficient: its runtime complexity is O(n), and its storage
(memory) space complexity is O(N).

Although Goodman & Hedetniemi’s (1977) approach has been modified and improved to require even less
than O(N) storage space (see Ernvall & Nevalainen, 1982), SAS’s very fast built-in sequential access
automatically fills the entire N-celled (_TEMPORARY_) array much faster, under almost all conditions, than
SAS could selectively fill an even much smaller array of size n by choosing specific records using, say, a
point= option on a SET statement. With reasonable amounts of memory (e.g. 16GB of RAM), only if the

J.D. Opdyke, Managing Director, DataMineit, LLC Page 6 of 61 Computational Statistics: WIRE, May, 2013

stratum size approaches one billion records will the N-cells be too many for a _TEMPORARY_ array and
cause the program to crash (by comparison, Proc NPAR1WAY crashes on strata less than a tenth the size of
those that OPDN can handle). So the OPDN code relying on Goodman & Hedetniemi’s (1977) approach
using the full N-celled (_TEMPORARY_) array is not only faster than alternatives with smaller theoretical
time and space complexity, but also, in SAS, more robust than those alternatives, and more than adequate for
handling sampling from all but the very largest of datasets.

A final point regarding OPDN: because it is memory intensive, OPDN uses code to optimize SAS’s efficient
use of memory, and to that end, the algorithm uses a data _null_ and saves the calculated permutation test
results in macro variables cumulated by strata, rather than in a dataset specified in the data step (which
reserves a nontrivial amount of memory and decreases the size of the strata OPDN could otherwise handle).
This makes OPDN more robust, and for those familiar with SAS macro code, understanding it is not
onerous. The precision loss due to saving numerical results in macro variables (which are character strings)
is, for most applications, trivial – to the tenth decimal place rather than the fourteenth. If that additional
precision is needed, the user probably should be using a symbolic programming language, such as
Mathematica®.

As described below, OPDN-Alt handles the data-step memory conservation issue a bit differently and with
slightly less code, but it typically is slightly slower as a result.

OPDN-Alt:
This algorithm (OPDN “Alternative”) is essentially the same algorithm as OPDN but with one coding
difference: instead of saving the permutation p-values in macro variables cumulated by strata, rather than in a
dataset specified on the data step to conserve memory, the OPDN-Alt code creates an empty dataset with
missing values for all the necessary variables, and then uses a modify statement to update those values.9
Otherwise, the algorithm is identical. The only arguable advantage to this approach is that it uses slightly
less code. The unarguable disadvantage, however, is that it typically is slightly slower. That it is almost as
fast is not surprising, since it is essentially the same algorithm, with a slightly different (and less efficient)
approach to handling memory constraints in SAS.

PROCSS:
PROCSS uses the built-in SAS procedure, Proc SurveySelect, to create a sampling variable in the original
dataset indicating which records in the stratum are selected into the without-replacement random sample, and
multiple without-replacement samples can be created automatically for multiple strata. After this sampling is
performed by Proc SurveySelect, the (sometimes quite large) output sampling dataset is summarized
according to the permutation statistic being used with a Proc Summary, and the subsequent code calculating
the permutation test p-values is identical to that of OPDN and OPDN-Alt. According to the SAS Online
Documentation, for simple random sampling without replacement, if there is enough memory Proc
SurveySelect uses Floyd’s ordered hash table algorithm (see Bentley and Floyd (1987) and Bentley and
Knuth (1986) for details). If there is not enough memory available for Floyd’s algorithm, Proc SurveySelect

9 The idea of using a modify statement instead of macro variables cumulated by strata came from a SAS® user who emailed me to
comment on the OPDY bootstrap algorithm presented in Opdyke (2010). When I asked for his/her name, he/she would not
provide it, so I can only give credit indirectly for the suggestion to try this approach when implementing the OPDN algorithm
presented herein. I also modified the OPDY bootstrap algorithm presented in Opdyke (2010) and implemented it as OPDY-Alt,
with very similar results: OPDY is slightly faster than OPDY-Alt.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 7 of 61 Computational Statistics: WIRE, May, 2013

switches to the sequential algorithm of Fan, Muller, and Rezucha (1962), which requires less memory but
might require more time to select the sample.10

Aside from speed, which is discussed in the Results section, the major disadvantage of relying on Proc
SurveySelect instead of OPDN, OPDN-Alt, or Bebb-Sim (see below) is that it requires disk space for the
sometimes very large output sampling dataset that it generates, while these three other algorithms have no
such resource requirement.

PROCMT:
PROCMT uses Proc Multtest to calculate permutation test p-values, and prior to the relatively recent advent
of Proc SurveySelect, Proc Multtest had been widely used for this purpose. Although Proc Multtest does not
explicitly allow the user to specify sample sums as the permutation test statistic, using t-scores based on the
pooled-variance provides mathematically identical permutation test p-values, so the pooled-variance option
is specified in PROCMT. This option is easily changed if the assumption is not warranted by the dataset in
use.

One limitation of Proc Multtest is that for each time the Proc is used, it only provides one p-value (either the
left, right, or two-tailed p-value). So to obtain all three p-values the user must run the Proc three times. For
comparison purposes in this paper, PROCMT runs Proc Multtest twice, obtaining one one-tailed p-value
(specified by the user in a macro variable) and the two-tailed p-value. Since Proc NPAR1WAY provides the
smaller of the two one-tailed p-values and the two-tailed p-value, and OPDN, OPDN-Alt, Bebb-Sim, and
PROCSS provide all three p-values, this appeared to be a reasonable compromise for purposes of
comparison. Obviously, if the user knows in advance that he/she only needs one of the three p-values, then
the runtimes presented in the Results section for PROCMT will be slightly less than twice as large. Note,
however, that none of the p-values can be calculated based on the other p-values: each must be generated
independently.

Aside from speed, which is discussed in the Results section, the major disadvantage of relying on Proc
Multtest instead of OPDN, OPDN-Alt, Bebb-Sim, or PROCSS is that the range of permutation test statistics
available to the user is limited, whereas any of the latter can use any permutation test statistic.

PROCNPAR:
PROCNPAR uses Proc NPAR1WAY to generate the smaller of the two one-tailed permutation test p-values
and the two-tailed permutation test p-value. The options specified execute Pitman’s permutation test, which
uses the data values themselves as scores, and the sum as the sample statistic, consistent with the five other
algorithms presented herein. The monte carlo option is used so that the number of permutation samples can
be specified by the user.

Aside from speed, which is discussed in the Results section, there are two major disadvantages to relying on
Proc NPAR1WAY instead of OPDN. First, for a fixed amount of memory, Proc NPAR1WAY crashes on
strata less than a tenth the size of those that OPDN can handle. Secondly, like Proc Multtest, the range of
permutation test statistics available to the user is limited, whereas OPDN, OPDN-Alt, Bebb-Sim, and
PROCSS can use any permutation test statistic.

10 Note that the SASFILE statement used with Proc SurveySelect (see Cassell, 2007) is useless when the datasets to be permuted
are too large for the extant memory – and that is the only time that fast permutation tests really are needed.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 8 of 61 Computational Statistics: WIRE, May, 2013

Bebb-Sim:
“Simultaneous Bebbington” refers to Bebbington (1975), one of the first and most straightforward
sequential-sampling-without-replacement algorithms. Like the SRSWOR used in OPDN, Bebbington
requires that N is known ahead of time, and it makes exactly n selections from N items, each with equal
probability. But unlike OPDN, Bebbington is sequential: it makes a sample selection decision for each data
record as it is encountered, sequentially (in order), in the dataset. Bebbington (1975) is presented in pseudo-
code below for the reader’s convenience.

1. Initialize: Let i ← 0, N’ ← N + 1, n’ ← n
2. i ← i + 1
3. If n’ = 0, STOP Algorithm
4. Visit Data Record i
5. N’ ← N’ – 1
6. Generate Uniform Random Variate u ~ Uniform[0, 1]
7. If u > (n’ / N’), Go To 2.
8. Otherwise, Output Record i into Sample
9. n’ ← n’ – 1
10. Go To 2.

Bebbington’s (1975) algorithm above guarantees that 1) all possible samples of size n drawn from N are
equally likely; 2) exactly n items will be selected; 3) no items in the sample will be repeated; and 4) items in
the sample will appear in the same order that they appear in the population dataset.

The “Simultaneous” refers to the fact that two arrays of size m (where m is the number of permutation
samples) are created and used in the dataset to simultaneously execute Bebbington m times as the dataset is
being (sequentially) read, record by record. One array contains the cumulated test statistics for that
particular sample, and the other array contains the corresponding counters for each sample, counting the
number of items already selected into that sample (n’ in the algorithm shown above). The counters are
necessary to apply the correct probability of selection to each item in order to make the algorithm a valid
SRSWOR procedure.

Aside from speed, which is discussed in the Results section, an advantage of relying on Bebb-Sim rather than
Proc SurveySelect is that it is memory intensive, like OPDN, and does not require any disk space beyond the
input dataset and a small dataset of counts for each stratum.

Other Possibilities:

Proc Plan:
Proc Plan can be used to conduct permutation tests, but since it does not have “by statement” functionality, it
must be used once for each set of by-variable values in the original dataset. These results can be SET
together and merged with the original dataset (after an observation counter that counts within each stratum is
created) to obtain without-replacement samples. However, this is a much, much slower method, and
possibly part of the impetus for the more recent creation of Proc SurveySelect.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 9 of 61 Computational Statistics: WIRE, May, 2013

DA:
The widely used and aging DA (Direct Access) method, which uses a SET statement with a point=x option
(where x is a uniform random variate) to randomly select with equal probability an observation in a dataset,
was shown by Opdyke (2010) to be far less efficient and far more than an order of magnitude slower than
alternatives such as the OPDY algorithm for calculating bootstraps (see Opdyke, 2010). In the permutation
test setting, DA is now actually irrelevant, since the only way (known to this author) to implement it is using
Bebbington (1975) in a nested loop, where an inner loop iterates n times to obtain a single sample without
replacement, and an outer loop iterates m times to obtain m without-replacement permutation samples (using
this approach with only the inner loop to obtain a single SRSWOR sample is common to many SAS
programs). While technically possible to implement, a nested loop is extremely slow for this approach, and
so it is not viable as a scalable algorithm for executing fast permutation tests in SAS.

Results of Permutation Test Algorithms

The real and CPU runtimes of each of the algorithms, relative to those of OPDN, are shown in Table 1 below
for different #strata, N = strata size, and m = size of the permutation samples (n = permutation sample size =
1,000 for all runs; for the absolute runtimes, please contact the author). The code was run on a Windows PC
with only 2 GB of RAM and a 2 GHz Pentium chip.

OPDN dominates in all cases, except that typically it is only slightly faster than OPDN-Alt which, as
mentioned above, is essentially the same algorithm, but with a slightly different and less efficient approach
to memory conservation.

The second fastest algorithm is Bebb-Sim, followed by PROCNPAR for the smaller datasets but PROCSS
for the larger datasets, and then PROCMT is much slower for all but the smallest datasets. Generally, the
larger the dataset, the larger the runtime premium OPDN has over the other algorithms, achieving real
runtime speeds 218x faster than PROCSS, 353x faster than PROCNPAR, and 723x faster than PROCMT. If
it was runtime feasible to run PROCSS and PROCMT on even larger datasets, all indications are that the
runtime premium of OPDN would only continue to increase. This would not be possible for PROCNPAR,
however, because Proc NPAR1WAY crashes on datasets less than a tenth the size of those OPDN can handle
(with only 2 GB of RAM, NPAR1WAY crashed on less than 10 million observations in the largest stratum,
while OPDN handled over 110 million observations in the largest stratum).

Note that another advantage OPDN has over PROCSS (Proc SurveySelect) is that it needs virtually no
storage (disk) space beyond the input dataset, while PROCSS needs disk space to output a potentially very
large sampling dataset that subsequently must be summarized at the sample level, according to the
permutation test statistic being used, to compare the permuted sample statistics to the original sample
statistic.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 10 of 61 Computational Statistics: WIRE, May, 2013

Table 1: Real and CPU Runtimes of the Algorithms Relative to OPDN for Various N, #strata, and m
(EX = excessive, CR = crashed, sample size n = 1,000 for all)

REAL

CPU

N

(per stratum)

strata m
OPDN

-Alt
PROC

SS
PROC

MT
PROCN

PAR
Bebb
-Sim

OPDN
-Alt

PROC
SS

PROC
MT

PROC
NPAR

Bebb
-Sim

10,000 2 500 1.2 11.1 4.7 4.2 2.9 1.1 9.1 6.0 4.1 4.2
100,000 2 500 1.7 19.8 66.9 15.9 15.4 1.1 21.7 96.7 22.3 22.3

1,000,000 2 500 1.1 33.7 177.3 47.2 29.4 1.1 46.7 321.6 85.3 53.4
10,000,000 2 500 1.0 44.6 255.5 CR 36.4 1.0 57.4 422.1 CR 60.2

10,000 6 500 1.3 11.6 6.2 4.9 4.2 1.0 9.1 6.5 4.0 4.4
100,000 6 500 1.2 25.5 85.7 20.2 19.7 1.0 21.0 95.1 22.1 21.8

1,000,000 6 500 1.1 30.6 160.5 43.5 26.7 1.1 43.7 307.8 82.6 51.3
10,000,000 6 500 1.0 45.1 EX CR 40.3 1.1 49.5 EX CR 59.1

10,000 12 500 1.5 12.2 5.9 4.0 4.2 1.0 9.2 6.5 4.1 4.7
100,000 12 500 1.2 28.4 88.0 21.7 21.1 1.0 23.1 94.7 23.0 22.8

1,000,000 12 500 1.1 41.6 222.1 61.8 37.4 1.1 41.4 293.6 81.3 49.4
10,000,000 12 500 1.1 53.3 EX CR 45.1 1.1 54.1 EX CR 59.2

10,000 2 1000 1.1 15.2 6.5 4.0 4.4 1.0 10.3 6.8 4.1 4.7
100,000 2 1000 1.1 33.6 104.9 23.7 24.3 1.0 29.2 115.7 26.0 26.6

1,000,000 2 1000 1.3 96.6 468.9 125.0 79.1 1.0 82.3 508.0 134.7 85.8
10,000,000 2 1000 1.0 80.6 504.3 CR 73.3 1.0 96.6 794.0 CR 115.5

10,000 6 1000 1.0 12.6 6.5 4.0 4.6 1.0 9.5 6.8 4.0 4.8
100,000 6 1000 1.1 34.6 113.3 25.8 26.5 1.0 27.6 120.3 27.1 28.1

1,000,000 6 1000 1.0 55.7 291.8 77.6 50.1 1.1 74.9 520.4 138.0 89.2
10,000,000 6 1000 1.0 85.3 EX CR 79.2 1.1 94.3 EX CR 115.4

10,000 12 1000 1.0 13.3 6.6 4.3 4.7 1.0 9.6 6.7 4.2 4.8
100,000 12 1000 1.0 33.4 115.0 27.4 26.5 1.0 25.8 117.6 27.7 27.1

1,000,000 12 1000 1.0 78.4 412.4 111.6 70.1 1.1 74.1 516.1 139.3 87.8
10,000,000 12 1000 1.0 99.8 EX CR 88.7 1.1 91.3 EX CR 111.5

10,000 2 2000 1.3 10.9 5.4 3.5 3.9 1.0 9.3 6.5 3.9 4.7
100,000 2 2000 1.0 36.2 122.5 27.8 28.3 1.0 29.6 132.6 29.7 30.6

1,000,000 2 2000 1.0 135.9 723.1 191.2 123.1 1.0 116.1 798.5 211.2 136.1
10,000,000 2 2000 1.0 172.7 EX CR 143.6 1.0 215.8 EX CR 227.9

10,000 6 2000 1.0 13.6 6.5 4.0 4.6 1.0 10.3 6.7 4.0 4.7
100,000 6 2000 1.0 38.8 126.1 28.6 29.5 1.0 31.0 131.5 29.7 30.7

1,000,000 6 2000 1.0 97.7 497.9 136.4 85.5 1.0 122.8 810.3 214.8 138.7
10,000,000 6 2000 1.1 218.2 EX CR 159.0 1.1 248.3 EX CR 222.9

10,000 12 2000 1.0 15.0 6.5 4.2 4.7 1.0 11.5 6.7 4.2 4.8
100,000 12 2000 1.0 44.4 131.9 30.7 30.4 1.0 35.5 135.4 31.5 31.3

1,000,000 12 2000 1.0 147.0 685.1 185.7 117.2 1.1 136.4 798.6 216.4 136.5
10,000,000 12 2000 1.1 EX EX CR EX 1.1 EX EX CR EX

7,500,000 2 2000 1.1 243.6 EX 353.0 201.0 1.1 214.0 EX 396.3 227.5
7,500,000 6 2000 1.2 242.0 EX 334.8 193.9 1.1 218.2 EX 382.5 222.9

25,000,000 12 500 1.2 EX EX CR EX 1.1 EX EX CR EX
50,000,000 12 500 1.2 EX EX CR EX 1.1 EX EX CR EX

100,000,000 12 500 1.0 EX EX CR EX 1.0 EX EX CR EX

J.D. Opdyke, Managing Director, DataMineit, LLC Page 11 of 61 Computational Statistics: WIRE, May, 2013

And finally, as mentioned above, the size constraint on OPDN is the size of the largest stratum in the dataset,
not the size of the entire dataset, which appears to be what drives the runtimes of Proc SurveySelect and Proc
Multtest (this does not appear to be the case for Proc NPAR1WAY, but then, Proc NPAR1WAY crashes on
much smaller strata). So OPDN maintains scalability on datasets potentially many, many orders of
magnitude larger than those the three Proc’s can handle.

In a nutshell, OPDN is not only much, much faster than all the other methods, but also far more robust. All
of these results combine to make OPDN the only truly scalable permutation test (and SRSWOR) algorithm
in SAS.

Focusing on the real runtime of OPDN and its relationship to #strata, N, n, and m (see Figure 1), the
empirical runtimes (available from the author upon request) yield a reasonably accurate approximation in (1).
So given the 0.57 (≈ 0.50) term in (1) below, OPDN appears to be approximately O(N n m× ×), which
makes sense given its composition. And sub-linear time complexity is a highly desirable algorithmic
property from the perspective of scalability, one which the relevant Proc’s do not share.

Log10(Real Runtime) = -5.95291 + 0.57001* Log10(N*n*m) (where N = all N across strata) (1)

 Figure 1: OPDN Real Runtime by N*n*m (N = all strata)

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

10 11 12 13 14 15

Log 10 (N*n*m)

Lo
g

10
 (

R
ea

l R
un

tim
e

)

The Seven Bootstrap Algorithms

The seven algorithms compared in this paper include: OPDY (“One-Pass, Duplicates?-Yes”), Proc
SurveySelect (PSS), HTPS (Hash Table, Proc Summary), HTHI (Hash Table, Hash Iterator), Direct Access
(DA), Output-Sort-Merge (Out-SM), and Algorithm 4.8 (A4.8). SAS v.9.2 code for all the algorithms except
the two hash algorithms is presented in Appendix C. All except OPDY and A4.8 have been widely used in
the SAS® literature, if not specifically for bootstraps, then for very closely related analyses. Each is

J.D. Opdyke, Managing Director, DataMineit, LLC Page 12 of 61 Computational Statistics: WIRE, May, 2013

completely modular and takes only five macro variables as inputs: the size of the bootstrap samples (n
observations), the number of bootstrap samples (m), the “by variables” defining the strata, the input dataset,
the variable to be bootstrapped, and the output dataset. All are described briefly below.

OPDY:
As first published in Opdyke (2010), this is a completely new and original memory-intensive algorithm,
which is why it is so fast. It uses no storage space, other than the original input dataset and a summary
dataset of the record counts for each stratum. OPDY makes one pass through the dataset, record by record,
stratum by stratum, and efficiently builds a large array of data values, essentially converting a column of data
into a row of data. Then random draws are made from the array using a uniform random variate, u, drawn
from 1 to N (where N is the size of the current stratum).11 Bootstrap results from each stratum are saved in
cumulated macro variables to minimize the intermediate memory requirements of outputting a dataset in the
data step. The only constraint on this algorithm is not the total number of records across all strata but rather,
the number of records in the largest stratum, which determines the size of the array held in memory. Yet
even on a system with very little memory (2 gigabytes of RAM), the algorithm is able to process input
datasets where the largest stratum contains over 110 million records, so this should not be a constraint for
most users and most practical uses (the hashing algorithms described below sometimes crash with a largest
stratum size of only about three to four million records, in datasets with only two “by variables” defining
twelve strata). With more reasonable memory resources (e.g. 16 gigabytes of RAM), OPDY can process
datasets where the largest strata approach a billion records.

Note that OPDY is easily generalizable to many multivariate models. For example, say five covariates are
being regressed on one dependent variable in an ordinary least squares (OLS) bootstrap (of the entire
observation, not the residuals). This would simply require that a separate N-celled array be loaded for each
covariate and the dependent variable. The same u is then used to draw once from each of the N-celled
arrays, and this is done, with replacement, n times to obtain one bootstrap sample. Then (X’X)-1X’Y is
calculated using the six n-celled arrays, and the result – a vector of five parameter estimates – is saved. This
is done m times to obtain m bootstraps of the five parameter estimates. The maximum number of
observations per strata would be one sixth what it would be for a univariate bootstrap.

PSS:
PSS uses the SAS® procedure Proc SurveySelect to create a sampling variable in the original dataset
indicating how many times record i is selected into the with-replacement random sample, and multiple
bootstrap samples can be created automatically for multiple strata. These are then summarized by another
procedure to obtain the desired bootstrap statistics.12

DA:
DA is merely code for Directly Accessing specified records within a SAS® dataset. A uniform random
variate, u, is drawn from 1 to N (the size of the stratum), and record # u is selected from the dataset using the
point= option on the set statement. In a nested loop, this is done n times to obtain a single bootstrap sample,

11 The “One Pass” referenced in the name of this algorithm refers to SAS® making one sequential pass through the dataset when
reading it. The sampling with replacement that is done using the N-celled array, after the entire stratum of N data values has been
read into the array, obviously is not sequential or “one-pass.”

12 Note that PROC PLAN was not tested because it does not sample with replacement, and PROC MultTest was not tested because
it conducts only n-out-of-n bootstraps and does not allow the user to define the size of the bootstrap sample (aside from changing
the size of the input dataset, which would require an extra randomization step which would defeat the purpose of conducting
efficient sampling with replacement). And the SASFILE statement used with PROC SurveySelect (see Cassell, 2007) is useless
when the datasets to be bootstrapped are too large for the extant memory – and that is the only time that fast bootstraps really are
needed.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 13 of 61 Computational Statistics: WIRE, May, 2013

and then the entire process is repeated m times to obtain m bootstrap samples. The bootstrap samples do not
need to be summarized after the data step because the bootstrap statistics are created sequentially, as each
bootstrap sample is created, saved in an array, and then summarized by functions applied to the array when
the end of the stratum is reached, all within the data step. DA requires virtually no storage space beyond the
original input dataset.

Out-SM:
Out-SM also uses a uniform random variate, u, drawn from 1 to N to identify the records to include in the
samples, but instead of using direct access it creates a new dataset by outputting, in a nested loop, one record
for each record # identified by u, looping n times to create one bootstrap sample. This is done m times in a
nested loop to create m bootstrap samples, while keeping track of both the record numbers (u) and the
number of the bootstrap sample (m). This new dataset is then sorted and merged with the original dataset (in
which a record counter was created) to obtain the actual data records for each bootstrap sample. These are
then summarized at the level of the bootstrap sample.

HTHI:
The Hash code used in HTHI follows two published SAS® papers (see below). The structure of the code is
essentially the same as that of Out-SM, except that a hash table, instead of a merge statement, is used to
merge the original dataset and the bootstrap sample dataset (see Secosky and Bloom, 2007), and a hash
iterator, instead of Proc Summary, is used to summarize the bootstrap samples (see Secosky and Bloom,
2008). This algorithm is memory-intensive, as well as being storage-intensive, but it is fast. However, it has
two major drawbacks: first, the hash iterator can only sum the values of the variable being bootstrapped, so if
the statistic of interest requires more complex calculations, additional or separate data steps and/or
procedures would be required (this is handled by HTPS, which uses a Proc Summary instead, but which is
slightly slower as a result). Secondly, the memory constraints of hashing are far greater than those of OPDY,
causing it to crash under dataset sizes much smaller than those OPDY can handle (this constraint also applies
to HTPS below). For example, using input datasets with two “by variables” defining twelve strata, OPDY
can handle strata with over 110 million records, while both hashing algorithms often crash when only three
to four million records per strata are used. And of course, since the size constraint on OPDY is the number
of records in the largest stratum and not the number of records overall in the dataset, it actually can handle
datasets orders of magnitude larger than those the hashing algorithms can handle, as long every stratum is
below a certain size (in this study, about 110 million records).

HTPS:
This algorithm is identical to HTHI except that Proc Summary is used instead of the hash iterator. While
slower than the hash iterator, Proc Summary allows the user to bootstrap any statistic, not just those based on
the sum of the variable of interest.

A4.8:
I believed I had discovered this with-replacement sampling algorithm, but it is, in fact, listed as Algorithm
4.8 in Tillé (2006), who calls it “neglected.” The original source of the algorithm is unknown to Tillé (see
email correspondence, 09/30/10), and no proof of its validity is provided in Tillé (2006), so a proof is
provided herein in Appendix D. The main advantage of this algorithm is that it requires virtually no storage
space beyond the original input dataset (no extra bootstrap “sample” dataset is created, as in Out-SM and the
two hashing algorithms), and it has relatively low memory requirements. In addition, no nested loops are
required, like the n x m nested loops required for DA, Out-SM, and the hashing algorithms: A4.8 requires
only a single pass through the dataset, with one loop performed m times on each record, to generate the
desired statistic for all m bootstrap samples.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 14 of 61 Computational Statistics: WIRE, May, 2013

Although not noted elsewhere, the algorithm closely follows the structure of Bebbington (1975), one of the
first and most straightforward sequential-sampling-without-replacement algorithms. Like Bebbington
(1975), the algorithm is sequential, it requires that N is known ahead of time, and it makes exactly n
selections from N items, each with equal probability. It makes one important modification to Bebbington
(1975) that transforms it from a without-replacement algorithm to a with-replacement algorithm: it uses
binomial random variates instead of uniform random variates. Below, for clarity, both Bebbington and A4.8
are presented.

1. Initialize: Let i ← 0, N’ ← N + 1, n’ ← n
2. i ← i + 1
3. If n’ = 0, STOP Algorithm
4. Visit Data Record i
5. N’ ← N’ – 1
6. Generate Uniform Random Variate u ~ Uniform[0, 1]
7. If u > n’ / N’, Go To 2.

Otherwise, Output Record i into Sample
 n’ ← n’ – 1
 Go To 2.

Bebbington’s (1975) algorithm above guarantees that 1) all possible samples of size n drawn from N are
equally likely; 2) exactly n items will be selected; 3) no items in the sample will be repeated; and 4) items in
the sample will appear in the same order that they appear in the population dataset. The A4.8 algorithm
presented below guarantees 1), 2), and 4), and instead of 3), it allows duplicates into the sample.

1. Initialize: Let i ← 0, N’ ← N + 1, n’ ← n
2. i ← i + 1
3. If n’ = 0, STOP Algorithm
4. Visit Data Record i
5. N’ ← N’ – 1
6. Generate Binomial Random Variate b ~ Binomial(n’, p ← 1/N’) 13
7. If b = 0, Go To 2.

Otherwise, Output Record i into Sample b times
 n’ ← n’ – b
 Go To 2.

The only difference between the code implementation of A4.8 in Appendix C and its algorithm definition
above is that the check of n’ = 0 on line 3. is excluded from the code: execution simply stops when all
records in the dataset (stratum) are read once through, sequentially. This is more efficient for these purposes,
since all bootstrap samples are being created simultaneously, and the likelihood that all of them will be
complete before that last record of the dataset (stratum) is read is usually very small – not nearly large
enough to justify explicitly checking for it on line 3.

13 Using A4.8, p will never equal zero. If p = 1 (meaning the end of the stratum (dataset) is reached and i = N, N’ = 1, and n’ = 0)
before all n items are sampled, the rand function b=rand(‘binomial’,p,n’) in SAS® assigns a value of n’ to b, which is correct for
A4.8.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 15 of 61 Computational Statistics: WIRE, May, 2013

Results of Bootstrap Algorithms

The real and CPU runtimes of each of the algorithms, relative to those of OPDY, are shown in Table 2 below
for different #strata, N, n, and m (for the absolute runtimes, please contact the author). The code was run on
a PC with 2 GB of RAM and a 2 GHz Pentium chip. OPDY dominates in all cases that matter, that is, in

Table 2: Real and CPU Runtimes of the Algorithms Relative to OPDY for Various N, #strata, n, & m
(EX = excessive, CR = crashed, n=m)

 REAL CPU
N

(per stratum)

strata n=m

PSS A4.8

HTPS

HTIT

DA
Out-
SM

PSS A4.8

HTPS

HTIT

DA

Out-
SM

10,000 2 500 5.3 10.2 9.0 4.5 8.8 7.5 2.6 10.1 3.3 2.1 3.8 6.0
100,000 2 500 23.3 83.3 6.2 4.6 7.3 9.7 18.0 81.4 7.3 2.4 3.1 4.4

1,000,000 2 500 31.1 121.2 2.5 1.9 1.4 4.2 25.0 119.3 1.2 1.2 0.7 1.8
10,000,000 2 500 42.2 164.9 2.5 2.7 0.7 7.6 33.4 162.0 1.4 1.4 0.4 1.8

10,000 6 500 8.4 16.8 10.0 6.8 13.8 14.3 5.8 16.6 4.5 3.6 6.0 7.6
100,000 6 500 23.7 84.0 4.7 4.3 7.4 8.7 18.9 82.7 2.8 2.5 3.3 4.4

1,000,000 6 500 37.3 145.0 2.3 2.1 4.4 4.5 30.4 143.2 1.4 1.4 0.8 2.2
10,000,000 6 500 39.8 370.8 CR CR 7.8 8.8 32.5 349.1 CR CR 0.4 1.8

10,000 12 500 11.4 23.7 17.9 28.0 18.1 16.8 8.5 23.1 5.8 4.6 8.0 9.6
100,000 12 500 31.4 96.3 9.4 9.0 8.7 8.6 24.7 94.2 3.2 2.7 3.4 5.0

1,000,000 12 500 47.0 160.7 3.8 3.3 10.1 4.2 38.1 155.8 1.7 1.6 0.9 2.2
10,000,000 12 500 45.0 EX CR CR 11.0 7.1 36.8 EX CR CR 0.4 1.8

10,000 2 1000 5.3 7.3 7.2 5.7 11.2 12.4 3.6 7.0 3.7 2.8 5.3 7.2
100,000 2 1000 25.7 80.4 8.5 7.4 14.3 16.0 19.9 78.1 4.7 3.6 6.4 8.4

1,000,000 2 1000 50.0 183.9 3.3 2.5 8.9 4.4 39.9 179.7 1.9 1.6 1.6 2.7
10,000,000 2 1000 65.2 1428.7 2.5 2.3 9.1 6.2 52.1 1218.7 1.2 1.1 0.5 1.6

10,000 6 1000 8.2 10.7 18.3 17.9 16.9 26.8 5.3 10.4 5.4 4.3 7.6 10.7
100,000 6 1000 28.3 87.8 14.5 13.6 15.6 25.5 21.5 86.4 5.3 4.4 6.3 9.5

1,000,000 6 1000 56.8 214.4 5.2 4.8 4.2 8.5 46.0 211.3 2.2 2.0 1.7 3.2
10,000,000 6 1000 63.6 EX CR CR 9.5 6.9 51.0 EX CR CR 0.5 1.5

10,000 12 1000 11.2 15.8 19.6 18.0 24.3 37.8 8.0 15.3 8.4 6.5 10.7 16.4
100,000 12 1000 15.1 47.7 6.1 6.0 8.7 12.2 11.8 47.2 2.9 2.2 3.6 5.3

1,000,000 12 1000 61.1 213.6 4.4 4.8 10.1 8.8 50.4 210.6 2.3 2.0 1.8 3.3
10,000,000 12 1000 63.1 EX CR CR 10.6 6.0 51.7 EX CR CR 0.5 1.4

10,000 2 2000 10.6 8.8 27.0 25.6 28.6 49.2 7.6 8.6 9.3 7.1 12.4 22.2
100,000 2 2000 14.2 39.1 12.5 14.8 14.4 20.8 10.8 38.2 4.5 3.5 5.8 10.5

1,000,000 2 2000 45.6 167.9 5.3 5.6 6.5 11.6 36.5 166.2 2.6 2.1 2.6 4.8
10,000,000 2 2000 87.2 EX 3.4 2.8 8.5 6.1 69.4 EX 1.3 1.1 0.7 1.8

10,000 6 2000 13.5 10.0 29.6 20.8 32.0 92.9 8.5 9.8 11.0 8.1 13.4 26.1
100,000 6 2000 23.9 63.7 19.5 17.0 23.1 50.5 18.0 62.8 7.4 5.9 8.9 17.6

1,000,000 6 2000 62.6 230.3 7.4 6.6 8.8 32.1 50.0 224.2 3.6 3.0 3.3 7.0
10,000,000 6 2000 85.9 EX CR CR 7.8 12.7 68.2 EX CR CR 0.7 1.8

10,000 12 2000 13.1 10.2 27.1 24.3 33.1 85.6 9.1 10.0 11.6 8.6 14.0 28.1
100,000 12 2000 26.4 63.5 17.3 15.9 25.4 55.4 18.5 62.5 8.2 6.2 10.1 19.0

1,000,000 12 2000 62.2 207.9 7.0 6.6 8.1 21.0 49.7 205.2 3.6 2.9 3.0 6.2
10,000,000 12 2000 50.2 EX CR CR 6.0 3.8 40.5 EX CR CR 0.4 1.0

J.D. Opdyke, Managing Director, DataMineit, LLC Page 16 of 61 Computational Statistics: WIRE, May, 2013

all cases where the absolute runtimes are not trivial (i.e. under one minute).14 This runtime efficiency gap
grows dramatically in absolute terms for OPDY vs. most of the other algorithms as #strata, N, n, and/or m
increase (to take just one example, when the input dataset contains 6 strata with only N =1,000,000 records
each, and n = m = 2,000, the real runtime of OPDY is 36 seconds, compared to real runtimes of almost 38
minutes (PSS), about 2 hours, 19 minutes (A4.8), almost 5 minutes (HTPS), almost 4 minutes (HTPI),
almost five and a half minutes (DA), and over 19 minutes (Out-SM). That OPDY so convincingly beats DA
is mildly surprising given how widely known, how used, and how old DA is. Similarly, PSS, A4.8, and Out-
SM never are serious competitors against OPDY. And even the algorithms that keep up better with OPDY,
namely the two hashing algorithms, crash under dataset sizes that OPDY handles easily. As mentioned
above, using input datasets with two “by variables” defining twelve strata, OPDY can handle multiple strata
with slightly over 110 million records each, while both hashing algorithms often crash when the input dataset
contains only three to four million records per strata. And of course, since the size constraint on OPDY is
the number of records in the largest stratum and not the number of records overall in the dataset, it can
actually handle datasets orders of magnitude larger than those the hashing algorithms can handle, as long
every stratum is below a fixed size (here, about 110 million records). Obviously memory constraints for the
hashing algorithms can be avoided with more memory, but it is the relative performance for a fixed amount
of memory that matters, and OPDY’s more efficient use of memory clearly trumps that of the hashing
algorithms.

Aside from speed, note, too, that PSS, the two hashing algorithms, and Out-SM have the added disadvantage
of requiring storage space for the bootstrap sample datasets, which can become prohibitively large if #strata,
N, n, and/or m are large. All of these results combined arguably make OPDY the only truly scalable
bootstrap algorithm in SAS.

Focusing on the real runtime of OPDY and its relationship to #strata, N, n, and m (see Figure 2), the
empirical runtimes (available from the author upon request) yield a reasonably accurate approximation in (2).
So given the 0.58 (≈ 0.50) term in (2), OPDY appears to be approximately O(N n m× ×), which makes
sense given its composition. And sub-linear time complexity is a highly desirable algorithmic property from
the perspective of scalability, one which Proc SurveySelect and the hashing algorithms do not share.

14 In the only case where any of the algorithms is faster than OPDY (relatively few records (#strata = 2, N = 10,000,000) and
relatively few bootstrap samples required (n = m = 500)), DA is faster by less than 15 seconds of real runtime. In absolute terms,
however, total runtimes for both OPDY and DA are under a minute, making this irrelevant to solving the problem of developing
fast, scalable bootstraps. DA fails on this front when absolute runtimes are large enough to actually matter. To take just one
example, when the input dataset contains 12 strata with only 100,000 records each, but 2,000 bootstrap samples of size n = 2,000
are drawn, OPDY runs in under 26 seconds real time, while DA runs in about 11 minutes real time; if hundreds of such datasets
require the application of bootstraps, DA becomes runtime prohibitive and is excluded as a viable option.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 17 of 61 Computational Statistics: WIRE, May, 2013

Log10(Real Runtime) = -5.99228 + 0.588164 * Log10(N*n*m) (where N = all N across strata) (2)

 Figure 2: OPDY Real Runtime by N*n*m (N = all strata)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

9 10 11 12 13 14 15

Log 10 (N*n*m)

Lo
g

10
 (

R
ea

l R
un

tim
e

)

Conclusions

The goal of this paper was to develop non-resource intensive, with- and without-replacement sampling
algorithms to execute bootstraps and permutation tests faster than any competitors on arguably the most
widely used statistical software platform globally. The OPDY and OPDN algorithms accomplish this
objective. For bootstraps, OPDY uses negligible storage space, and on the SAS platform, it is much faster
than any other alternative, including the built-in SAS Procedure (Proc SurveySelect) designed specifically
for this purpose. It is even much faster than hashing, and simultaneously does not have the large storage
requirements of hashing. Most importantly, the hashing algorithms crash under dataset sizes much smaller
than those which OPDY can handle. Finally, OPDY’s time complexity (approximately O(N n m× ×)) is
sub-linear, making it the only truly scaleable bootstrap algorithm in SAS®.

For permutation tests, OPDN uses negligible storage space, relatively little memory space via very efficient
SRSWOR, and on the SAS platform, it is much faster than any other alternative, including the built-in
SAS/STAT Procedures designed to perform permutation tests (Proc SurveySelect, Proc Multtest, and Proc
NPAR1WAY). OPDN’s relative (and absolute) speed premium increases with dataset size, and with
reasonable, sub-linear time complexity (approximately O(N n m× ×)) it maintains scalability on large
datasets, handling datasets (technically, the largest stratum in the dataset) more than ten times larger than
those that crash Proc NPAR1WAY. So it is not only the fastest permutation test and SRSWOR algorithm in
SAS, but also the most robust. Given SAS’s reputation for speed compared to other statistical computing
platforms, OPDN is likely to be a serious contender for the fastest algorithm for these purposes among all
major statistical computing packages.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 18 of 61 Computational Statistics: WIRE, May, 2013

That said, it should be noted that the algorithm runtimes presented herein, and in any empirical algorithm
research for that matter, obviously very much depend on the hardware configurations on which the
algorithms are run. Very fast I/O speeds on grid platforms, for example, may well allow the hashing
algorithms to close the speed gap on OPDY, or Proc SurveySelect to close the speed gap on OPDN.
However, it is also likely that such platforms also will have comparably increased memory resources, and
thus, OPDY and OPDN may retain or even increase their speed lead: all else equal, as a rule, in-memory
processing will always be faster than I/O processing, and OPDY and OPDN do not need to create and write
to disk the bootstrap sampling dataset that the hashing algorithms “merge” with the original input dataset,
nor the sampling dataset that Proc SurveySelect needs to generate, respectively. In fact, preliminary runs on
such systems (with large amounts of memory) show dramatic (relative) speed gains for OPDY and OPDN
beyond those presented herein when compared to most of the competitors used herein. The code provided in
this paper allows for testing and comparisons on different platforms, and this author welcomes feedback
from readers regarding the relative performance of the algorithms across an array of hardware
configurations.

Acknowledgments

I sincerely thank Toyo Johnson and Nicole Ann Johnson Opdyke for their support and belief that SAS could
produce better bootstraps, better permutation tests, and better sampling with and without replacement.

Appendix A

SAS v.9.2 code for the OPDN, OPDN-Alt, PROCSS, PROCMT, PROCNPAR, and Bebb-Sim algorithms, and
the SAS code that generates the datasets used to test them in this paper, is presented below.

**
**
PROGRAM: MFPTUS.SAS

DATE: 12/30/10

CODER: J.D. Opdyke

PURPOSE: Run and compare 6 different SAS Permutation Tests algorithms
 including OPDN, OPDN_alt, PROCSS, PROCMT, PROCNPAR, and BEBB_SIM.
 See Opdyke J.D., "Permutation Tests (and Sampling with Replacement) Orders of
 Magnitude Faster Using SAS," InterStat, January, 2011, for detailed
explanations
 of the different algorithms.

INPUTS: Each macro is completely modular and accepts 6 macro parameter
 values (PROCMT accepts 7):
 indata = the input dataset (including libname)
 outdata = the input dataset (including libname)
 byvars = the "by variables" defining the strata (these are
 character variables)
 samp2var = the (character) variable defining the two samples in
each

J.D. Opdyke, Managing Director, DataMineit, LLC Page 19 of 61 Computational Statistics: WIRE, May, 2013

 stratum: TEST ("T") and CONTROL ("C"), with those
values
 permvar = the variable to be tested with permutation tests
 num_psmps = number of Permutation Test samples
 seed = and optional random number seed (must be an integer or
 blank)
 left_or_right = "left" or "right" depending on whether the user wants
 lower or upper one-tailed p-values, respectively, in
 addition to the two-tailed p-value (only for PROCMT)

OUTPUTS: A SAS dataset, named by the user via the macro variable outdata,
 which contains the following variables:
 1) the "by variables" defining the strata
 2) the name of the permuted variable
 3) the size (# of records) of the permutation samples (this should
 always be the smaller of the two samples (TEST v. CONTROL))
 4) the number of permutation samples
 5) the left, right, and two-tailed p-values corresponding to the
 following hypotheses:
 p_left = Pr(x>X | Ho: Test>=Control)
 p_right = Pr(x<X | Ho: Test<=Control)
 p_both = Pr(x=X | Ho: Test=Control)
 where x is the sample permutation statistic from the Control
 sample (or the additive inverse of the Test sample if the Test
 sample is smaller, which is atypical) and X is the distribution of
 permutation statistic values.

 Following standard convention, the two-tailed p-value is
 calculated based on the reflection method.
**
**
***;

options
label symbolgen
fullstimer yearcutoff=1950
nocenter ls = 256 ps = 51
msymtabmax=max
mprint mlogic
minoperator mindelimiter=' '
cleanup
;

libname MFPTUS "c:\";

%MACRO makedata(strata_size=, testproportion=, numsegs=, numgeogs=);

*** Since generating all the datasets below once takes only a couple of minutes,
 time was not wasted trying to optimize runtimes for the creation of mere
 test data.
***;

%let numstrata = %eval(&numsegs.*&numgeogs.);

*** The variable "cntrl_test" identifies the test and control samples with
 values of "T" and "C" respectively.
***;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 20 of 61 Computational Statistics: WIRE, May, 2013

data MFPTUS.pricing_data_&numstrata.strata_&strata_size.(keep=geography segment cntrl_test
price sortedby=geography segment);
 format segment geography $8. cntrl_test $1.;
 array seg{3} $ _TEMPORARY_ ('segment1' 'segment2' 'segment3');
 array geog{4} $ _TEMPORARY_ ('geog1' 'geog2' 'geog3' 'geog4');
 strata_size = 1* &strata_size.;
 do x=1 to &numgeogs.;
 geography=geog{x};
 do j=1 to &numsegs.;
 segment=seg{j};
 if j=1 then do i=1 to strata_size;
 if mod(i,&testproportion.)=0 then do;
 cntrl_test="T";
 price=(rand('UNIFORM')+0.175/(&testproportion./(&testproportion./10)));
 end;
 else do;
 cntrl_test="C";
 price=rand('UNIFORM');
 end;
 output;
 end;
 else if j=2 then do i=1 to strata_size;
 if mod(i,&testproportion.)=0 then do;
 cntrl_test="T";
 price=rand('POISSON',1-0.75/(&testproportion./(&testproportion./10)));
 end;
 else do;
 cntrl_test="C";
 price=rand('POISSON',1.0);
 end;
 output;
 end;
 else if j=3 then do i=1 to strata_size;
*** Make Control smaller to test code in algorithms.;
 if mod(i,&testproportion.)=0 then cntrl_test="C";
 else cntrl_test="T";
 price=rand('NORMAL');
 output;
 end;
 end;
 end;
 run;
%MEND makedata;

%makedata(strata_size=10000, testproportion=10, numsegs=2, numgeogs=1);
%makedata(strata_size=10000, testproportion=10, numsegs=2, numgeogs=3);
%makedata(strata_size=10000, testproportion=10, numsegs=3, numgeogs=4);

%makedata(strata_size=100000, testproportion=100, numsegs=2, numgeogs=1);
%makedata(strata_size=100000, testproportion=100, numsegs=2, numgeogs=3);
%makedata(strata_size=100000, testproportion=100, numsegs=3, numgeogs=4);

%makedata(strata_size=1000000, testproportion=1000, numsegs=2, numgeogs=1);
%makedata(strata_size=1000000, testproportion=1000, numsegs=2, numgeogs=3);
%makedata(strata_size=1000000, testproportion=1000, numsegs=3, numgeogs=4);

%makedata(strata_size=10000000, testproportion=10000, numsegs=2, numgeogs=1);
%makedata(strata_size=10000000, testproportion=10000, numsegs=2, numgeogs=3);
%makedata(strata_size=10000000, testproportion=10000, numsegs=3, numgeogs=4);

J.D. Opdyke, Managing Director, DataMineit, LLC Page 21 of 61 Computational Statistics: WIRE, May, 2013

%makedata(strata_size=7500000, testproportion=7500, numsegs=2, numgeogs=1);
%makedata(strata_size=7500000, testproportion=7500, numsegs=2, numgeogs=3);

%makedata(strata_size=25000000, testproportion=25000, numsegs=2, numgeogs=1);
%makedata(strata_size=50000000, testproportion=50000, numsegs=2, numgeogs=1);
%makedata(strata_size=100000000, testproportion=100000, numsegs=2, numgeogs=1);

*** OPDN ***;
*** OPDN ***;
*** OPDN ***;

%MACRO OPDN(num_psmps=,
 indata=,
 outdata=,
 byvars=,
 samp2var=,
 permvar=,
 seed=
);

*** The only assumption made within this macro is that the byvars are all
 character variables and the input dataset is sorted by the "by variables"
 that define the strata. Also, the "TEST" and "CONTROL" samples are defined
 by a variable "cntrl_test" formatted as $1. containing "T" and "C"
 character strings, respectively, as values.
***;

*** Obtain the last byvar, count the byvars, and assign each byvar into numbered
 macro variables for easy access/processing.
***;

%let last_byvar = %scan(&byvars.,-1);
%let num_byvars = %sysfunc(countw(&byvars.));
%do i=1 %to &num_byvars.;
 %let byvar&i. = %scan(&byvars.,&i.);
%end;

*** If user does not pass a value to the optional macro variable "seed," use -1
 based on the time of day.
***;
%if %sysevalf(%superq(seed)=,boolean) %then %let seed=-1;

*** Obtain counts and cumulated counts for each strata.;

proc summary data=&indata. nway;
 class &byvars. &samp2var.;
 var &permvar.;
 output out=byvar_sum(keep = _FREQ_ &byvars. &samp2var. sumpvar)
 sum = sumpvar
 ;
 run;

*** Identify and keep the smaller of the two samples for more efficient
 sampling. Below, invert the empirical permutation distribution if CONTROL
 sample is smaller that TEST sample (which is not typical). That will
 remain consistent with output variables corresponding to:

J.D. Opdyke, Managing Director, DataMineit, LLC Page 22 of 61 Computational Statistics: WIRE, May, 2013

 p_left = Pr(x>X | Ho: Test>=Control)
 p_right = Pr(x<X | Ho: Test<=Control)
 p_both = Pr(x=X | Ho: Test=Control)
 where x is the sample permutation statistic and X is the distribution of
 permutation statistic values.
***;

data byvar_sum_min(keep=tot_FREQ _FREQ_ &byvars. &samp2var. sumpvar sortedby=&byvars.);
 set byvar_sum;
 format tot_FREQ _FREQ_ 16.;
 by &byvars.;
 retain lag_FREQ lag_sum lag_samp2;
 if first.&last_byvar. then do;
 lag_FREQ = _FREQ_;
 lag_sum = sumpvar;
 lag_samp2 = &samp2var.;
 end;
 else do;
 tot_FREQ = sum(lag_FREQ,_FREQ_);
 if _FREQ_<=lag_FREQ then output;
 else do;
 FREQ = lag_FREQ;
 sumpvar = lag_sum;
 &samp2var. = lag_samp2;
 output;
 end;
 end;
 run;

*** Obtain number of strata, and use this number to count and separately permute
 each strata below.
***;

%let dsid = %sysfunc(open(byvar_sum_min));
%let n_byvals = %sysfunc(ifc(&dsid.
 ,%nrstr(%sysfunc(attrn(&dsid.,nobs))
 %let rc = %sysfunc(close(&dsid.));
)
 ,%nrstr(0)
)
);
*** In case number is large, avoid scientific notation.;
%let n_byvals = %sysfunc(putn(&n_byvals.,16.));

*** Cumulate counts of strata for efficient (re)use of _TEMPORARY_ array.;

data byvar_sum_min(drop=prev_freq);
 set byvar_sum_min;
 format cum_prev_freq _FREQ_ 16.;
 retain cum_prev_freq 0;
 prev_freq = lag(tot_FREQ);
 if _n_=1 then prev_freq = 0;
 cum_prev_freq = sum(cum_prev_freq, prev_freq);
 run;

*** For access in data step below (that uses data _null_ for memory
 conservation), put into macro strings a) smaller-of-two-sample counts,
 b) total counts for each strata, c) cumulated total counts, d) summed

J.D. Opdyke, Managing Director, DataMineit, LLC Page 23 of 61 Computational Statistics: WIRE, May, 2013

 permutation variable, d) which of two samples is smaller, and e) byvar
 values.
***;

proc sql noprint;
 select _freq_ into :freqs separated by ' ' from byvar_sum_min;
 quit;
proc sql noprint;
 select tot_FREQ into :tot_FREQs separated by ' ' from byvar_sum_min;
 quit;
proc sql noprint;
 select cum_prev_freq into :cum_prev_freqs separated by ' ' from byvar_sum_min;
 quit;
proc sql noprint;
 select sumpvar into :sumpvar separated by ' ' from byvar_sum_min;
 quit;
proc sql noprint;
 select &samp2var. into :samp2var separated by ' ' from byvar_sum_min;
 quit;

%do i=1 %to &num_byvars.;
 proc sql noprint;
 select &&byvar&i. into :byvals&i. separated by ' ' from byvar_sum_min;
 quit;
%end;

*** Get size of largest stratum for efficient (re)use of _TEMPORARY_ array.;

proc sql noprint;
 select max(tot_FREQ) into :max_tot_freq separated by ' ' from byvar_sum_min;
 quit;

*** In case number is large, avoid scientific notation.;
%let max_tot_freq = %sysfunc(putn(&max_tot_freq.,16.));

*** Save each stratums results in cumulated macro variables instead of
 outputting to a dataset on the data step to lessen intermediate memory
 requirements.
*** ;

*** Initialize macro variables used below.;
%let p_left =;
%let p_right =;
%let p_both =;
%let samp_small_size =;

data _null_;
 set &indata.;
 by &byvars.;
 format which_sample $1.;
*** To view permutation distributions for each strata in .log file.,
 comment out first line below this comment, uncomment the two lines below
 it, and uncomment "put _ALL_" 37 lines below it. Note that this will slow
 program execution and often create large .log files.
***;

 array temp{&max_tot_freq.} _TEMPORARY_;
%if &sysver >= 9.2 %then %do;
 array psums{&num_psmps.} _TEMPORARY_;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 24 of 61 Computational Statistics: WIRE, May, 2013

 retain byval_counter 0 cum_prev_freq 0;
%end;
%if &sysver < 9.2 %then %do;
 array psums{&num_psmps.} psmp1-psmp&num_psmps.;
 retain byval_counter 0 cum_prev_freq 0 psmp1-psmp&num_psmps.;
%end;

 temp[_n_-cum_prev_freq]=&permvar.;

 if last.&last_byvar. then do;
 byval_counter+1;
 num_psmps = &num_psmps.*1;
 psmp_size = 1 * scan("&freqs.", byval_counter,' ');
 which_sample = COMPRESS(UPCASE(scan("&samp2var.", byval_counter,' ')),' ');
 tot_FREQ_hold = 1 * scan("&tot_FREQs.", byval_counter,' ');
 seed = 1*&seed.;

 do m=1 to num_psmps;
 x=0;
 tot_FREQ = tot_FREQ_hold;
 do n=1 to psmp_size;
 cell = floor(ranuni(seed)*tot_FREQ) + 1;
 x = temp[cell] + x;
 hold = temp[cell];
 temp[cell]=temp[tot_FREQ];
 temp[tot_FREQ] = hold;
 tot_FREQ+(-1);
 end;
 psums[m] = x;
 end;
 psum = 1*scan("&sumpvar.", byval_counter,' ');
 p_right = 0;
 p_left = 0;
 p_both = 0;
 call sortn(of psums[*]);
 pmed = median(of psums[*]);
 pmean = mean(of psums[*]);

* put _ALL_;

*** Efficiently handle extreme test sample values.;

 IF psum<psums[1] THEN DO;
 p_left=0;
 p_right=num_psmps;
 p_both=0;
 END;
 ELSE IF psum>psums[num_psmps] THEN DO;
 p_left=num_psmps;
 p_right=0;
 p_both=0;
 END;
 ELSE DO;

*** For non-extreme cases, start with shorter tail for less looping.;

 if pmed>=psum then do;
 do z=1 to num_psmps;
 if psum>=psums[z] then p_left+1;
 else do;
 lastbinnum = z-1;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 25 of 61 Computational Statistics: WIRE, May, 2013

 distance_left = pmean - psums[z-1];
 leave;
 end;
 end;

*** Avoid loop for other (larger) p-value.
 If psum equals last bin, p_right = 1 - p_left + lastbinsize.
 Otherwise, p_right = 1 - p_left.
***;
 if psum = psums[lastbinnum] then do;
 lastbinsize=1;
 do k=lastbinnum to 1 by -1;
 if psums[k]=psums[k-1] then lastbinsize+1;
 leave;
 end;
 p_right = num_psmps - p_left + lastbinsize;
 end;
 else p_right = num_psmps - p_left;
 end;

 else do;
 do z=num_psmps to 1 by -1;
 if psum<=psums[z] then p_right+1;
 else do;
 lastbinnum = z+1;
 distance_right = psums[z+1] - pmean;
 leave;
 end;
 end;

*** Avoid loop for other (larger) p-value.
 If psum equals last bin, p_left = 1 - p_right + lastbinsize.
 Otherwise, p_left = 1 - p_right.
***;
 if psum = psums[lastbinnum] then do;
 lastbinsize=1;
 do k=lastbinnum to num_psmps;
 if psums[k]=psums[k+1] then lastbinsize+1;
 else leave;
 end;
 p_left = num_psmps - p_right + lastbinsize;
 end;
 else p_left = num_psmps - p_right;
 end;

*** Base 2-sided p-value on distance from mean of last (i.e. least extreme) bin
 of smaller p-value. This is common practice.
***;

 if p_left<p_right then do;
 p_both = p_left;
 do z=num_psmps to 1 by -1;
 if (psums[z] - pmean) >= distance_left then p_both+1;
 else leave;
 end;
 end;
 else if p_left>p_right then do;
 p_both = p_right;
 do z=1 to num_psmps;
 if (pmean - psums[z]) >= distance_right then p_both+1;
 else leave;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 26 of 61 Computational Statistics: WIRE, May, 2013

 end;
 end;
 else p_both=num_psmps;

*** Account for possibility, due to psum=a particular bin value, that
 p_both>num_psmps.
***;
 p_both = min(p_both,num_psmps);

 END;

 p_left = p_left / num_psmps;
 p_right = p_right / num_psmps;
 p_both = p_both / num_psmps;

*** If CONTROL sample is smaller than TEST (which is atypical), reverse
*** p-values, as empirical distribution is mirror of itself.;

 if "C"=COMPRESS(UPCASE(scan("&samp2var.", byval_counter,' ')),' ') then do;
 hold = p_left;
 p_left = p_right;
 p_right = hold;
 end;

*** Cumulate key macro variables to save results.;

 call symput('p_left',symget('p_left')||" "||compress(p_left));
 call symput('p_right',symget('p_right')||" "||compress(p_right));
 call symput('p_both',symget('p_both')||" "||compress(p_both));
 cum_prev_freq = 1*scan("&cum_prev_freqs.",byval_counter+1,' ');
 end;
 run;

*** Obtain and assign the format of each byvar, all of which are assumed to be
 character variables.
***;

data lens(keep=lens);
 set &indata.(keep=&byvars. firstobs=1 obs=1);
 do i=1 to &num_byvars.;
 lens = vlengthx(scan("&byvars.",i));
 output;
 end;
 run;
proc sql noprint;
 select lens into :alllens separated by ' ' from lens;
 quit;
%macro assign_formats;
 %do i=1 %to &num_byvars.;
 &&byvar&i. $%scan(&alllens.,&i.).
 %end;
%mend assign_formats;

*** Assign each byvar value for each stratum.;

%macro assign_byvar_vals(which_strata=);
 %do j=1 %to &num_byvars.;
 &&byvar&j. = scan("&&byvals&j.",&which_strata.,' ');
 %end;
%mend assign_byvar_vals;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 27 of 61 Computational Statistics: WIRE, May, 2013

*** Unwind and assign all the cumulated macro variables.;

data &outdata.(sortedby=&byvars. drop=n_byvals i);
 n_byvals = 1*&n_byvals.;
 format %assign_formats;
 do i=1 to n_byvals;
 length permvar $32;
 permvar = "&permvar.";
 n_psamp = 1 * scan("&freqs.", i,' ');
 num_psmps = &num_psmps.;
 p_left = 1*scan("&p_left.",i,' ');
 p_right = 1*scan("&p_right.",i,' ');
 p_both = 1*scan("&p_both.",i,' ');
 %assign_byvar_vals(which_strata = i)
 label permvar = "Permuted Variable"
 n_psamp = "Size of Permutation Samples"
 num_psmps = "# of Permutation Samples"
 p_left = "Left p-value"
 p_right = "Right p-value"
 p_both = "Two-Tailed p-value"
 ;
 output;
 end;
 run;

*** Optional.;
* proc datasets lib=work memtype=data kill nodetails;
* run;

%MEND OPDN;

%OPDN(num_psmps = 1000,
 indata = MFPTUS.pricing_data_2strata_100000,
 outdata = MFPTUS.OPDN_100000_2strata,
 byvars = geography segment,
 samp2var = cntrl_test,
 permvar = price,
 seed =
);

*** OPDN_alt ***;
*** OPDN_alt ***;
*** OPDN_alt ***;

%MACRO OPDN_alt(num_psmps=,
 indata=,
 outdata=,
 byvars=,
 samp2var=,
 permvar=,
 seed=
);

*** If user does not pass a value to the optional macro variable "seed," use -1
 based on the time of day.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 28 of 61 Computational Statistics: WIRE, May, 2013

***;
%if %sysevalf(%superq(seed)=,boolean) %then %let seed=-1;

*** To minimize intermediate memory requirements, initialize output data set
 with missing variable values.
***;

data &outdata.(sortedby=&byvars.);
 stop;
 set &indata(keep=&byvars.);
 length permvar $32 n_psamp num_psmps p_left p_right p_both
 distance_right distance_left lastbinnum lastbinsize
 pmed pmean tot_FREQ_incr x 8;
 call missing(of _all_);
 run;

*** Obtain counts and cumulated counts for each strata.;

proc summary data=&indata. nway;
 class &byvars. &samp2var.;
 var &permvar.;
 output out=byvar_sum(keep = _FREQ_ &byvars. &samp2var. sumpvar)
 sum = sumpvar;
 run;

*** Identify and keep the smaller of the two samples for more efficient
 sampling. Below, invert the empirical permutation distribution if CONTROL
 sample is smaller that TEST sample (which is not typical). That will
 remain consistent with output variables corresponding to:
 p_left = Pr(x>X | Ho: Test>=Control)
 p_right = Pr(x<X | Ho: Test<=Control)
 p_both = Pr(x=X | Ho: Test=Control)
 where x is the sample permutation statistic and X is the distribution of
 permutation statistic values.
***;

%let last_byvar = %scan(&byvars.,-1);

data byvar_sum_min(keep=tot_FREQ _FREQ_ &byvars. &samp2var. sumpvar sortedby=&byvars.);
 set byvar_sum;
 format tot_FREQ _FREQ_ 16.;
 by &byvars.;
 retain lag_FREQ lag_sum lag_samp2;
 if first.&last_byvar. then do;
 lag_FREQ = _FREQ_;
 lag_sum = sumpvar;
 lag_samp2 = &samp2var.;
 end;
 else do;
 tot_FREQ = sum(lag_FREQ,_FREQ_);
 if _FREQ_<=lag_FREQ then output;
 else do;
 FREQ = lag_FREQ;
 sumpvar = lag_sum;
 &samp2var. = lag_samp2;
 output;
 end;
 end;
 run;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 29 of 61 Computational Statistics: WIRE, May, 2013

*** Get size of largest stratum for efficient (re)use of _TEMPORARY_ array.;

proc sql noprint;
 select max(tot_FREQ) into :max_tot_freq from byvar_sum_min;
 quit;

*** In case number is large, avoid scientific notation.;
%let max_tot_freq = %sysfunc(putn(&max_tot_freq.,16.));

data &outdata.;
 if 0 then modify &outdata.;

*** To view permutation distributions for each strata in .log file.,
 comment out first line below this comment, uncomment the line below it, and
 uncomment "put _ALL_" 35 lines below it. Note that this will slow program
 execution and often create large .log files.
***;
 array temp{&max_tot_freq.} _TEMPORARY_;
%if &sysver >= 9.2 %then %do;
 array psums{&num_psmps.} _TEMPORARY_;
 retain num_psmps &num_psmps.;
%end;
%if &sysver < 9.2 %then %do;
 array psums{&num_psmps.} psmp1-psmp&num_psmps.;
 retain num_psmps &num_psmps. psmp1-psmp&num_psmps.;
%end;

 do _n_ = 1 by 1 until(last.&last_byvar.);
 merge &indata.(keep=&byvars. &permvar. &samp2var.)
 byvar_sum_min;
 by &byvars.;
 temp[_n_]=&permvar.;
 end;
 seed = 1*&seed.;
 do m=1 to num_psmps;
 x=0;
 tot_FREQ_incr = tot_FREQ;
 do n=1 to _FREQ_;
 cell = floor(ranuni(seed)*tot_FREQ_incr) + 1;
 x = temp[cell] + x;
 hold = temp[cell];
 temp[cell]=temp[tot_FREQ_incr];
 temp[tot_FREQ_incr] = hold;
 tot_FREQ_incr+(-1);
 end;
 psums[m] = x;
 end;

 n_psamp = _FREQ_;

 p_right = 0;
 p_left = 0;
 p_both = 0;
 call sortn(of psums[*]);
 pmed = median(of psums[*]);
 pmean = mean(of psums[*]);

* put _ALL_;

*** Efficiently handle extreme test sample values.;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 30 of 61 Computational Statistics: WIRE, May, 2013

 IF sumpvar<psums[1] THEN DO;
 p_left=0;
 p_right=num_psmps;
 p_both=0;
 END;
 ELSE IF sumpvar>psums[num_psmps] THEN DO;
 p_left=num_psmps;
 p_right=0;
 p_both=0;
 END;
 ELSE DO;

*** For non-extreme cases, start with shorter tail for less looping.;

 if pmed>=sumpvar then do;
 do z=1 to num_psmps;
 if sumpvar>=psums[z] then p_left+1;
 else do;
 lastbinnum = z-1;
 distance_left = pmean - psums[z-1];
 leave;
 end;
 end;

*** Avoid loop for other (larger) p-value.
 If sumpvar equals last bin, p_right = 1 - p_left + lastbinsize.
 Otherwise, p_right = 1 - p_left.
***;
 if sumpvar = psums[lastbinnum] then do;
 lastbinsize=1;
 do k=lastbinnum to 1 by -1;
 if psums[k]=psums[k-1] then lastbinsize+1;
 leave;
 end;
 p_right = num_psmps - p_left + lastbinsize;
 end;
 else p_right = num_psmps - p_left;
 end;
 else do;
 do z=num_psmps to 1 by -1;
 if sumpvar<=psums[z] then p_right+1;
 else do;
 lastbinnum = z+1;
 distance_right = psums[z+1] - pmean;
 leave;
 end;
 end;

*** Avoid loop for other (larger) p-value.
 If psum equals last bin, p_left = 1 - p_right + lastbinsize.
 Otherwise, p_left = 1 - p_right.
***;
 if sumpvar = psums[lastbinnum] then do;
 lastbinsize=1;
 do k=lastbinnum to num_psmps;
 if psums[k]=psums[k+1] then lastbinsize+1;
 else leave;
 end;
 p_left = num_psmps - p_right + lastbinsize;
 end;
 else p_left = num_psmps - p_right;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 31 of 61 Computational Statistics: WIRE, May, 2013

 end;

*** Base 2-sided p-value on distance from mean of last (i.e. least extreme) bin
 of smaller p-value. This is common practice.
***;

 if p_left<p_right then do;
 p_both = p_left;
 do z=num_psmps to 1 by -1;
 if (psums[z] - pmean) >= distance_left then p_both+1;
 else leave;
 end;
 end;
 else if p_left>p_right then do;
 p_both = p_right;
 do z=1 to num_psmps;
 if (pmean - psums[z]) >= distance_right then p_both+1;
 else leave;
 end;
 end;
 else p_both=num_psmps;

*** Account for possibility, due to psum=a particular bin value, that p_both>num_psmps.
***;
 p_both = min(p_both,num_psmps);

 END;

*** If CONTROL sample is smaller than TEST (which is atypical), reverse
*** p-values, as empirical distribution is mirror of itself.;

 if &samp2var.="C" then do;
 hold = p_left;
 p_left = p_right;
 p_right = hold;
 end;

 p_left = p_left / num_psmps;
 p_right = p_right / num_psmps;
 p_both = p_both / num_psmps;

 length permvar $32;
 retain permvar "&permvar";
 output;
 run;

data &outdata.;
 set &outdata.(keep=&byvars. permvar num_psmps n_psamp p_left p_right p_both);
 label permvar = "Permuted Variable"
 n_psamp = "Size of Permutation Samples"
 num_psmps = "# of Permutation Samples"
 p_left = "Left p-value"
 p_right = "Right p-value"
 p_both = "Two-Tailed p-value"
 ;
 run;

*** Optional.;
* proc datasets lib=work memtype=data kill nodetails;
* run;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 32 of 61 Computational Statistics: WIRE, May, 2013

%MEND OPDN_alt;

%OPDN_alt(num_psmps = 1000,
 indata = MFPTUS.pricing_data_2strata_100000,
 outdata = MFPTUS.OPDN_alt_100000_2strata,
 byvars = geography segment,
 samp2var = cntrl_test,
 permvar = price,
 seed =
);

*** PROC_SS ***;
*** PROC_SS ***;
*** PROC_SS ***;

%MACRO PROCSS(num_psmps=,
 indata=,
 outdata=,
 byvars=,
 samp2var=,
 permvar=,
 seed=
);

*** If user does not pass a value to the optional macro variable "seed," use -1
 based on the time of day.
***;
%if %sysevalf(%superq(seed)=,boolean) %then %let seed=-1;

*** Obtain counts and cumulated counts for each strata.;

proc summary data=&indata. nway;
 class &byvars. &samp2var.;
 var &permvar.;
 output out=byvar_sum(keep = _FREQ_ &byvars. &samp2var. sumpvar)
 sum = sumpvar
 ;
 run;

*** Identify and keep the smaller of the two samples for more efficient
 sampling. Below, invert the empirical permutation distribution if CONTROL
 sample is smaller that TEST sample (which is not typical). That will
 remain consistent with output variables corresponding to:
 p_left = Pr(x>X | Ho: Test>=Control)
 p_right = Pr(x<X | Ho: Test<=Control)
 p_both = Pr(x=X | Ho: Test=Control)
 where x is the sample permutation statistic and X is the distribution of
 permutation statistic values.
***;

%let last_byvar = %scan(&byvars.,-1);
data byvar_sum(keep=&byvars. _NSIZE_ sumpvar &samp2var. sortedby=&byvars.);
 set byvar_sum(rename=(_FREQ_=_NSIZE_));
 by &byvars.;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 33 of 61 Computational Statistics: WIRE, May, 2013

 retain lag_NSIZE lag_sum lag_samp2;
 if first.&last_byvar. then do;
 lag_NSIZE = _NSIZE_;
 lag_sum = sumpvar;
 lag_samp2 = &samp2var.;
 end;
 else do;
 if _NSIZE_<=lag_NSIZE then output;
 else do;
 NSIZE = lag_NSIZE;
 sumpvar = lag_sum;
 &samp2var. = lag_samp2;
 output;
 end;
 end;
 run;

*** From SAS Online Documentation:
 For simple random sampling without replacement, if there is enough memory
 for it PROC SURVEYSELECT uses Floyds ordered hash table algorithm (see
 Bentley and Floyd (1987) and Bentley and Knuth (1986) for details). If
 there is not enough memory available for Floyds algorithm, PROC
 SURVEYSELECT switches to the sequential algorithm of Fan, Muller, and
 Rezucha (1962), which requires less memory but might require more time to
 select the sample.
***;

proc surveyselect data = &indata.(drop=&samp2var.)
 method = srs
 sampsize = byvar_sum(keep=&byvars. _NSIZE_)
 rep = &num_psmps.
 seed = &seed.
 out = PSS_perm_Samps(drop=SamplingWeight SelectionProb)
 noprint;
 strata &byvars.;
 run;

proc summary data=PSS_perm_Samps nway;
 class &byvars. replicate;
 var &permvar.;
output out=PSS_perm_sums(sortedby=&byvars. replicate keep=&byvars. replicate &permvar.)
sum=;
 run;

proc transpose data=PSS_perm_sums out=PSS_perm_sums_t(rename=(_NAME_=permvar))
prefix=psmp;
 var &permvar.;
 by &byvars.;
 id replicate;
 run;

data &outdata.(keep=&byvars. permvar n_psamp num_psmps p_left p_right p_both)
 error
 ;
 merge PSS_perm_sums_t(in=insamps)
 byvar_sum(in=insummary)
 ;
 by &byvars.;
 if insamps & insummary then do;
 array psums[&num_psmps.] psmp1-psmp&num_psmps.;
 n_psamp = _NSIZE_;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 34 of 61 Computational Statistics: WIRE, May, 2013

 num_psmps = 1*&num_psmps.;
 p_left = 0;
 p_right = 0;
 p_both = 0;
 call sortn(of psums[*]);
 pmed = median(of psums[*]);
 pmean = mean(of psums[*]);

*** Efficiently handle extreme test sample values.;

 IF sumpvar<psums[1] THEN DO;
 p_left=0;
 p_right=num_psmps;
 p_both=0;
 END;
 ELSE IF sumpvar>psums[num_psmps] THEN DO;
 p_left=num_psmps;
 p_right=0;
 p_both=0;
 END;
 ELSE DO;

*** For non-extreme cases, start with shorter tail for less looping.;

 if pmed>=sumpvar then do;
 do z=1 to num_psmps;
 if sumpvar>=psums[z] then p_left+1;
 else do;
 lastbinnum = z-1;
 distance_left = pmean - psums[z-1];
 leave;
 end;
 end;

*** Avoid loop for other (larger) p-value.
 If sumpvar equals last bin, p_right = 1 - p_left + lastbinsize.
 Otherwise, p_right = 1 - p_left.
***;
 if sumpvar = psums[lastbinnum] then do;
 lastbinsize=1;
 do k=lastbinnum to 1 by -1;
 if psums[k]=psums[k-1] then lastbinsize+1;
 leave;
 end;
 p_right = num_psmps - p_left + lastbinsize;
 end;
 else p_right = num_psmps - p_left;
 end;

 else do;
 do z=num_psmps to 1 by -1;
 if sumpvar<=psums[z] then p_right+1;
 else do;
 lastbinnum = z+1;
 distance_right = psums[z+1] - pmean;
 leave;
 end;
 end;

*** Avoid loop for other (larger) p-value.
 If psum equals last bin, p_left = 1 - p_right + lastbinsize.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 35 of 61 Computational Statistics: WIRE, May, 2013

 Otherwise, p_left = 1 - p_right.
***;
 if sumpvar = psums[lastbinnum] then do;
 lastbinsize=1;
 do k=lastbinnum to num_psmps;
 if psums[k]=psums[k+1] then lastbinsize+1;
 else leave;
 end;
 p_left = num_psmps - p_right + lastbinsize;
 end;
 else p_left = num_psmps - p_right;
 end;

*** Base 2-sided p-value on distance from mean of last (i.e. least extreme) bin
 of smaller p-value. This is common practice.
***;

 if p_left<p_right then do;
 p_both = p_left;
 do z=num_psmps to 1 by -1;
 if (psums[z] - pmean) >= distance_left then p_both+1;
 else leave;
 end;
 end;
 else if p_left>p_right then do;
 p_both = p_right;
 do z=1 to num_psmps;
 if (pmean - psums[z]) >= distance_right then p_both+1;
 else leave;
 end;
 end;
 else p_both=num_psmps;

*** Account for possibility, due to psum=a particular bin value, that
 p_both>num_psmps.
***;
 p_both = min(p_both,num_psmps);

 END;

 p_left = p_left / num_psmps;
 p_right = p_right / num_psmps;
 p_both = p_both / num_psmps;

*** If CONTROL sample is smaller than TEST (which is atypical), reverse
*** p-values, as empirical distribution is mirror of itself.;

 if &samp2var.="C" then do;
 hold = p_left;
 p_left = p_right;
 p_right = hold;
 end;

 label permvar = "Permuted Variable"
 n_psamp = "Size of Permutation Samples"
 num_psmps = "# of Permutation Samples"
 p_left = "Left p-value"
 p_right = "Right p-value"
 p_both = "Two-Tailed p-value"
 ;
 output &outdata.;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 36 of 61 Computational Statistics: WIRE, May, 2013

 end;
 else output error;
 run;

*** Optional ***;
* proc datasets lib=work memtype=data kill nodetails;
* run;

%MEND PROCSS;

%PROCSS(num_psmps = 1000,
 indata = MFPTUS.pricing_data_2strata_100000,
 outdata = MFPTUS.PROCSS_100000_2strata,
 byvars = geography segment,
 samp2var = cntrl_test,
 permvar = price,
 seed =
);

*** PROC_MT ***;
*** PROC_MT ***;
*** PROC_MT ***;

%MACRO PROCMT(num_psmps=,
 indata=,
 outdata=,
 byvars=,
 samp2var=,
 permvar=,
 seed=,
 left_or_right=
);

*** If user does not pass a value to the optional macro variable "seed,"
 generate a random seed and use it for all three proc multtests below
 (although SAS OnlineDoc says seed=-1 should work, it does not).
***;
%if %sysevalf(%superq(seed)=,boolean)
%then %let seed=%sysfunc(ceil(%sysevalf(1000000000*%sysfunc(ranuni(-1)))));

*** Un/comment test statements below to perform permutation tests based
 on different assumptions about the variance structure of the samples.;
***;

proc multtest data = &indata.
 nsample = &num_psmps.
 seed = &seed.
 out = mt_output_results_2t(keep=&byvars. perm_p
rename=(perm_p=xp_both))
 permutation
 noprint;
 by &byvars.;
 class &samp2var.;
* test mean (&permvar. / DDFM=SATTERTHWAITE);
 test mean (&permvar.);
 run;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 37 of 61 Computational Statistics: WIRE, May, 2013

*** To make runtime results comparable to PROC NPAR1WAY, which provides only
 two-tailed p-value and the smaller of the right or left p-values, run
 two of the three PROC MULTTESTs and calculate the second tail as one
 minus the given tail, which will usually be very close to the actual
 value unless the data is highly discretized.
***;

proc multtest data = &indata.
 nsample = &num_psmps.
 seed = &seed.
%if %UPCASE(%sysfunc(compress(&left_or_right.)))=RIGHT %then %do;
 out = mt_output_results_up(keep=&byvars. perm_p
rename=(perm_p=xp_right))
%end;
%if %UPCASE(%sysfunc(compress(&left_or_right.)))=LEFT %then %do;
 out = mt_output_results_low(keep=&byvars. perm_p rename=(perm_p=xp_left))
%end;
 permutation
 noprint;
 by &byvars.;
 class &samp2var.;
%if %UPCASE(%sysfunc(compress(&left_or_right.)))=RIGHT %then %do;
* test mean (&permvar. / upper DDFM=SATTERTHWAITE);
 test mean (&permvar. / upper);
%end;
%if %UPCASE(%sysfunc(compress(&left_or_right.)))=LEFT %then %do;
* test mean (&permvar. / lower DDFM=SATTERTHWAITE);
 test mean (&permvar. / lower);
%end;
 run;

proc summary data=&indata. nway;
 class &byvars. &samp2var.;
 var &permvar.;
 output out=byvar_frq(keep = _FREQ_ &byvars.)
 n = toss
 ;
 run;

%let last_byvar = %scan(&byvars.,-1);
data byvar_frq(keep=&byvars. xn_psamp sortedby=&byvars.);
 set byvar_frq(rename=(_FREQ_=xn_psamp));
 by &byvars.;
 retain lag_FREQ;
 if first.&last_byvar. then lag_FREQ = xn_psamp;
 else do;
 if xn_psamp<=lag_FREQ then output;
 else do;
 xn_psamp = lag_FREQ;
 output;
 end;
 end;
 run;

data &outdata.(drop=xn_psamp xp_left xp_both)
 error
 ;
%if %UPCASE(%sysfunc(compress(&left_or_right.)))=LEFT %then %do;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 38 of 61 Computational Statistics: WIRE, May, 2013

 merge mt_output_results_low(in=inlow)
 mt_output_results_2t(in=in2t)
 byvar_frq(in=infrq)
 ;
 if in2t & inlow & infrq then do;
 format permvar $32.;
 permvar = "&permvar.";
 n_psamp = xn_psamp;
 num_psmps = 1*&num_psmps.;
 p_left = xp_left;
 p_right = .;
%end;
%if %UPCASE(%sysfunc(compress(&left_or_right.)))=RIGHT %then %do;
 merge mt_output_results_up(in=inup)
 mt_output_results_2t(in=in2t)
 byvar_frq(in=infrq)
 ;
 if in2t & inup & infrq then do;
 format permvar $32.;
 permvar = "&permvar.";
 n_psamp = xn_psamp;
 num_psmps = 1*&num_psmps.;
 p_right = xp_right;
 p_left = .;
%end;
 p_both = xp_both;
 label permvar = "Permuted Variable"
 n_psamp = "Size of Permutation Samples"
 num_psmps = "# of Permutation Samples"
 p_left = "Left p-value"
 p_right = "Right p-value"
 p_both = "Two-Tailed p-value"
 ;
 output &outdata.;
 end;
 else output error;
 run;

*** Optional ***;
* proc datasets lib=work memtype=data kill nodetails;
* run;

%MEND PROCMT;

%PROCMT(num_psmps = 1000,
 indata = MFPTUS.pricing_data_2strata_100000,
 outdata = MFPTUS.PROCMT_100000_2strata,
 byvars = geography segment,
 samp2var = cntrl_test,
 permvar = price,
 seed = ,
 left_or_right = left
);

*** PROCNPAR ***;
*** PROCNPAR ***;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 39 of 61 Computational Statistics: WIRE, May, 2013

*** PROCNPAR ***;

%MACRO PROCNPAR(num_psmps=,
 indata=,
 outdata=,
 byvars=,
 samp2var=,
 permvar=,
 seed=
);

*** If user does not pass a value to the optional macro variable "seed," use -1
 based on the time of day.
***;
%if %sysevalf(%superq(seed)=,boolean) %then %let seed=-1;

ods listing close;
proc npar1way data = &indata.
 scores = data
 ;
 var &permvar.;
 by &byvars.;
 class &samp2var.;
 exact scores=data / n=&num_psmps. seed=&seed.;
 ods output DataScoresMC = hold(keep = &byvars. Name1 Label1 nValue1
 where = (Label1 = "Estimate")
);
 run;
ods listing;

proc transpose data = hold(drop=Label1)
 out = &outdata.(drop = _NAME_);
 by &byvars.;
 id Name1;
 var nValue1;
 run;

proc summary data=&indata. nway;
 class &byvars. &samp2var.;
 var &permvar.;
 output out=byvar_frq(keep = _FREQ_ &byvars. &samp2var.)
 n = toss
 ;
 run;

%let last_byvar = %scan(&byvars.,-1);
data byvar_frq(keep=&byvars. permvar n_psamp num_psmps &samp2var. sortedby=&byvars.);
 set byvar_frq;
 by &byvars.;
 format permvar $32.;
 retain permvar "&permvar." lag_FREQ lag_samp2 ;
 n_psamp = _FREQ_;
 num_psmps = 1*&num_psmps.;
 if first.&last_byvar. then do;
 lag_FREQ = n_psamp;
 lag_samp2 = &samp2var.;
 end;
 else do;
 if n_psamp<=lag_FREQ then output;
 else do;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 40 of 61 Computational Statistics: WIRE, May, 2013

 n_psamp = lag_FREQ;
 &samp2var. = lag_samp2;
 output;
 end;
 end;
 run;

data &outdata.(drop=hold mcpl_data mcpr_data mcp2_data &samp2var.)
 error
 ;
 merge byvar_frq(in=infrq)
 &outdata.(in=inresults)
 ;
 by &byvars.;
 if inresults & infrq then do;
 p_left = mcpl_data;
 p_right = mcpr_data;
 p_both = mcp2_data;
 label permvar = "Permuted Variable"
 n_psamp = "Size of Permutation Samples"
 num_psmps = "# of Permutation Samples"
 p_left = "Left p-value"
 p_right = "Right p-value"
 p_both = "Two-Tailed p-value"
 ;

*** If CONTROL sample is smaller than TEST (which is atypical), reverse
*** p-values, as empirical distribution is mirror of itself.;

 if &samp2var.="C" then do;
 hold = p_left;
 p_left = p_right;
 p_right = hold;
 end;
 output &outdata.;
 end;
 else output error;
 run;

%MEND PROCNPAR;

%PROCNPAR(num_psmps = 1000,
 indata = MFPTUS.pricing_data_2strata_100000,
 outdata = MFPTUS.PROCNPAR_100000_2strata,
 byvars = geography segment,
 samp2var = cntrl_test,
 permvar = price,
 seed =
);

*** BEBB_SIM ***;
*** BEBB_SIM ***;
*** BEBB_SIM ***;

%MACRO BEBB_SIM(num_psmps=,
 indata=,
 outdata=,

J.D. Opdyke, Managing Director, DataMineit, LLC Page 41 of 61 Computational Statistics: WIRE, May, 2013

 byvars=,
 samp2var=,
 permvar=,
 seed=
);

*** If user does not pass a value to the optional macro variable "seed," use -1
 based on the time of day.
***;
%if %sysevalf(%superq(seed)=,boolean) %then %let seed=-1;

*** Obtain counts for each strata.;

proc summary data=&indata. nway;
 class &byvars. &samp2var.;
 var &permvar.;
 output out=byvar_sum(keep = _FREQ_ &byvars. &samp2var. sumpvar)
 sum = sumpvar
 ;
 run;

%let last_byvar = %scan(&byvars.,-1);
data byvar_sum_min(keep=tot_FREQ _FREQ_ &byvars. &samp2var. sumpvar sortedby=&byvars.);
 set byvar_sum;
 by &byvars.;
 retain lag_FREQ lag_sum lag_samp2;
 if first.&last_byvar. then do;
 lag_FREQ = _FREQ_;
 lag_sum = sumpvar;
 lag_samp2 = &samp2var.;
 end;
 else do;
 tot_FREQ = sum(lag_FREQ,_FREQ_);
 if _FREQ_<=lag_FREQ then output;
 else do;
 FREQ = lag_FREQ;
 sumpvar = lag_sum;
 &samp2var. = lag_samp2;
 output;
 end;
 end;
 run;

*** Slightly faster to use macro variable value strings and scan() than to merge
 FREQ etc. onto the "indata" dataset, especially for large "indata"
 datasets.
*** ;
proc sql noprint;
 select _freq_ into :freqs separated by ' ' from byvar_sum_min;
 quit;
proc sql noprint;
 select tot_FREQ into :tot_FREQs separated by ' ' from byvar_sum_min;
 quit;
proc sql noprint;
 select sumpvar into :sumpvar separated by ' ' from byvar_sum_min;
 quit;
proc sql noprint;
 select &samp2var. into :samp2var separated by ' ' from byvar_sum_min;
 quit;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 42 of 61 Computational Statistics: WIRE, May, 2013

*** simultaneously create all permstrap samples and summarize results of each
 as the end of stratum is reached
***;

%let last_byvar = %scan(&byvars.,-1);

data &outdata.(keep=&byvars. permvar n_psamp num_psmps p_left p_right p_both);
 set &indata.(keep=&byvars. &permvar.) end=lastrec;
 by &byvars.;
 retain permvar "&permvar" n_psamp 0 num_psmps &num_psmps.;

 array smalln_counter{&num_psmps.} _TEMPORARY_;
 array psums{&num_psmps.} _TEMPORARY_;

 if first.&last_byvar. then do;

 byval_counter+1;

 freq = 1*scan("&freqs.",byval_counter,' ');
 n_psamp = _FREQ_;
 tot_FREQ = 1*scan("&tot_FREQs.",byval_counter,' ');

 bigN_counter = tot_FREQ+1;
 do i=1 to num_psmps;
 smalln_counter[i] = _FREQ_;
 psums[i] = 0;
 end;
 end;
 bigN_counter+(-1);

 min_mac_res_inloop = &permvar.;

 seed=1*&seed.;
 if last.&last_byvar.~=1 then do i=1 to num_psmps;
 if ranuni(seed) <= smalln_counter[i]/bigN_counter then do;
 psums[i] = min_mac_res_inloop + psums[i];
 smalln_counter[i]+(-1);
 end;
 end;
 else do i=1 to num_psmps;
 if smalln_counter[i]>0 then psums[i] = min_mac_res_inloop + psums[i];
 end;
 if last.&last_byvar. then DO;

*** If CONTROL sample is smaller than TEST (which is atypical), reverse
*** order of empirical distribution.;

 sumpvar = 1*scan("&sumpvar.",byval_counter,' ');

 p_left = 0;
 p_right = 0;
 p_both = 0;
 call sortn(of psums[*]);
 pmed = median(of psums[*]);
 pmean = mean(of psums[*]);

*** Efficiently handle extreme test sample values.;

 IF sumpvar<psums[1] THEN DO;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 43 of 61 Computational Statistics: WIRE, May, 2013

 p_left=0;
 p_right=num_psmps;
 p_both=0;
 END;
 ELSE IF sumpvar>psums[num_psmps] THEN DO;
 p_left=num_psmps;
 p_right=0;
 p_both=0;
 END;
 ELSE DO;

*** For non-extreme cases, start with shorter tail for less looping.;

 if pmed>=sumpvar then do;
 do z=1 to num_psmps;
 if sumpvar>=psums[z] then p_left+1;
 else do;
 lastbinnum = z-1;
 distance_left = pmean - psums[z-1];
 leave;
 end;
 end;

*** Avoid loop for other (larger) p-value.
 If sumpvar equals last bin, p_right = 1 - p_left + lastbinsize.
 Otherwise, p_right = 1 - p_left.
***;
 if sumpvar = psums[lastbinnum] then do;
 lastbinsize=1;
 do k=lastbinnum to 1 by -1;
 if psums[k]=psums[k-1] then lastbinsize+1;
 leave;
 end;
 p_right = num_psmps - p_left + lastbinsize;
 end;
 else p_right = num_psmps - p_left;
 end;

 else do;
 do z=num_psmps to 1 by -1;
 if sumpvar<=psums[z] then p_right+1;
 else do;
 lastbinnum = z+1;
 distance_right = psums[z+1] - pmean;
 leave;
 end;
 end;

*** Avoid loop for other (larger) p-value.
 If psum equals last bin, p_left = 1 - p_right + lastbinsize.
 Otherwise, p_left = 1 - p_right.
***;
 if sumpvar = psums[lastbinnum] then do;
 lastbinsize=1;
 do k=lastbinnum to num_psmps;
 if psums[k]=psums[k+1] then lastbinsize+1;
 else leave;
 end;
 p_left = num_psmps - p_right + lastbinsize;
 end;
 else p_left = num_psmps - p_right;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 44 of 61 Computational Statistics: WIRE, May, 2013

 end;

*** Base 2-sided p-value on distance from mean of last (i.e. least extreme) bin
 of smaller p-value. This is common practice.
***;
 if p_left<p_right then do;
 p_both = p_left;
 do z=num_psmps to 1 by -1;
 if (psums[z] - pmean) >= distance_left then p_both+1;
 else leave;
 end;
 end;
 else if p_left>p_right then do;
 p_both = p_right;
 do z=1 to num_psmps;
 if (pmean - psums[z]) >= distance_right then p_both+1;
 else leave;
 end;
 end;
 else p_both=num_psmps;

*** Account for possibility, due to psum=a particular bin value, that
 p_both>num_psmps.
***;
 p_both = min(p_both,num_psmps);
 END;

 p_left = p_left / num_psmps;
 p_right = p_right / num_psmps;
 p_both = p_both / num_psmps;

*** If CONTROL sample is smaller than TEST (which is atypical), reverse
*** p-values, as empirical distribution is mirror of itself.;

 if "C"=COMPRESS(UPCASE(scan("&samp2var.", byval_counter,' ')),' ') then do;
 hold = p_left;
 p_left = p_right;
 p_right = hold;
 end;

 label permvar = "Permuted Variable"
 n_psamp = "Size of Permutation Samples"
 num_psmps = "# of Permutation Samples"
 p_left = "Left p-value"
 p_right = "Right p-value"
 p_both = "Two-Tailed p-value"
 ;
 output &outdata.;
 END;
 run;

*** Optional ***;
* proc datasets lib=work memtype=data kill nodetails;
* run;

%MEND BEBB_SIM;

%BEBB_SIM(num_psmps = 1000,
 indata = MFPTUS.pricing_data_2strata_100000,
 outdata = MFPTUS.BEBB_SIM_100000_2strata,
 byvars = geography segment, samp2var=cntrl_test,

J.D. Opdyke, Managing Director, DataMineit, LLC Page 45 of 61 Computational Statistics: WIRE, May, 2013

 permvar = price,
 seed =
);

Appendix B

For the convenience of the reader, a proof is provided below for the validity of the SRSWOR procedure used
by OPDN, which is essentially the approach of Goodman & Hedetniemi (1977). The algorithm as
implemented in OPDN is shown again below.

OPDN implementation of Goodman & Hedetniemi (1977) for Permutation Tests:

*** temp[] is the array filled with all the data values, for current stratum, of the variable being permuted
*** psums[] is the array containing the permutation sample statistic values for every permutation sample

do m = 1 to #permutation tests
 x ← 0
 tot_FREQ_hold ← # records in current stratum
 tot_FREQ ← tot_FREQ_hold
 do n = 1 to # records in smaller of Control and Treatment samples
 cell ← uniform random variate on 1 to tot_FREQ
 x ← temp[cell] + x
 hold ← temp[cell]
 temp[cell] ← temp[tot_FREQ]
 temp[tot_FREQ] ← hold
 tot_FREQ ← tot_FREQ -1
 end;
 psums[m] ← x
end;

For a sampling algorithm to be a valid SRSWOR procedure, the probability of selecting any without-
replacement sample of n items from a population of N items (N > n) needs to equal the probability of
selecting any other without-replacement sample of n items, and that probability is:

Pr(drawing any particular sample of n items from larger group of N items) = ()1 ! ! !N n N n Nn
 = −
 (C1)

because there are N – choose – n possible without-replacement samples.

Using the algorithm shown above, the probability of drawing the first item is 1/N, and the probability of
drawing the second item is 1/(N-1) and the probability of drawing the third item is 1/(N-2), and so on.
Because each of these draws is independent of the others, the probability of drawing a sample of any n items
is the product of these probabilities:

 Pr(drawing any particular sample of n items from larger group of N items) =

() () () ()1
1

2
1...

2
1

1
11

+−
⋅

+−
⋅⋅

−
⋅

−
⋅

nNnNNNN
* the number of permutations of these n items (because we do

not care about the ordering of the n items, only that a particular set of n items is drawn), which is n!.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 46 of 61 Computational Statistics: WIRE, May, 2013

So Pr(drawing any particular sample of n items from larger group of N items) = ()
1

0

!
n

i

n N i
−

=

−∏ (B2)

But in fact, (B1) = (B2), as shown below.

(B1) =
() ()()[] ()()()[]

()() ()()() =
⋅⋅⋅−−−+−⋅⋅−−
⋅⋅⋅−−−−−⋅⋅⋅−−

=
−

12...11...21
12...2112...21

!
!!

nNnNnNNNN
nNnNnNnnn

N
nNn

()()[]

()() () ()
=

−
=

+−⋅⋅−−
⋅⋅⋅−−

=

∏
−

=

1

0

!
1...21

12...21
n

i

iN

n
nNNNN

nnn

= (B2)

Appendix C

SAS® v.9.2 code for the OPDY, PSS, A4.8, DA, and Out-SM algorithms, and the SAS® code that generates
the datasets used to test them in this paper, is presented below.

**
**
PROGRAM: MFBUS.SAS

DATE: 9/13/10

CODER: J.D. Opdyke

PURPOSE: Run and compare different SAS bootstrap algorithms including OPDY, PSS, DA,
 Out-SM, and A4.8. See Opdyke, J.D., "Much Faster Bootstraps Using SAS,"
 InterStat, October, 2101, for detailed explanations.

INPUTS: Each macro is completely modular and accepts 5 macro parameters:
 bsmp_size = number of observations in each of the bootstrap samples
 num_bsmps = number of bootstrap samples
 indata = the input dataset (including libname)
 byvars = the "by variables" defining the strata
 bootvar = the variable to be bootstrapped

OUTPUTS: A uniquely named SAS dataset, the name of which contains the name of the
 algorithm, bsmp_size, and num_bsmps. Variables in the output dataset include
 the mean of the bootstrap statistics, the standard deviation of the bootstrap
 statistics, and the 2.5th and 97.5th percentiles of the bootstrap statistics.
 Additional or different bootstrap statistics are easily added.

CAVEATS: The "by variables" defining the strata in the input datasets are, in OPDY and
 DA, assumed to be character variables.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 47 of 61 Computational Statistics: WIRE, May, 2013

 The directory c:\MFBUS must be created before the program is run.

**
**
***;

options
label
symbolgen
fullstimer
yearcutoff=1950
nocenter
ls = 256
ps = 51
msymtabmax=max
mprint
mlogic
minoperator mindelimiter=' '
cleanup
;

libname MFBUS "c:\MFBUS";

%macro makedata(strata_size=, numsegs=, numgeogs=);

%let numstrata = %eval(&numsegs.*&numgeogs.);

*** For the price variable, multiplying the random variates by the loop counter
 dramatically skews the values of the sample space, thus ensuring that any
 erroneous non-random sampling will be spotted quickly and easily.
***;

data MFBUS.price_data_&numstrata.strata_&strata_size.(keep=geography segment price
sortedby=geography segment);
 format segment geography $8.;
 array seg{3} $ _TEMPORARY_ ('segment1' 'segment2' 'segment3');
 array geog{4} $ _TEMPORARY_ ('geog1' 'geog2' 'geog3' 'geog4');
 strata_size = 1* &strata_size.;
 do x=1 to &numgeogs.;
 geography=geog{x};
 do j=1 to &numsegs.;
 segment=seg{j};
 if j=1 then do i=1 to strata_size;
 price=rand('UNIFORM')*10*i;
 output;
 end;
 else if j=2 then do i=1 to strata_size;
 price=rand('NORMAL')*10*i;
 output;
 end;
 else if j=3 then do i=1 to strata_size;
 price=rand('LOGNORMAL')*10*i;
 output;
 end;
 end;
 end;
 run;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 48 of 61 Computational Statistics: WIRE, May, 2013

%mend makedata;

%makedata(strata_size=10000, numsegs=2, numgeogs=1);
%makedata(strata_size=10000, numsegs=2, numgeogs=3);
%makedata(strata_size=10000, numsegs=3, numgeogs=4);

%makedata(strata_size=100000, numsegs=2, numgeogs=1);
%makedata(strata_size=100000, numsegs=2, numgeogs=3);
%makedata(strata_size=100000, numsegs=3, numgeogs=4);

%makedata(strata_size=1000000, numsegs=2, numgeogs=1);
%makedata(strata_size=1000000, numsegs=2, numgeogs=3);
%makedata(strata_size=1000000, numsegs=3, numgeogs=4);

%makedata(strata_size=10000000, numsegs=2, numgeogs=1);
%makedata(strata_size=10000000, numsegs=2, numgeogs=3);
%makedata(strata_size=10000000, numsegs=3, numgeogs=4);

*** OPDY_Boot ***;
*** OPDY_Boot ***;
*** OPDY_Boot ***;

%macro OPDY_Boot(bsmp_size=, num_bsmps=, indata=, byvars=, bootvar=);

*** the only assumption made within this macro is that the byvars are all character
variables;

*** obtain last byvar, count byvars, and assign each byvar into macro variables for
easy access/processing;

%let last_byvar = %scan(&byvars.,-1);
%let num_byvars = %sysfunc(countw(&byvars.));
%do i=1 %to &num_byvars.;
 %let byvar&i. = %scan(&byvars.,&i.);
%end;

*** macro obtains number of observations in a dataset;

%macro nobs(dset);
 %if %sysfunc(exist(&dset)) %then %do;
 %let dsid=%sysfunc(open(&dset));
 %let nobs=%sysfunc(attrn(&dsid,nobs));
 %let dsid=%sysfunc(close(&dsid));
 %end;
 %else %let nobs=0;
 &nobs
%mend nobs;

*** initialize macro variables used later;
%let bmean =;
%let bstd =;
%let b975 =;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 49 of 61 Computational Statistics: WIRE, May, 2013

%let b025 =;

*** obtain counts and cumulated counts for each strata;

proc summary data=&indata. nway;
 class &byvars.;
 var &bootvar.;
 output out=byvar_nobs(keep=_FREQ_ &byvars.) n=junk;
 run;

%let n_byvals = %nobs(byvar_nobs);

data cum_temp(keep=_FREQ_ cum_prev_freq);
 set byvar_nobs(keep=_FREQ_);
 retain cum_prev_freq 0;
 prev_freq = lag(_FREQ_);
 if _n_=1 then prev_freq = 0;
 cum_prev_freq = sum(cum_prev_freq, prev_freq);
 run;

*** put counts, cumulated counts, and byvar values into macro strings;

proc sql noprint;
 select cum_prev_freq into :cum_prev_freqs separated by ' ' from cum_temp;
 quit;

proc sql noprint;
 select _freq_ into :freqs separated by ' ' from cum_temp;
 quit;

%do i=1 %to &num_byvars.;
 proc sql noprint;
 select &&byvar&i. into :byvals&i. separated by ' ' from byvar_nobs;
 quit;
%end;

*** get size of largest stratum;

proc summary data=byvar_nobs(keep=_FREQ_) nway;
 var _FREQ_;
 output out=byvar_nobs(keep=max_freq) max=max_freq;
 run;
data _null_;
 set byvar_nobs;
 call symputx('max_freq',max_freq);
 run;

*** save results of each stratum in cumulated macro variables instead of outputting to
a dataset on the data step to lessen intermediate memory requirements
***;

data _null_;
 set &indata.(keep=&byvars. &bootvar.);
 by &byvars.;
 array temp{&max_freq.} _TEMPORARY_;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 50 of 61 Computational Statistics: WIRE, May, 2013

 %if &sysver >= 9.2 %then %do;
 array bmeans{&num_bsmps.} _TEMPORARY_;
 retain byval_counter 0 cum_prev_freq 0;
 %end;
 %if &sysver < 9.2 %then %do;
 array bmeans {&num_bsmps.} bmean1-bmean&num_bsmps.;
 retain byval_counter 0 cum_prev_freq 0 bmean1-bmean&num_bsmps.;
 %end;

 temp[_n_-cum_prev_freq]=&bootvar.;
 if last.&last_byvar. then do;
 byval_counter+1;
 freq = 1* scan("&freqs.", byval_counter,' ');
 num_bsmps = &num_bsmps.*1;
 bsmp_size = &bsmp_size.*1;
 do m=1 to num_bsmps;
 x=0;
 do n=1 to bsmp_size;
 x = temp[floor(ranuni(-1)*freq) + 1] + x;
 end;
 bmeans[m] = x/bsmp_size;
 end;
 bmean = mean(of bmeans[*]);
 bstd = std(of bmeans[*]);
 b975 = pctl(97.5, of bmeans[*]);
 b025 = pctl(2.5, of bmeans[*]);
 call symput('bmean',symget('bmean')||" "||compress(bmean));
 call symput('bstd',symget('bstd')||" "||compress(bstd));
 call symput('b975',symget('b975')||" "||compress(b975));
 call symput('b025',symget('b025')||" "||compress(b025));
 cum_prev_freq = 1*scan("&cum_prev_freqs.",byval_counter+1,' ');
 end;
 run;

*** obtain and assign the format of each byvar, all of which are assumed to be
character variables;

data lens(keep=lens);
 set &indata.(keep=&byvars. firstobs=1 obs=1);
 do i=1 to &num_byvars.;
 lens = vlengthx(scan("&byvars.",i));
 output;
 end;
 run;
proc sql noprint;
 select lens into :alllens separated by ' ' from lens;
 quit;
%macro assign_formats;
 %do i=1 %to &num_byvars.;
 &&byvar&i. $%scan(&alllens.,&i.).
 %end;
%mend assign_formats;

*** assign each byvar value for each stratum;

%macro assign_byvar_vals(which_strata=);
 %do j=1 %to &num_byvars.;
 &&byvar&j. = scan("&&byvals&j.",&which_strata.,' ');
 %end;
%mend assign_byvar_vals;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 51 of 61 Computational Statistics: WIRE, May, 2013

*** unwind and assign all the cumulated macro variables;

data MFBUS.OPDY_boots_&bsmp_size._&num_bsmps.(sortedby=&byvars. drop=n_byvals i);
 n_byvals = 1*&n_byvals.;
 format %assign_formats;
 do i=1 to n_byvals;
 bmean = 1*scan("&bmean.",i,' ');
 bstd = 1*scan("&bstd.",i,' ');
 b025 = 1*scan("&b025.",i,' ');
 b975 = 1*scan("&b975.",i,' ');
 %assign_byvar_vals(which_strata = i)
 output;
 end;
 run;

*** optional ***;
* proc datasets lib=work memtype=data kill nodetails;
* run;

%mend OPDY_Boot;

%OPDY_Boot(bsmp_size=500,
 num_bsmps=500,
 indata=MFBUS.price_data_6strata_100000,
 byvars=geography segment,
 bootvar=price
);

*** PSS ***;
*** PSS ***;
*** PSS ***;

%macro PSS(bsmp_size=, num_bsmps=, indata=, byvars=, bootvar=);

proc surveyselect data=&indata. method=urs sampsize=&bsmp_size. rep=&num_bsmps. seed=-1
out=Boot_PSS_Samps(drop=expectedhits samplingweight) noprint;
 strata &byvars.;
 run;

proc summary data=Boot_PSS_Samps nway;
 class &byvars. replicate;
 weight numberhits;
 var &bootvar.;
 output out=Boot_PSS_avgs(sortedby=&byvars. keep=&byvars. &bootvar.) mean=;
 run;

proc univariate data=Boot_PSS_avgs noprint;
 by &byvars.;
 var &bootvar.;
 output out=MFBUS.Boot_PSS_&bsmp_size._&num_bsmps.
 mean=bmean
 std=bstd
 pctlpts = 2.5 97.5
 pctlpre=b

J.D. Opdyke, Managing Director, DataMineit, LLC Page 52 of 61 Computational Statistics: WIRE, May, 2013

 ;
 run;

*** optional;
* proc datasets lib=work memtype=data kill nodetails;
* run;

%mend PSS;

%PSS(bsmp_size=500,
 num_bsmps=500,
 indata=MFBUS.price_data_6strata_100000,
 byvars=geography segment,
 bootvar=price
);

*** Boot_DA ***;
*** Boot_DA ***;
*** Boot_DA ***;

%macro Boot_DA(bsmp_size=, num_bsmps=, indata=, byvars=, bootvar=);

*** the only assumption made within this macro is that the byvars are all character
variables;

*** obtain last byvar, count byvars, and assign each byvar into macro variables for
easy access/processing;

%let last_byvar = %scan(&byvars.,-1);
%let num_byvars = %sysfunc(countw(&byvars.));
%do i=1 %to &num_byvars.;
 %let byvar&i. = %scan(&byvars.,&i.);
%end;

*** macro obtains number of observations in a dataset;

%macro nobs(dset);
 %if %sysfunc(exist(&dset)) %then %do;
 %let dsid=%sysfunc(open(&dset));
 %let nobs=%sysfunc(attrn(&dsid,nobs));
 %let dsid=%sysfunc(close(&dsid));
 %end;
 %else %let nobs=0;
 &nobs
%mend nobs;

*** obtain counts and cumulated counts for each strata;

proc summary data=&indata. nway;
 class &byvars.;
 var &bootvar.;
 output out=byvar_nobs(keep=_FREQ_ &byvars.) n=junk;
 run;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 53 of 61 Computational Statistics: WIRE, May, 2013

%let n_byvals = %nobs(byvar_nobs);

data cum_temp(keep=_FREQ_ cum_prev_freq);
 set byvar_nobs(keep=_FREQ_);
 retain cum_prev_freq 0;
 prev_freq = lag(_FREQ_);
 if _n_=1 then prev_freq = 0;
 cum_prev_freq = sum(cum_prev_freq, prev_freq);
 run;

*** put counts, cumulated counts, and byvar values into macro strings;

proc sql noprint;
 select cum_prev_freq into :cum_prev_freqs separated by ' ' from cum_temp;
 quit;
proc sql noprint;
 select _freq_ into :freqs separated by ' ' from cum_temp;
 quit;

%do i=1 %to &num_byvars.;
 proc sql noprint;
 select &&byvar&i. into :byvals&i. separated by ' ' from byvar_nobs;
 quit;
%end;

*** obtain and assign the format of each byvar, all of which are assumed to be
character variables;

data lens(keep=lens);
 set &indata.(keep=&byvars. firstobs=1 obs=1);
 do i=1 to &num_byvars.;
 lens = vlengthx(scan("&byvars.",i));
 output;
 end;
 run;
proc sql noprint;
 select lens into :alllens separated by ' ' from lens;
 quit;
%macro assign_formats;
 %do i=1 %to &num_byvars.;
 &&byvar&i. $%scan(&alllens.,&i.).
 %end;
%mend assign_formats;

*** assign each byvar value for each stratum;

%macro assign_byvar_vals(which_strata=);
 %do j=1 %to &num_byvars.;
 &&byvar&j. = scan("&&byvals&j.",&which_strata.,' ');
 %end;
%mend assign_byvar_vals;

data MFBUS.boot_da_&bsmp_size._&num_bsmps.(keep=&byvars. bmean bstd b975 b025);
 n_byvals=&n_byvals.;
 bsmp_size = 1* &bsmp_size.;
 num_bsmps = 1* &num_bsmps.;
 format %assign_formats;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 54 of 61 Computational Statistics: WIRE, May, 2013

 do byval_counter=1 to n_byvals;
 freq = 1* scan("&freqs.", byval_counter,' ');
 cum_prev_freq = 1* scan("&cum_prev_freqs.", byval_counter,' ');
 %assign_byvar_vals(which_strata = byval_counter)
 array bmeans{&num_bsmps.} bm1-bm&num_bsmps. (&num_bsmps.*0);
 do bsample=1 to num_bsmps;
 xsum=0;
 do obs=1 to bsmp_size;
 obsnum = floor(freq*ranuni(-1))+1+cum_prev_freq;
 set &indata.(keep=&bootvar.) point=obsnum;
 xsum = xsum + &bootvar.;
 end;
 bmeans[bsample] = xsum/bsmp_size;
 end;
 bmean = mean(of bm1-bm&num_bsmps.);
 bstd = std(of bm1-bm&num_bsmps.);
 b025 = pctl(2.5, of bm1-bm&num_bsmps.);
 b975 = pctl(97.5, of bm1-bm&num_bsmps.);
 output;
 end;
 stop;
 run;

*** optional ***;
* proc datasets lib=work memtype=data kill nodetails;
* run;

%mend Boot_DA;

%Boot_DA(bsmp_size=500,
 num_bsmps=500,
 indata=MFBUS.price_data_6strata_100000,
 byvars=geography segment,
 bootvar=price
);

*** Boot_SM ***;
*** Boot_SM ***;
*** Boot_SM ***;

%macro Boot_SM(bsmp_size=, num_bsmps=, indata=, byvars=, bootvar=);

*** obtain counts by strata;

proc summary data=&indata. nway;
 class &byvars.;
 var &bootvar.;
 output out=byvar_nobs(keep=_FREQ_ &byvars.) n=junk;
 run;

*** output bootstrap observations to sample in a nested loop;

data bsmp;
 set byvar_nobs(keep=&byvars. _FREQ_);
 num_bsmps = 1*&num_bsmps.;
 bsmp_size = 1*&bsmp_size.;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 55 of 61 Computational Statistics: WIRE, May, 2013

 do sample=1 to num_bsmps;
 do k=1 to bsmp_size;
 obsnum = floor(_FREQ_*ranuni(-1))+1;
 output;
 end;
 end;
 run;

proc sort data=bsmp;
 by &byvars. obsnum;
 run;

proc sort data=&indata. out=price_data;
 by &byvars.;
 run;

*** create record counter on input dataset;

%let last_byvar = %scan(&byvars.,-1);

data boot;
 set price_data;
 retain obsnum 0;
 by &byvars.;
 if first.&last_byvar. then obsnum=1;
 else obsnum+1;
 run;

proc sort data=boot;
 by &byvars. obsnum;
 run;

*** merge bootstrap sample observations with input dataset to obtain bootstrap samples;

data boot
 error
 ;
 merge boot(in=inboot)
 bsmp(in=inbsmp)
 ;
 by &byvars. obsnum;
 if inboot & inbsmp then output boot;
 else if inboot~=1 then output error;
 run;

*** summarize bootstrap samples;

proc summary data=boot(keep=&byvars. sample &bootvar.) nway;
 class &byvars. sample;
 var &bootvar.;
 output out=boot_means(keep=&byvars. &bootvar. sortedby=&byvars.) mean=;
 run;

proc univariate data=boot_means(keep=&byvars. &bootvar.) noprint;
 by &byvars.;
 var &bootvar.;
 output out=MFBUS.boot_Out_SM_&bsmp_size._&num_bsmps.
 mean = b_mean

J.D. Opdyke, Managing Director, DataMineit, LLC Page 56 of 61 Computational Statistics: WIRE, May, 2013

 std = b_std
 pctlpts = 2.5 97.5 pctlpre=b
 ;
 run;

*** optional ***;
* proc datasets lib=work memtype=data kill nodetails;
* run;

%mend Boot_SM;

%Boot_SM(bsmp_size=500,
 num_bsmps=500,
 indata=MFBUS.price_data_6strata_100000,
 byvars=geography segment,
 bootvar=price
);

*** ALGO4p8 ***;
*** ALGO4p8 ***;
*** ALGO4p8 ***;

%macro Algo4p8(bsmp_size=, num_bsmps=, indata=, byvars=, bootvar=);

*** obtain counts by strata and merge onto input dataset;

proc summary data=&indata. nway;
 class &byvars.;
 var &bootvar.;
 output out=byvar_nobs(keep=_FREQ_ &byvars.) n=junk;
 run;

proc sort data=&indata. out=price_data;
 by &byvars.;
 run;

data price_data
 error
 ;
 merge byvar_nobs(in=innobs keep=&byvars. _FREQ_)
 &indata.(in=infull)
 ;
 by &byvars.;
 if innobs & infull then output price_data;
 else output error;
 run;

*** simultaneously create all bootstrap samples and summarize results of each as the
end of stratum is reached;

%let last_byvar = %scan(&byvars.,-1);

data MFBUS.boot_algo4p8_&bsmp_size._&num_bsmps.(keep=&byvars. bstd bmean b025 b975);
 set price_data end=lastrec;
 by &byvars.;
 num_bsmps = &num_bsmps.;
 array bsummeans{&num_bsmps.} bsummean_1-bsummean_&num_bsmps.;

J.D. Opdyke, Managing Director, DataMineit, LLC Page 57 of 61 Computational Statistics: WIRE, May, 2013

 array bcds{&num_bsmps.} bcd_1-bcd_&num_bsmps.;
 retain bsummean_1-bsummean_&num_bsmps. 0 bcd_1-bcd_&num_bsmps. &bsmp_size. counter 0;
 counter+1;
 p = 1/(_FREQ_-counter+1);
 do i=1 to num_bsmps;
 if bcds[i]>0 then do;
 x = rand('BINOMIAL',p,bcds[i]);
 bsummeans[i]=x*&bootvar. + bsummeans[i];
 bcds[i]=bcds[i]-x;
 end;
 end;
 if last.&last_byvar. then do;

 bsmp_size = 1*&bsmp_size.;
 do h=1 to num_bsmps;
 bsummeans[h] = bsummeans[h]/bsmp_size;
 end;
 bmean = mean(of bsummean_1-bsummean_&num_bsmps.);
 bstd = std(of bsummean_1-bsummean_&num_bsmps.);
 b025 = pctl(2.5, of bsummean_1-bsummean_&num_bsmps.);
 b975 = pctl(97.5, of bsummean_1-bsummean_&num_bsmps.);
 output;
 if lastrec~=1 then do;
 counter = 0;
 do x=1 to num_bsmps;
 bsummeans[x]=0;
 bcds[x]=bsmp_size;
 end;
 end;
 end;
 run;

*** optional;
* proc datasets lib=work memtype=data kill nodetails;
* run;

%mend Algo4p8;

%Algo4p8(bsmp_size=500,
 num_bsmps=500,
 indata=MFBUS.price_data_6strata_100000,
 byvars=geography segment,
 bootvar=price
);

Appendix D

To prove the validity of Algorithm 4.8 as an equal-probability, with-replacement sampling algorithm, it must
be shown that all possible samples of n items have equal probability of being selected. The probability of
drawing any specific item in any draw from among the N items is 1/N, so the probability of a particular set of

n items being drawn, in a specific order, is simply ()1 nN or 1 nN .15 However, the order of selection does

15 This corresponds with there being Nn possible sample-orderings for a with-replacement sample of n items drawn from N items, n
≤ N.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 58 of 61 Computational Statistics: WIRE, May, 2013

not matter for these purposes,16 so we must use the probability of drawing a particular sample of n items, in
any order, and show that this is identical to the probability of drawing any sample of n items using Algo4.8.

The probability of drawing any particular sample of n items, in any order, when sampling with replacement
is given by Efron and Tibshirani (1993, p. 58) as

∏
=

⋅

n

i

b

n

i

nbbb
n

121

1
!!...!

!
 (D1)

when n = N, and bi indicates the number of times item i is drawn. Note that, by definition,
1

n

i
i

n b
=

= ∑ , so

() ()
1

1 1i
n

b n

i

n n
=

=∏ . So when n ≤ N, (D1) is simply

n

N Nbbb
n

⋅

1
!!...!

!

21
 (D2)

To show that the probability that any sample of n items drawn from N items (n ≤ N) using Algo4.8 is equal to
(D2), note that the probability that any of the n items in the sample is drawn b times, where b is 0 ≤ positive
integers ≤ n’, is by definition the binomial probability (using n’ and p as defined in Algo4.8)

() ()

** '*
*
'

Pr 1 ii
n bb

i i
i

n
b b p p

b
−

= = −
 for 0 < p < 1 17 (D3)

This makes the probability of drawing any n items with Algo4.8, with possible duplicates, in any order, the
following:

16 Note that given the sequential nature of the algorithm, the order of the n items will be determined by, and is the same as, the
order of the N population items, which of course can be sorted in any way without affecting the validity of the Algo4.8 algorithm.

17 In Algo4.8, as mentioned above, p will never equal zero, and if p = 1, * 'ib n= , which is correct.

J.D. Opdyke, Managing Director, DataMineit, LLC Page 59 of 61 Computational Statistics: WIRE, May, 2013

Pr(Algo4.8 sample = any particular with-replacement sample) =

 ()
1 1

1 1

! 1 11
! !

b n bn
b n b N N

−
 − ⋅ −

()
()

2 1 2
1

2 1 2

! 1 11
! ! 1 1

b n b bn b
b n b b N N

− −− − ⋅ − − − −

()
()

3 1 2 3
1 2

3 1 2 3

! 1 11
! ! 2 2

b n b b bn b b
b n b b b N N

− − −− − − ⋅ − − − − −

:
()
() () ()

NN bbbbnb

NN

N

NNNNbbbnb
bbbn

−−−−−

−

−−

−

−−−−−−

−−−−
...

21

121
321

1
11

1
1

!...!
!...

(D4)

Reordering terms gives

Pr(Algo4.8 sample = any particular with-replacement sample) =

()
()
()

()
()

()
() ⋅−−−−

−−−−
⋅⋅

−−−
−−

⋅
−−

−
⋅

−
−

!...!
!......

!
!

!
!

!
!

21

121

3213

21

212

1

11 NN

N

bbbnb
bbbn

bbbnb
bbn

bbnb
bn

bnb
n

⋅⋅

−
−

−
⋅

−
−

−
⋅

 −

−−−−−−

...
2
3

2
1

1
2

1
111 321321211 bbbnbbbnbbnb

N
N

NN
N

NN
N

N

() ()
NN bbbbnb

NN
NN

NN

−−−−−

−−

−

−−

...321

11
1

 (D5)

Because
1

n

i
i

n b
=

= ∑ , the denominator in the last “combinatoric” term in (D5) is !0! !N Nb b= , and except for

the first numerator n! and bi! in each denominator, the rest of the numerators and denominators in the

combinatoric terms cancel leaving !!...!! 21 Nbbbn . Of the remaining “probability” terms, the final term
can be written as

J.D. Opdyke, Managing Director, DataMineit, LLC Page 60 of 61 Computational Statistics: WIRE, May, 2013

() ()
0...

1
0

1
1

1
1 321

−−

−−

−−−−− NN bbbbnb

NNNN . If we avoid the centuries old debate

(at least since the time of Euler) regarding the value of 00 and define 00 = 1, as is accepted convention by
numerous august mathematicians (including Euler),18 then all the (N - x) numerators and denominators cancel

here as well, leaving only, from the first term, () () ()1 11 1 1b n b nN N N−
= , which yields

n

N Nbbb
n

⋅

1
!!...!

!

21
, which is (D2).

Excel workbook examples of calculating this probability using both (D2) directly and the steps of Algo4.8,
for both n ≤ N and n = N, are available from the author upon request.

References

[1] Bebbington, A. (1975), “A Simple Method of Drawing a Sample Without Replacement,” Journal of the
Royal Statistical Society, Series C (Applied Statistics), Vol. 24, No. 1, 136.

[2] Bentley, J. L. and Floyd, R. (1987), “A Sample of Brilliance,” Communications of the Association for
Computing Machinery, 30, 754–757.

[3] Bentley, J. L. and Knuth, D. (1986), “Literate Programming,” Communications of the Association for
Computing Machinery, 29, 364–369.

[4] Cassell, D. (2007), “Don’t Be Loopy: Re-Sampling and Simulation the SAS Way,” Proceedings of the
SAS Global Forum 2007 Conference, Cary, NC: SAS Institute Inc.

[5] Chernick, M. (2007), Bootstrap Methods: A Guide for Practitioners and Researchers, 2nd ed.,
Hoboken, NJ, John Wiley & Sons, Inc.

[6] Davison, A., and Hinkley, D. (1997), Bootstrap Methods and their Application, Cambridge, UK,
Cambridge University Press.

[7] Edgington, E.S., and Onghena, P. (2007), Randomization Tests, Fourth Edition, Chapman &
Hall/CRC.

[8] Efron, B. (1979), “Bootstrap Methods: Another Look at the Jackknife,” Annals of Statistics, 7, 1–26.
[9] Efron, B., and Tibshirani, R. (1993), An Introduction to the Bootstrap, New York, Chapman & Hall,

LLC.
[10] Ernvall, J., & O. Nevalainen (1982), “An Algorithm for Unbiased Random Sampling,” The Computer

Journal, Vol.25 (1), p.45-47.
[11] Euler, L. (1748), translated by J.D. Blanton (1988), Introduction to Analysis of the Infinite, New York,

NY, Springer-Verlag.
[12] Euler, L. (1770), translated by Rev. John Hewlett (1984), Elements of Algebra, New York, NY,

Springer-Verlag.
[13] Fan, C. T., Muller, M. E., and Rezucha, I. (1962), “Development of Sampling Plans by Using

Sequential (Item by Item) Selection Techniques and Digital Computers, ” Journal of the American
Statistical Association, 57, 387–402.

18 See Euler (1748), Euler (1770), Graham et al., (1994), Knuth (1992), and Vaughan (1970).

J.D. Opdyke, Managing Director, DataMineit, LLC Page 61 of 61 Computational Statistics: WIRE, May, 2013

[14] Fisher, Sir R.A. (1935), Design of Experiments, Edinburgh, Oliver & Boyd.
[15] Goodman, S. & S. Hedetniemi (1977), Introduction to the Design and Analysis of Algorithms,

McGraw-Hill, New York.
[16] Good, P. (2004), Permutation, Parametric, and Bootstrap Tests of Hypotheses, Third Edition, Springer

Verlag.
[17] Graham, R., Knuth, D., and Patashnik, O. (1994), Concrete Mathematics: A Foundation for Computer

Science, 2nd ed., Reading, MA: Addison-Wesley Publishing Company.
[18] Knuth, D. (May, 1992), “Two Notes on Notation,” The American Mathematical Monthly, Vol. 99, No.

5.
[19] Manly, B. F. J., (2007), Randomization, Bootstrap and Monte Carlo Methods in Biology, Third

Edition, Chapman & Hall/CRC.
[20] Mielke, P. & K. Berry (2001), Permutation Methods: A Distance Function Approach, Springer-Verlag,

New York.
[21] Opdyke, J.D. (2010), “Much Faster Bootstraps Using SAS®,” InterStat, October, 2010.
[22] Opdyke, J.D. (2011), “Permutation Tests (and Sampling Without Replacement) Orders of Magnitude

Faster Using SAS®,” InterStat, October, 2010.
[23] Pesarin, F. (2001), Multivariate Permutation Tests with Applications in Biostatistics, John Wiley &

Sons, Ltd., New York.
[24] SAS Institute Inc. (2007), SAS OnlineDoc 9.2, Cary, NC: SAS Institute Inc.
[25] Secosky, J., and Bloom, J. (May, 2007), “Getting Started with the DATA Step Hash Object,” SAS

Institute, Inc.
[26] Secosky, J., and Bloom, J. (2008), “Better Hashing in SAS® 9.2,” SAS Institute, Inc., Paper 306-2008.
[27] Tillé, Y. (2006), Sampling Algorithms, New York, NY, Springer.
[28] Tillé, Y. (2010), eMail Correspondence, September 30, 2010.
[29] Vaughan, H. (February 1970), “The Expression of 00,” The Mathematics Teacher, Vol. 63, p.111.

Related Articles

Article ID Article title
098 Bootstrap
096 Resampling
551 Bootstrapping Regression

	[17] Graham, R., Knuth, D., and Patashnik, O. (1994), Concrete Mathematics: A Foundation for Computer Science, 2nd ed., Reading, MA: Addison-Wesley Publishing Company.
	Related Articles

