
JD Opdyke, Chief Analytics Officer                 Page 1 of 91                                Correlation and Beyond 
 

Correlation and Beyond: Positive Definite Dependence Measures for Inference, 
Scenarios, and Stress Testing for Financial Portfolios 
 

JD Opdyke, Chief Analytics Officer, DataMineit, LLC 

 
 

Monograph: 1st Draft, November, 2021; Current draft, July 2025 
 

Disclaimer:  The views presented in this monograph are those of the sole author, JD Opdyke, and do not 
necessarily reflect those of particular institutions. 

 

Acknowledgements:  This work is dedicated to my family – to my one and only daughter, Nicole, my one 
and only son, Ryan, and my one and only wife, Toyo, for whom Euler and Gauss will always be close to her 
heart: I extend my pride, love, and deepest gratitude for your unwavering support. 

 

Professional Biography:  JD Opdyke is a senior data scientist of over 30 years in the investment and risk 
analytics space.  Currently Chief Analytics Officer at DataMineit, LLC, JD has strong and extensive 
experience across major financial verticals (capital markets, banking, and insurance) as well as decades 
of risk modeling and data science consulting expertise in related industries.  JD has built and led several 
senior quant teams, published 14 peer reviewed journal papers and book chapters, several of which were 
voted ‘Paper of the Year’ by panels of experts, and is a frequently invited speaker and presenter at top 
quant and risk conferences globally.  

JD earned his Bachelor's degree, with honors, from Yale University, his Master’s degree from Harvard 
University where he was awarded multiple paid, competitive Fellowships, and he completed a post-
graduate fellowship in MIT’s graduate mathematics department as an Advanced Study Program Fellow.  
He serves as review editor of several journals, including Artificial Intelligence in Finance. 

 

 

 

 

 

 



JD Opdyke, Chief Analytics Officer                 Page 2 of 91                                Correlation and Beyond 
 

TABLE OF CONTENTS 
 
1. Summary and Organization 
2. Introduction and Background 

a. NAbC: Summary of Methodology  
b. Types of Dependence Measures 

i. Monotonic Measures 
ii. Tail Dependence Measures 

iii. Distance-based and Other New Measures 
iv. Asymmetric, Directional Measures 

3. Estimation 
a. Covariance and Pearson’s Correlation  
b. Other Dependence Measures 

4. NAbC: (Robust) Statistical Inference 
a. Brief Literature review of Pearson’s Matrix: Distributional Results and Sampling Algorithms 

i. Distributional Results 
ii. Sampling Algorithms  

iii. Distributional Results, More General Conditions 
iv. Sampling Algorithms, More General Conditions 

b. NAbC: Pearson’s Correlation, the Gaussian Identity Matrix 
i. Correlations to Angles, Angles to Correlations 

ii. Fully Analytic Angles Density, and Efficient Sample Generation 
iii. Matrix-level p-values and Confidence Intervals 

c. NAbC: Pearson’s Correlation, Real-World Financial Data, Any Matrix Values 
i. Nonparametric Kernel Estimation 

d. NAbC: Any (Positive Definite) Dependence Measure, Any Data, Any Matrix Values 
i. Spectral and Angles Distributions, Examples from Other Dependence Measures 

e. NAbC: Fully General Conditions, Statistical Comparison of Two Matrices 
f. NAbC Remains “Estimator Agnostic” 

5. NAbC: Granular, Fully Flexible Scenarios, Reverse Scenarios, and Stress Testing 
a. Review of Existing Methods  
b. A New Method for Fully Flexible Scenarios 

6. NAbC Example: Kendall’s Tau p-values & Confidence Intervals, Unrestricted & Scenario- 
                 restricted, One- and Two-Sample Tests 

7. NAbC: Beyond ‘Distance’ to Generalized Entropy 
8. NAbC: Future Research and Additional Applications 
9. Conclusions 
10. References 
 



JD Opdyke, Chief Analytics Officer                 Page 3 of 91                                Correlation and Beyond 
 

1. Summary and Organization 

 

We live in a multivariate world, and effective modeling of financial portfolios, including their construction, 
allocation, forecasting, and risk analysis, simply is not possible without explicitly modeling the 
dependence structure of their assets. Dependence structure can drive portfolio results more than many 
other parameters in investment and risk models – sometimes even more than their combined effects.  
But the literature provides relatively little to define the finite-sample distributions of dependence 
measures in useable and useful ways under challenging, real-world financial data conditions. Yet this is 
exactly what is needed to make valid inferences about their estimates, and to use these inferences for 
essential purposes such as hypothesis testing, dynamic monitoring, realistic and granular scenario and 
reverse scenario analyses, and mitigating the effects of correlation breakdowns during market upheavals. 
This work develops a new and straightforward method, Nonparametric Angles-based Correlation (NAbC), 
for defining the finite-sample distributions of any dependence measure whose matrix of pairwise 
associations is positive definite (e.g. Pearson’s, Kendall’s, Spearman’s, the Tail Dependence Matrix, and 
others). The solution remains valid under marginal asset distributions characterized by notably different 
and varying degrees of serial correlation, non-stationarity, heavy-tailedness, and asymmetry. Importantly, 
NAbC’s p-values and confidence intervals remain analytically consistent across levels: those of the 
entire matrix are consistent with those of all the pairwise cells. Finally, NAbC maintains validity even 
when selected cells in the matrix are frozen for a given scenario or stress test, thus enabling flexible, 
granular, and realistic scenarios.  NAbC stands alone in providing all of these capabilities simultaneously, 
and should prove to be a very useful means by which we can better understand and manage financial 
portfolios in our multivariate world. 

This monograph is organized as follows: Section 2 below is an Introduction and Background that 
discusses various challenges of the problem to be addressed, along with an overview of the dependence 
measures that define the range of application of NAbC as its solution.  The next section treats estimation 
of these dependence measures, making some suggestions for possible improvements in this area while 
also making clear that estimation is beyond the scope of NAbC’s core methodology.  Section 4 develops 
NAbC, first with a brief and relevant literature review, followed by NAbC’s fully analytic derivation for a 
narrow but foundational special case.  This solution serves to make seamless the transition to the 
general case at the end of Section 4.  Section 5 demonstrates how the fully general solution can be 
applied in fully flexible scenarios within the framework of the all-pairwise matrix.  This is followed in 
Section 6 by a full empirical example covering all of NAbC’s inferential capabilities.  Section 7 explains 
how NAbC can be used to define a new, generalized entropy with probabilistic meaning and motivation, 
giving it many advantages over its distance-based competitors.  Finally, I conclude in Section 9 with 
directions for future research, as well as direct applications of NAbC in related areas, such as causal 
modeling. 
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2. Introduction and Background 

 

Dependence structure is widely acknowledged as a central driver of portfolio results in investment and 
risk models. 

“Correlation is one of the most important, if not the most important, risk factor in finance, driving 
everything” (Packham & Woebbeking, 2023, p.1). 

“Having a few good uncorrelated return streams is better than having just one, and knowing how to 
combine return streams is even more effective than being able to choose good ones (though of 
course you have to do both).”  (Dalio, 2017). 

“…choosing an asset pool consisting of (as many as possible) assets with pairwisely uncorrelated or 
even negative-correlated returns…becomes a primary objective…”  (Yu et al., 2025). 

Despite this, the literature provides relatively little to define the finite-sample distributions of commonly 
applied dependence measures, like (Pearson’s) correlation, in useable and useful ways under 
challenging, real-world financial data conditions.1  Yet this is exactly what is needed to make valid 
inferences about their estimates, and to use these inferences for a myriad of essential purposes, such as 
hypothesis testing, dynamic monitoring, realistic and granular scenario and reverse scenario analyses, 
as well as mitigating the effects of correlation breakdowns during, and preferably before, market 
upheavals (which is when we need valid inferences the most). 

The goal of this monograph is to fill this gap, both in the literature and in practice, by developing a new 
and straightforward method – Nonparametric Angles-based Correlation (“NAbC”) – defined by eight 
critically important characteristics listed below.  When satisfied simultaneously, these characteristics 
not only elevate the analytical rigor applied to dependence structure, placing it on par with that applied to 
the other parameters in investment and risk models, but also allow for practical, non-textbook 
application to real-world portfolios under conditions where other methods simply cannot be applied (due 
to their unrealistic assumptions and/or overly restrictive requirements).  Yet NAbC’s foundations rest 
squarely on very well established results in the relevant literatures, making its methodology transparent 
and intuitive, and its application straightforward. 

1. NAbC remains valid under challenging, real-world data conditions, with marginal asset distributions 
characterized by notably different and varying degrees of serial correlation, non-stationarity, heavy-
tailedness, and asymmetry. 

 
1 I take ‘real-world’ financial returns data to be multivariate with marginal distributions that can vary notably from each other, 
and change in time, in their degrees of heavy-tailedness, serial correlation, asymmetry, and non-stationarity.  These obviously 
are not the only defining characteristics of such data, but from a distributional and inferential perspective, they remain some 
of the most challenging, especially when occurring concurrently as they do in non-textbook settings. 
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2. NAbC can be applied to ANY dependence measure with a matrix of all-pairwise associations that is 
positive definite,2 including long established measures for which positive definiteness is analytically 
proven (e.g. the foundational Pearson’s product moment correlation matrix (Pearson, 1895), rank-
based measures like Kendall’s Tau (Kendall, 1938) and Spearman’s Rho (Spearman, 1904), and the 
tail dependence matrix (see Embrechts, Hofert, and Wang, 2016, and Shyamalkumar and Tao, 2020).  
This also includes newer measures for which positive definiteness must be empirically validated, 
such as Chatterjee’s correlation (Chatterjee, 2021) and its variants (Pascual-Marqui et al., 2024), the 
improved Chatterjee’s correlation (Xia et al., 2024), Lancaster’s correlation(s) (Holzmann and Klar, 
2024), and Szekely’s distance correlation (Szekely, Rizzo, and Bakirov, 2007) and its variants (such as 
Sejdinovic et al., 2013, and Gao and Li, 2024) . 

3. NAbC remains “estimator agnostic,” that is, valid regardless of the sample-based estimator used to 
estimate any of the above-mentioned dependence measures.  So to be clear, NAbC is not an 
estimator of the correlation matrix or other dependence measures: rather, it is a method for obtaining 
the finite-sample distribution of the estimates generated by various estimators, so that inferences can 
be made about their estimated values. 

4. NAbC provides valid confidence intervals and p-values at both the matrix level and the pairwise cell 
level, with analytic consistency between these two levels (i.e. the confidence intervals for all the 
individual cells define that of the entire matrix, and the same is true for the p-values; this effectively 
facilitates, and in many cases makes possible, granular and targeted attribution analyses). 

5. NAbC provides valid confidence intervals and p-values not only for one-sample tests against 
matrices of fixed, assumed ‘true’ values, but also for two-sample tests comparing two matrices, so 
that we can assess inferentially whether dependence structures truly are different, for example, 
across different sectors or segments of our businesses. 

6. NAbC provides a one-to-one quantile function, translating a matrix of all the cells’ cumulative 
distribution function (cdf) values to a (unique) correlation/dependence measure matrix, and back 
again, enabling precision in reverse scenarios and stress testing, as well as informed and targeted 
‘what if’ analyses. 

7. All the above results remain valid even when selected cells in the matrix are ‘frozen’ for a given 
scenario or stress test – that is, unaffected by the scenario – thus enabling flexible, granular, and 
realistic scenarios. 

 
2 Note that “positive definite” throughout this monograph refers to the dependence measure calculated on the matrix of all 
pairwise associations in the portfolio, that is, calculated on a bivariate basis.  Some of the dependence measures addressed 
in this monograph (e.g. Szekely’s correlation, variants of Chatterjee’s, and others) can be applied on a multivariate basis 
(sometimes even in arbitrary dimensions), for example, to test the hypothesis of multivariate independence.  But “positive 
definite” herein is not applied in this sense (see for example Cardin, 2009), and I explain below some of the reasons for using 
the dependence framework of all pairwise associations, which is highly flexible, and allows for more precise attribution and 
intervention analyses. 
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8. NAbC remains valid not just asymptotically, i.e. for sample sizes presumed to be infinitely large, but 
rather, for the specific sample sizes we have in reality (for full-rank matrices with n>p)3, enabling 
inferentially reliable application in actual, real-world, non-textbook settings. 

The alternative to a method satisfying the eight objectives above, simultaneously, is to use a piecemeal, 
incomplete patchwork of disparate derivations of distributions, some asymptotic, some not, valid under 
typically restrictive, differing, and unrealistic data conditions for only a few of the widely used 
dependence measures (as distributions for many have not yet been derived).  This patchwork approach 
not only materially limits the scope of possible comparative analyses, but also the degree to which it can 
be truly ceteris paribus.  Since differing assumptions are confounded with the capabilities of the 
methods themselves, it is impossible to know where the effects of the assumptions end and those of the 
different methods begin.  This is exacerbated by the unwieldy, opaque, and difficult-to-implement nature 
of many of these solutions. 

NAbC circumvents all of these problems with a single, unified, and straightforward method for 
dependence structure inference that, compared to its more limited and narrowly defined competitors, 
simultaneously and dramatically increases i. robustness, ii. scenario flexibility, iii. accuracy in attribution 
analyses, and iv. targeted precision in ‘what if’ intervention analyses, all while enabling v. ceteris paribus 
analyses across a very broad range of dependence measures (including those listed in 2. above).   

Before explaining how NAbC’s methodology accomplishes this, however, it is important to ask why there 
is a dearth of “real-world effective” methodology in this setting, as it will inform and clarify the 
explanations throughout this monograph.  If we were to define a problem statement here, it would be: 
define the finite sample distributions of all positive definite measures of dependence structure, robustly 
under real-world financial data conditions, that remain valid regardless of the estimators used, and even 
if the co-movement of selected pairs of variables is ‘frozen’, i.e. scenario-restricted.  While this objective 
admittedly remains broad, asking why this hasn’t been done previously remains a fair and important 
question.   

Financial markets certainly have seen more extreme downturns in recent decades than many would have 
predicted ex ante (e.g. Black Monday (1987), Tech Bubble (2000), Housing Bubble (2008), Covid (2020)), 
during which correlation breakdowns have been well documented, their very material effects measured 
and assessed (see for example Feng & Zeng, 2022, and Packham & Woebbeking, 2023), and the 
importance of mitigation efforts widely discussed, considered, and acted upon (see Greenspan, 1999; 
BIS, 2011a; and EBA-CRR, 2013).  What’s more, practitioners, academics, and regulators have a long 
history of bringing analytic and probabilistic rigor to bear when analyzing and estimating the other 
parameters of our portfolio risk and investment models.  There is no shortage of empirical research 
defining, for example, various estimators of the tail indices of a portfolio’s marginal distributions, and 
deriving their associated p-values, confidence intervals, and statistical power and level.  When rigorously 
and properly estimated, these tools are highly actionable, providing invaluable guidance in decision-

 
3 Recall that this condition is required for the all-pairwise matrix to be positive definite. 
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making and mitigation efforts.  But what do we find when we look for those same tools, say, for an entire 
matrix of pairwise Kendall’s tau values, to make decisions based on answers to questions such as, “Has 
this Kendall’s matrix shifted in the past week?  What is the probability of observing the movement we 
observed, given that our baseline estimate is true?  Does this meet our probabilistically defined threshold 
for a ‘breakdown’?  What are the two (upper and lower) Kendall’s matrices that capture 95% of the 
conditional sample variation in this setting?  How far beyond these bounds, probabilistically, do the 
Kendall’s matrices for each of our scenarios lie?  Given our distributions of losses/returns, does a tail 
dependence matrix better capture what we are trying to measure here, and can we conduct a ceteris 
paribus analysis, using the exact same distribution-defining methodology, to compare the statistical 
power of these two dependence measures under the various relevant data conditions?”  If we require the 
p-values and confidence intervals and rigorous, probabilistic answers to these questions to be valid 
under challenging, real-world financial data conditions, the current literature provides relatively little.  
Given the need, as well as the rigor applied to other areas of portfolio analytics, this arguably is 
surprising.   

On the other hand, the possible explanations for this dearth of useable and useful methodology are not 
entirely unreasonable.  First, the multivariate nature of this problem arguably makes it more challenging 
than those related to modeling some of the other (univariate) parameters of investment and risk 
portfolios.  Even though each cell value of the dependence matrix is a bivariate association, we are 
measuring all the pairwise associations in the portfolio simultaneously, and the values of the cells are, in 
non-trivial cases, all interrelated, making this a complex, multivariate problem.  Immutable 
mathematical requirements for this setting, such as positive definiteness, arise, and make deriving and 
simulating the distribution of the all-pairwise matrix a non-trivial task.  This is especially true if we require, 
as we should, that the p-values and confidence intervals of each and every cell of the matrix are 
consistent with those of the entire matrix when taken as a whole.  Additionally, requiring that the finite 
sample distribution of the matrix (which makes possible the calculation of the p-values and confidence 
intervals) remain valid under challenging, real-world financial data conditions adds significantly to the 
nontrivial nature of the problem.  Distributions of dependence measures are more readily derived when 
we can assume that returns are, say, multivariate normal, or at least independent and identically 
distributed (iid).  It is another matter entirely when the portfolio’s marginal distributions vary notably from 
each other, while also changing over time in their degrees of heavy-tailedness, serial correlation, 
asymmetry, and non-stationarity.  Yet this is exactly the empirical challenge of actual financial portfolios.   
In fairness, the literature does provide many solutions under mathematically convenient conditions, 
which more narrowly define and restrict both in the distributional characteristics of the underlying 
returns data as well as the assumptions made regarding the values of the all-pairwise matrix.  But these 
largely unrealistic assumptions limit practical, real-world application, which is exactly the motivation for 
this monograph.   

Another complicating factor is the requirement that the method defining the finite sample distribution of 
the dependence measures is the same across all those in practical usage: in this case, all those 
dependence measures for which the all-pairwise matrix is positive definite.  This arguably covers all that 
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could conceivably be used and useful in the financial setting.  This universality is certainly desirable, but 
it also increases the challenge of deriving the methodology.  Still, this remains a crucial requirement as it 
provides the ability to conduct all-else-equal analyses comparing the performance of different 
dependence measures under controlled conditions: we can be certain that material and statistically 
significant differences in results are due to the dependence measures themselves, rather than the very 
distinct methodologies we typically would have to use (based on the current literature) to define their 
distributions.  But nothing in the extant literature provides this broad ceteris paribus capability.    

Finally, one of the major uses of dependence measures and their all-pairwise matrices is in defining 
scenarios and reverse scenarios.4  These remain central for and critical to all manner of risk analyses, 
and fully flexible scenarios require the ability to ‘freeze’ groups of selected cells of the all-pairwise matrix 
while allowing others to vary.  For example, many of the pairwise cells that will change dramatically, in 
both direction and magnitude, under a Covid-like scenario will be completely unaffected under a housing 
bubble (see Feng & Zeng, 2022, and Pramanik, 2024), and scenario analysis must be able to validly define 
the finite sample distribution of the all-pairwise matrix under both types of scenario-restricted 
conditions.  However, no existing method allows for this without inadvertently affecting the other 
‘peripheral’ cells of the all-pairwise matrix (see Ng et al. (2014) and Yu et al. (2014)), and this can 
dramatically distort the distribution of the matrix, rendering the associated inferences for the scenario(s) 
invalid, and decisions based on them potentially harmful.  Granular flexibility in scenario definition, at the 
level of the pairwise cells, and the valid distribution of the associated, scenario-restricted matrix, is a 
necessity if we are to accurately capture the fundamentally different nature of disparate correlation 
breakdowns, and accurately assess, forecast, and mitigate their impacts. 

So given the breadth of the problem statement, perhaps it is not so surprising that we have comparatively 
little in the way of real-world solutions to this problem.  This is true not only of the extant literature, but 
also in financial practice, which often relies on ad hoc, largely qualitative, and ‘judgmental’ approaches 
to specifying and utilizing dependence structure.  When quantitative approaches are used, those 
selected typically are the most conveniently implemented methods that remain valid only within narrowly 
defined boundaries and/or requiring unrealistic but mathematically convenient assumptions, such as i. 
the distributions derived are only asymptotically valid (i.e. assume infinitely large sample sizes); ii. they 
require very restrictive and/or unrealistic assumptions about the marginal returns distributions of the 
portfolio (e.g. that they are multivariate Gaussian, or elliptical; or even that they are independent and 
identically distributed (“iid”), or all symmetric, or all stationary, or not serially correlated, etc.); iii. they 
require very restrictive and/or unrealistic assumptions about the values of the dependence measures 
themselves (e.g. the cells are all zeros, or all have the same value, or follow very discrete and limited 
block structures); iv. they estimate the all-pairwise matrix in ways that do not guarantee its positive 
definiteness, or violate other fundamental mathematical requirements (e.g. unit diagonals); or v. most 

 
4 Scenarios typically are designed to answer questions of the type, “What loss is associated with, say, the 99.5%tile of the loss 
distribution?” while reverse scenarios answer questions of the type, “What percentile of the loss distribution produces a loss 
of $X?” The dollar amounts referenced in the latter typically are associated with specific extreme or catastrophic events, such 
as insolvency or the failure of a major business line or geography.   
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typically, they require multiple of these restrictive and/or unrealistic assumptions combined.  Many of 
these more narrow solutions are mathematically elegant, but our goal herein is to obtain an actual 
solution that works and remains inferentially valid under the challenging data conditions of actual 
financial portfolios, which are ‘real-world’ messy and decidedly less elegant. 

Importantly, note that the original statement in this section, “effective modeling of financial portfolios, 
including their construction, allocation, forecasting, and risk analysis, simply is not possible without 
explicitly modeling the dependence structure of their assets” applies to all frameworks for portfolio 
analysis, even those that may not always make explicit their estimation of, or their reliance on, 
dependence structure.  For example, some path dependent approaches generate distributions of 
portfolio results based in large part, or even primarily, on (usually subjectively defined) probabilities 
associated with various scenarios, without explicitly defining dependence structure.  But such 
approaches still make many implicit assumptions regarding dependence structure, such as that it does 
not change from one period to the next, or that it does not change under one scenario versus another, or 
that, even if (Pearson’s) correlations may be controlled via ‘views’ specified in the model, other measures 
of dependence, such as tail dependence, are not unwittingly changed from one period to another (even if 
this is unlikely when ‘views’ on volatilities are changed).  Whether implicit, explicit, or indirectly explicit 
via ‘views’ on other parameters, all such assumptions about dependence structure will affect simulated 
results, which consequently always should be made fully explicit in any model (see Meucci, 2010b, and 
Vorobets, 2025, for examples), even if only for ex post testing using NAbC to ensure that the effects of 
(possibly changing) dependence structure are not (unknowingly) confounding results.  

But beyond and in addition to simply avoiding confounding, NAbC provides such models with statistical 
control and inferential validity when specifying dependence matrix values based on scenario ‘views’.  As 
opposed to ad hoc or judgement-based matrix values, the ‘view’ of an extreme correlation/dependence 
matrix should be defined probabilistically, based directly on its finite sample distribution, which NAbC 
provides.  For example, the ‘view’ of a correlation matrix corresponding to an extreme scenario, when 
used as an input to a path dependent simulation, should be a percentile (say, 99%tile) of the distribution 
of the all-pairwise matrix, as provided by NAbC’s quantile function.  All that NAbC needs to define the 
values of this matrix are the data generating mechanism and the null hypothesis (i.e. the baseline values 
of the matrix).  Conversely, NAbC also can provide the cdf value (percentile) of an all-pairwise matrix 
whose values are specified for a specific scenario, thus ensuring that it is sufficiently ‘extreme,’ or in the 
alternative, not too ‘extreme,’ (e.g. is it the 95%tile?  Or the 99.999%tile?) for the scenario being tested.  
NAbC provides both: the matrix corresponding to a specified percentile, and the percentile 
corresponding to a specified matrix.  Only in this way does a ‘view’ on dependence structure retain 
objective meaning regarding its relative size, not to mention its inferential validity, as opposed to being 
informed by qualitative, subjective judgements or ad hoc procedures. 

 

 

 



JD Opdyke, Chief Analytics Officer                 Page 10 of 91                                Correlation and Beyond 
 

2.a. NAbC: Summary of Methodology 

Both conceptually and in its implementation, NAbC remains a straightforward method based directly on 
very well-established results in the relevant literatures.  Its innovation and originality come less from new 
derivations and more from the careful assembly of these well-established results, which contributes to 
its very broad range of application. 

NAbC is not an estimator.  It does not, for example, provide estimates of the values of a Pearson’s 
correlation matrix.  Rather, given a well-estimated matrix, and its known or well-estimated data 
generating mechanism, NAbC provides the sampling distribution of the matrix.  It does this for any 
positive definite dependence measure, and under very general conditions, based directly on challenging, 
real world financial returns data without restrictive assumptions or distorting data transformations.  This 
finite sample distribution allows statistical inferences to be made about its values.  NAbC provides 
confidence intervals and p-values at both the level of the entire matrix, and the level of the individual 
cells, simultaneously, and these results are consistent across these two levels, as the former are based 
directly on the latter.   

NAbC accomplishes the above by obtaining the distributions of the ANGLES between each of the 
pairwise data vectors in a portfolio, rather than focusing on the values of the dependence measures 
themselves.  Every positive definite (dependence measure) matrix can be translated, cell-to-cell, to a 
matrix of such angles, which is simply the matrix analogue to the well-known cosine similarity formula.   

These angles have very useful properties in this setting.  First, unlike the dependence measure values 
themselves, they are random variables whose multivariate relationship is one of independence (see 
Pourahmadi and Wang, 2016; Ghosh et al., 2021; Rapisarda et al., 2007; Tsay and Pourahmadi, 2017; and 
Zhang et al., 2015).5  This allows for the very straightforward construction of the multivariate distribution 
of the entire matrix of angles, and consequently, that of the entire dependence measure matrix.  In 
addition, the method for obtaining the angles relies on calculation of the Cholesky factor, which 
automatically enforces positive definiteness as the sample space remains on the unit hyper-hemisphere 
(in contrast, ex post enforcement of positive definiteness typically distorts the sample space and 
consequently, invalidates inference).  Finally, we lose no information when using angles here as they 
contain all the information that is in the original data, sans scale, and scale does not, and should not, 
matter for measuring dependence.6 

In Section 4.b below, I derive NAbC’s fully analytic solution for a special but foundational case – that of 
the Gaussian identity matrix.  This provides, together for the first time, the probability density function 
(pdf), cumulative distribution function (cdf), and quantile function (inverse cdf) of the angles 

 
5 This independence is well established in the literature.  Zhang et al. (2015) (supplementary material) and Rapisarda et al. 
(2007) use a geometric interpretation of the correlation matrix, based on (orthogonal) Givens rotations, to explain in detail the 
relationship between correlations and angles as well as why the angles distributions are multivariate independent.  
 
6 Scale invariance is proved and widely cited for Pearson’s rho, Kendall’s tau, and Spearman’s rho (see Xu et al., 2013, and 
Schreyer et al., 2017 for examples). 
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distributions, and consequently, those of the correlation matrix (shown in (29) below).  These provide 
confidence intervals and p-values for both the individual cells and the entire matrix, simultaneously 
(shown in (30)-(33) below).  This all is presented in an interactive spreadsheet (url link provided below), 
with fully transparent formulae, in which the user can input A. sample size (as long as n>p, i.e., the matrix 
remains full rank, which is required for positive definiteness); B. the correlation matrix values (to obtain a 
cdf matrix, as long as the correlation matrix is positive definite); C. a matrix of cdf values (to obtain a 
correlation matrix); and D. alpha critical values (to obtain confidence intervals on the individual cells and 
the entire matrix, simultaneously).  As long as the matrix is positive definite, NAbC provides p-values and 
confidence intervals, at both levels, as well as a measure of generalized entropy described in Section 7 
below. 

Beyond this specific case, the fully general solution provided by NAbC conceptually is the same, for any 
real-world financial data conditions, for any values of the matrix, and for any positive definite 
dependence measure: the only difference is that the angles distributions now are defined 
nonparametrically, via non-parametric kernels (shown in (35)-(37) below).  These are obtained via a set of 
simulations using the estimated dependence measure matrix, and its data generating function, as 
described in the steps below (these are described in more detail in Section 4.c): 

5 Steps for Obtaining Angles Distributions 

1. Simulate N samples (N=10,000 typically is sufficient) based on the dependence matrix and the data 
generating mechanism (each can either be specified/known, or well estimated).  For example, N 
samples from a correlated multivariate gaussian distribution (with p variables representing the p 
assets in the portfolio), with correlation matrix R, and n observations in each sample (note than n>p 
always for our purposes as non-full rank matrices will not be positive definite). 

2. Calculate the corresponding N all-pairwise dependence matrices, and their Cholesky factorizations, 
and transform each of these factorizations into a lower triangle matrix of angles (this is a 
straightforward and well-established calculation shown in Section 4.b in (21), (22), and Table A). 

3. Fit a kernel density to each cell of the matrix of angles based on the N values obtained from the N 
samples in 2 (there will be p(p-1)/2 cells, where p is the dimension of the matrix).7 

4. Generate N samples, with n observations each, based on the kernel densities in 3. 
5. Convert each of the N samples from 4. back to a re-parameterized Cholesky factorization, and then 

multiply it by its transpose to obtain a set of N validly sampled dependence matrices (shown in  
Section 4.b in (21), (22), and Table A).  Positive definiteness is enforced automatically as the Cholesky 
factor places us on the unit hyper-hemisphere.  All sample generation hereafter uses just 4. and 5. 
 

The samples of correlation/dependence measure matrices from 5. will follow the same distribution as 
those generated in 2., but after the kernel densities are fit once in 3., generating samples based on 4. and 
5. is orders of magnitude faster than relying on direct simulations in steps 1. and 2.  More importantly, 

 
7 Algorithms for sample generation based on commonly used kernels (e.g. the Gaussian and Epanechnikov) are widely known.  
An example of the latter is simply the median of three uniform random variates (see Qin and Wei-Min, 2024). 
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using 4. and 5., rather than 1. and 2., allows for valid probabilistic inference, both at the cell level and at 
the matrix level, due to the independence of the angles distributions.  NAbC always translates 
dependence measure matrices to matrices of angles, then obtains angles distributions, and then the 
sampled angle matrices are converted back to correlation/dependence measure matrices.  The latter are 
never directly perturbed because they provide no inferential capability, because the distributions of their 
cells are not multivariate independent.  Neither direct data simulation (step 1.) nor a cavalier ‘bootstrap’ 
of samples generated from step 1. can change this: it is the independence of the corresponding angles 
distributions that allows for probabilistic inference here. 

This reliance on angles, and their subsequent transformation to correlation/dependence measure values, 
allows us to isolate the distribution of the correlation/dependence measure matrix, for probabilistic 
inference, without touching any other distributional aspect of the data, which is the point of the 
methodology.  Several papers in the literature also use spherical angels for similar purposes in this 
setting (see Lan et al., 2020, and Ghosh et al., 2021), but as described in detail in Section 4.a below, they 
have notable limitations relative to NAbC.  The most important of these is NAbC’s unmatched ability to 
implement fully flexible scenarios that allows us to ‘freeze’ the values of any combination of cells within 
the framework of the all-pairwise matrix, and still obtain the inferentially valid finite sample distribution of 
the (rest of the) matrix.  I am not aware of any other method in the extant literature that can provide this 
capability, which is arguably necessary for granular and realistic (reverse) scenarios and stress testing.  
This is described in detail in Section 5, and is one of the reasons NAbC utilizes the framework of the all-
pairwise matrix, as opposed to more complex multivariate dependence structures. 

The more detailed description of NAbC’s implementation in Sections 4 and 5 below demonstrates how it 
simultaneously satisfies all eight of the critical objectives listed above.  An important ancillary benefit of 
its broad range of application is that a single methodology now allows for ceteris paribus analyses, both 
for comparing different estimators of the same dependence measure, and for comparing different 
dependence measures, in many cases where such analyses previously were not possible (or extremely 
unwieldy).  I review many of the most relevant, useful, and commonly used dependence measures in this 
setting below. 

 

2.b. Types of Dependence Measures 

Measures of association, otherwise known as dependence measures, are as old as modern statistics 
itself (see Pearson, 1895).  They provide a quantitative assessment of how variables move together or in 
opposite directions over time.  I address their relation to causal mechanisms in later sections, and 
merely note here that they remain distinct from what are often called ‘metrics’ or ‘distance metrics,’ even 
though the two are sometimes confused.8   

 
8 Even though ‘metrics’ or ‘distance metrics’ often are built directly on dependence measures, they typically do not share many 
of their characteristics (e.g. their spaces typically are not positive definite (see Alpay & Mayats-Alpay, 2023; and Meckes, 
2013)).  In finance they often are used non-inferentially and mechanistically in hierarchical portfolio construction models (see 
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For reasons discussed more thoroughly below in the following sections, the dependence measures 
covered in this monograph, and for which NAbC’s application remains valid, include those for which the 
all-pairwise matrix is positive definite.9  One could argue that all dependence measures in common 
usage are, in fact, positive definite, at least under relevant, real-world data conditions, making this 
requirement de facto non-restrictive.  It could even be viewed as a test of appropriateness of usage in 
applied finance, since many situations for which it demonstrably does not hold (e.g. cases of perfect 
linear dependence) are degenerate cases in other ways as well.  But I avoid such debates herein, and 
merely state that the validity of NAbC’s application does require positive definiteness, and that this 
includes both those measures for which positive definiteness has been proven analytically, and those for 
which such proofs do not (yet) exist and thus, which require testing and verification of positive 
definiteness empirically.  The former group includes long established measures such as Pearson’s 
product moment correlation matrix (Pearson, 1895), rank-based measures like Kendall’s Tau (Kendall, 
1938) and Spearman’s Rho (Spearman, 1904), as well as measures designed to capture highly non-linear 
dependence such as the tail dependence matrix (see Sabato et al., 2007, for proofs of the first three, and 
Embrechts et al., 2016, for a proof of the latter).  The second group includes newer measures designed to 
capture cyclical and other types of non-linear dependence such as Chatterjee’s correlation (Chatterjee, 
2021), Lancaster’s correlation (Holzmann and Klar, 2024), and Szekely’s distance correlation (Szekely, 
Rizzo, and Bakirov, 2007) and their many variants (such as Sejdinovic et al., 2013, and Gao and Li, 2024).  
In the end, however, as long as the values of the matrix being evaluated and used by NAbC render it 
positive definite, NAbC will ‘work.’  In the extensive empirical analyses performed herein on the second 
group of measures, not a single matrix, of the many millions simulated, was ever found to be non-positive 
definite, making the distinction between these two groups arguably moot, at least for the empirical 
testing performed. However, until positive definiteness is proven analytically for a dependence measure, 
responsible analysis requires that this always is verified empirically.10 

 

 
Tumminello et al., 2005; and Dom et al., 2024) where they have received decidedly mixed reviews (see Trucíos Maza, 2025; 
Aznar, 2023; Cota, 2019; and Ciciretti & Pallotta, 2023), especially under correlation breakdowns (see Marti et al., 2021).  As 
they stand, they are not designed to answer the inferential questions posed herein.  In fact, I show in later sections how NAbC 
provides a generalized entropy that has many useful advantages over an entire class of metrics most commonly used in this 
setting, called ‘norms.’ 
 
9 It is worth reiterating here that “positive definite” throughout this monograph refers to the dependence measure calculated 
on the matrix of all pairwise associations in the portfolio, that is, calculated on a bivariate basis.  While some of the 
dependence measures addressed in this monograph (e.g. Szekely’s correlation, as well as some variants of Chatterjee’s (see 
Pascual-Marqui et al., 2024)), can be applied on a multivariate basis, sometimes in arbitrary dimensions, the term “positive 
definite” in this monograph is not applied in this sense (see for example Cardin, 2009).  For surveys of related multivariate 
methods, see Chatterjee (2024) and Han (2021), in addition to Grothe et al. (2014), Latif and Morettin (2014), Reddi et al. 
(2015), Li and Joe (2024), Yu et al. (2021) and Puccetti (2022) for some approaches not covered herein. 
 
10  This empirical verification remains advisable even for the first group of dependence measures, for which positive 
definiteness has been proven analytically, as numerical issues always can arise in cases of matrices that approach singularity 
(i.e. those with values that, if changed just slightly, would not be positive definite). 
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2.a.i. Monotonic Measures 

The oldest and most widely used and known dependence measure is Pearson’s product moment 
correlation (see Pearson, 1895), which is what is usually referenced when the word “correlation” alone is 
mentioned.  Taking two variables, say, the financial returns of two assets X and Y, Pearson’s measures 
how often and to what degree they deviate from their respective sample means in the same or in opposite 
directions, as shown in (1) below.11 
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The numerator is the (sample) covariance of X and Y, and the denominator – the product of the (sample) 
standard deviations of X and Y – has the effect of scaling the (sample) covariance to a (maximum) range 
of -1 to 1.12  So Pearson’s is just the scaled covariance between X and Y. 

Another of the most commonly used dependence measures is Spearman’s Rho (see Spearman, 1904), 
which is exactly the same formula as Pearson’s but instead of using the values of the returns of X and Y, 
their ranks are used instead: 
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If there are no ties in the data, (2a) can be shortened to 

(2b) 
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(see Zar, 1999) 

Using ranks can make Spearman’s less sensitive than Pearson’s to extreme data values under some data 
conditions, just like another rank-based dependence measure, Kendall’s Tau. 

Also called a measure of concordance, Kendall’s Tau (see Kendall, 1938) is the sum of all pairwise 
comparisons of every data point of X and Y, divided by the total number of pairs.13  The pairwise 

 
11 Importantly, all formulae of estimators herein, unless otherwise noted, refer to those based on sample data, where “n” 
indicates the number of observations in the sample, as opposed to those based on an entire population of data. 
 
12 Note that this range can be tighter under specific circumstances, such as for equicorrelation matrices where 

( )1 p 1 1,  p dim( ).r r − −   =   
13 Note that the pairs are based on time-ordered data, but most of the periods in each pair are not contiguous. 
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comparisons are given values of 1, 0, or -1, respectively, if both from one period to another are in 
increasing/decreasing order, if the values from both periods are tied for either of the assets, or if the 
assets are NOT both in increasing/decreasing order; it thus gives the number of pairs in concordance 
minus the number in discordance relative to the total number of pairs, as shown below. 

(3a) ( )
( )

( ) ( )
1

1 1

#concordant pairs #discordant pairs 2
, = sgn sgn

total # pairs 1

n n

i j i j

i j i
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n n
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= = +

−
= − −

−
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( ) ( ) ( )where sgn 1 if  0,  sgn 1 if  0,  sgn 0 if  0,  for both  and z z z z z z N n=  = −  = =  

However, ties in the values of either of the pairs, ( ) ( ) and  or  and i j i jx x y y , will restrict the range from 

achieving -1 or +1, even under otherwise perfect discordance or concordance, respectively, so a 
commonly used variant of Kendall’s Tau that avoids this drawback when ties exist is: 
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The “big 3” dependence measures – Pearson’s, Kendall’s, and Spearman’s – are by far the most widely 
used in practice.14  Although widely held myths persist regarding Pearson’s as a measure strictly of linear 
monotonic relationships (see van den Heuvel & Zhan, 2022), all three measure monotonic association 
(i.e. the direction of the association, positive or negative, does not change within the covered time period) 
that is symmetric, or non-directional in the variable order (i.e. the measured dependence of X on Y is 
assumed to be the same as that of Y on X).  It is important to recall here that as measures of monotonic 
dependence, values of zero generally do not necessarily imply independence between X and Y,15 but 
independence between X and Y does imply values of zero for the big 3.16  Some of the dependence 
measures treated below avoid this limitation under many conditions. 

The properties of the big 3 have been studied extensively in the literature, but real gaps remain.  Our 
interest in this monograph lies not just in a single bivariate relationship between X and Y, but rather, in all 
pairwise relationships of all assets in a portfolio, simultaneously: X may be strongly, positively associated 

 
14 Other long-established measures include Hoeffding’s D (see Hoeffding,1948), Blomqvist’s coefficient (see Blomqvist, 1950), 
and Gini’s gamma (see Gini 1914; and Genest et al., 2010). 
 
15 However, an exception occurs when data is distributed as bivariate normal, in which a Pearson’s value of zero does indicate 
independence. 

16 This is easy to visualize with a non-monotonic relationship like 
2y=x + , which on average will yield big 3 values close to 

zero.  But the relationship is non-linear and u-shaped, which most certainly is not one of independence. 
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with Y, which also may be positively associated with Z, which also may be negatively associated with A, B, 
and C, while B and C may be modestly but negatively associated with X again!  So we have a matrix of 
dependence measure values with rows and columns identifying the pairwise relationships between all 
the asset pairs, as shown in (4) for assets 1, 2, 3, and 4.  As above, I refer to this matrix herein as the all-
pairwise matrix. 

(4) 

1,2 1,3 1,4

2,1 2,3 2,4

3,1 3,2 3,4

4,1 4,2 4,3

1

1

1

1

r r r

r r r
R

r r r

r r r

 
 
 =
 
 
    

Some of the characteristics of this matrix, for all of the big 3 and many of the other measures presented 
below, include: 

i.   Symmetry: , ,i j j ir r=  

ii.  Unit diagonal entries: 1i jr = =  

iii. Bounded non-diagonal entries, with maximum range of: ,1 1i jr−    

iv. The matrix is positive definite, i.e. all eigenvalues 0i   

For completeness, and for reference throughout this monograph, I define eigenvalues for p pR  here:17  

If there exists a nonzero vector v such that Rv v= then λ is an eigenvalue of R and v is its 
corresponding eigenvector.  λ and v can be obtained by solving 

( ) ( )det 0,  then det 0, where I R I R v I − = − = is the identity matrix and det is the determinant.  The 

eigenvalue can be thought of as the magnitude of the (portfolio) variability in the direction of the 
eigenvector.  With actual, real-world financial data (i.e. values that are not imaginary or complex), this 
variability can never be negative,18 so computational numeric issues aside,19 proper measures of 
dependence should be positive definite,20 either via analytical proof, or in the absence of such, then via 

 
17 Financial returns are real numbers, and so this definition holds for all relevant dependence measures in this setting.  
 
18 This can be seen most easily when the covariance (or equivalently, Pearson’s correlation) is the dependence measure used: 
the covariance is the (expected value of a) sum of squared real numbers (as no imaginary or complex values are observed in 
financial returns).  Because a squared, real number (other than zero) is always greater than zero, the sum of such numbers can 
never be negative.  
 
19 Numerical calculations based on positive definite matrices can sometimes render slightly negative estimates of specific 
eigenvalues, but as shown in later sections herein, NAbC is designed specifically to be more robust to such numerical errors 
than the more common approaches related to eigen decompositions in the extant literature.  
 
20 If any λ = 0, and none are negative, the matrix is said to be positive semi-definite, although herein this is treated as a textbook 
border case as returns would have to exhibit perfect linear dependence for an eigenvalue to be exactly zero. 
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empirical verification of all relevant cases (although empirical verification is advisable even in the first 
instance). 

The main point here is that we need to understand the characteristics of the estimators we use to 
estimate the values of the all-pairwise matrix, based on our sample of financial returns data.  This is the 
only way we can define the finite-sample distribution of the estimator, which is the only way we will be 
able to make inferences about the true population values of these estimates.   

 

2.a.ii. Tail Dependence Measures 

Another important and time-tested dependence measure, especially for risk analyses, is the tail 
dependence matrix (TDM).  Conceptually, TDM measures the probability of a variable value residing in the 
tail of one variable’s distribution given that the value of the other variable (asset return) resides in the tail 
of its distribution.  More precisely, TDM provides the probability of a variable exceeding a quantile of its 
distribution conditional on the other variable in the pair exceeding the same quantile of its distribution.  
Hence, the tail dependence matrix consists of conditional probabilities of quantile exceedance, so each 
value can range from zero to one, rather than -1 to 1 like the “big 3.”  But otherwise the matrix conditions 
listed in (4) above all hold (its positive definiteness was proven by Embrechts et al., 2016).  The upper tail 
dependence matrix only is equal to the lower tail dependence matrix if data distributions are perfectly 
symmetric: otherwise, the two metrics have distinct values, as shown below in (5) and (6): 
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Straightforward empirical estimators for (5) and (6) are presented in Garcin and Nicolas (2023) as below: 
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These are shown in Schmidt and Stadtmüller (2006) to have good statistical properties (i.e. strong 
consistency and asymptotic normality).  Many other measures of tail dependence exist (see 
AghaKouchak et al., 2013, Babić et al., 2023, Manistre, 2008, Li and Joe, 2024, Krupskii and Joe, 2014, 
Lauria et al., 2021, and intriguingly, Siburg et al., 2024), but (5) and (6) are the oldest, most widely used, 
and best understood.  Tail dependence is especially important in the risk analytics of financial portfolios 
because “tail events” often represent the most material financial impacts, are typically associated with 
non-linear effects and associations, and are closely tied to correlation breakdowns: as is commonly and 
rightly stated, “when things go bad they go bad together.”  The phenomenon of “correlation breakdowns” 
is treated in more detail later in this monograph, but note that the tail dependence matrix has been one of 
the principal tools used in both the literature and by practitioners to quantitatively estimate it and 
mitigate its effects. 

 

2.a.iii. Distance-Based and Other New Measures 

The design of Szekely’s distance correlation (Szekely et al., 2007) seeks to better handle dependence that 
is both non-linear and non-monotonic.  It uses two matrices: the matrix of pairwise distances between all 
X values in the sample, and the same matrix calculated from all Y values.  To the extent that these 
matrices vary together, Szekely’s distance correlation will approach a value of 1, and to the extent they do 
not, it will approach a value of zero.  So its range is zero to one and a value of zero, unlike the “big 3,” does 
indicate independence between X and Y.  Also unlike the “big 3,” its value does not indicate with a positive 
or negative sign whether dependence between X and Y is positive or negative.  Notably, the distance 
correlation can be calculated in arbitrary – and different – dimensions, so the sample from X can be 
drawn, for example, from a three dimensional distribution, and the sample from Y can be drawn from a 
six dimensional distribution.21   

(7) first, create n x n distance matrices a and b by letting 
2 2 2

, , 1 2 and ,  , 1,2,3,...,  where vector i j i j i j i j n na x x b y y i j n z z z z= − = − = = + + +  

 
21 Note that the primary focus of the development of many multivariate dependence measures is on testing the null hypothesis 
of multivariate independence, and thus, on the level and power of this specific test for these measures.  While this objective is 
foundational, that of this monograph is on dependence as measured using bivariate associations.  Consequently, I use the 
framework of the all-pairwise matrix to focus on dependence measures in the literature with strong results related to their 
statistical power, level control, ease of implementation, low computational complexity, and attainment of the full range of 
values they are meant to attain under the relevant sample spaces (these are the measures I select to review in this section, 
and to which I have applied NAbC).  More importantly, relying on the bivariate, as opposed to multivariate, relationships 
measured in the all-pairwise matrix is critical to the scenario flexibility provided by NAbC, as explained in later sections. 
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Next, subtract from a and b their row and column means, and add their respective matrix means, as 
shown below: 

, , *, ,* *,* , , *, ,* *,* and i j i j j i i j i j j iA a a a a B b b b b= − − + = − − +  

Then Szekly’s distance correlation = 
2 2
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Another recent dependence measure – Lancaster’s correlation (see Holzmann and Klar, 2024) – shares 
several characteristics with Szekely’s: its values range from zero to one, a value of zero indicates 
independence, and it does not indicate with a positive or negative sign whether the dependence between 
X and Y is positive or negative.  Lancaster’s correlation was designed not only to handle non-linear and 
non-monotonic dependence, but also to improve upon, via increased robustness and generalizability and 
ease of computation, another dependence measure, the maximal correlation (see Hirschfeld (1935) and 
Gebelein (1941)). 

(8) ( ) ( )( ) ( )( ) ( )( )2 2 1 1max , , ,  where  and X Ylan r X Y r X Y X F X Y F Y− −= =  =  , where r is Pearson’s 

correlation, is the absolute value function, 1− is the quantile (inverse cdf) function of the standard 

normal distribution, and F is the (empirical) cdf of each variable. 

A second version is called linear Lancaster’s correlation: 
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Holzmann and Klar (2024) conduct empirical analyses comparing Szekely’s distance correlation and 
both Lancaster’s correlations under a wide range of data conditions.  They also compare these to another 
new, but directional dependence measure, called Chatterjee’s correlation coefficient. 

 

2.a.iv. Asymmetric, Directional Measures 

The concept of asymmetric, directional dependence is not new.  Recent research on such measures goes 
back over a dozen years (see Zheng et al., 2012), but has its direct origins in work done at the end of the 
nineteenth century (see Yule, 1897, and Allena and McAleerb, 2018).  In later sections I will go over 
examples of how these measures are being used effectively in causal frameworks, but only present them 
in this section.  A recent example, Chatterjee’s correlation coefficient, has garnered much attention upon 
its publication in 2021.  This is largely due to its simplicity and ease of implementation as a measure of 
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non-linear, non-monotonic, regression-based, and cyclical dependence.  If X and Y pairs are ranked 

according to X values, with no ties on the X values, so that ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1 1 2 2
, , , , , ,

n n
X Y X Y X Y  then: 
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Under ties for some of the X values, break ties uniformly at random, and 
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Unlike the big 3, Chatterjee’s new correlation coefficient ranges from zero to one asymptotically (it can 
exceed these bounds slightly under finite samples), and a value of zero does indicate independence.  
Also, no positive or negative dependence is indicated by a positive or negative sign on the measure value.  
Most notably, this is an asymmetric dependence measure, that is, the order of X and Y matters: 

( ),n X Y does not necessarily equal ( ),n Y X .  In other words, the dependence of Y on X is not 

assumed to be identical to the dependence of X on Y, respectively: dependence is directional.22  However, 
note that Chatterjee’s can be made to be symmetric by simply taking the maximum of two measures, one 
in each direction as in (12): 

(12) ( ) ( )_ max , , ,n nchcorr sym X Y Y X =     

Chatterjee’s breakthrough has spawned many variants (see Lin & Han, 2023, Pascual-Marqui et al., 2024, 
and especially Gao and Li, 2024).  One of these is the “improved Chatterjee’s correlation” derived by Xia 
et al. (2024), the motivation of which is to increase power by using inverse distance weightings of all 
neighboring data values as opposed to just one. 
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Xia et a. (2024) test the power and level of “improved Chatterjee” against both Chatterjee and Szekely’s 
correlations in an empirical study under widely varying data conditions.  Both Chatterjee’s and improved 

 
22 It is important to note that herein, when using dependence measures that are asymmetric/directional, the corresponding all-
pairwise matrix remains symmetric.  So when using, say, Chatterjee (2021), on the returns of two particular assets in the 
portfolio, say, X3 and X4, the value in cell row 3, column 4 of the matrix is ( )3, 4n X X , and the value in cell row 4, column 3 

of the matrix is identical, that is, ( )3, 4n X X ; it is NOT ( )4, 3n X X . 
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Chatterjee’s coefficients exhibit power under non-monotonic, non-linear, and cyclical dependence, with 
the latter usually winning.23 

Interestingly, Zhang (2024a) has proposed combining Chatterjee’s and Spearman’s in an effort to obtain 
the best of both worlds: a dependence measure that has reasonable power under cases of non-
monotonic, non-linear, and/or cyclical dependence (where Spearman’s has little to no power, especially 
compared to Chatterjee’s) as well as reasonable power under monotonic dependence (where 
Chatterjee’s has less power than Spearman’s). 

(14) ( ) ( ) _ ,, max , 5 2 ,n sp X Y nzcorrsp I X Y sr X Y= =  

Zhang’s (2024a) combined correlation ranges from 0 to 1, where zero indicates independence.  This 
dependence measure also is asymmetric due to its inclusion of Chatterjee’s coefficient.  Zhang (2024b) 
later derived the symmetric version of this test as (14a): 

(14a) ( ) ( ) ,_ max , 5 2 , , 5 2 ,X Y n nzcorrsp sym sr X Y Y X =  

Another measure similar to Chatterjee’s is the Differential Distance Correlation (DDC) of Liu and Shang 
(2025).  DDC’s values range from 0 to 1, with 0 indicating independence.  Notably, like Szekely’s distance 
correlation, DDC can be multidimensional, but when X is univariate so that DDC can be used in an all-
pairwise matrix, it is defined as (14b) below: 
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.  Liu and Shang (2025) show in an empirical study that DDC has power similar to that of Chatterjee’s 
measure, but with slightly more power under damped oscillator data.  And like Chatterjee’s measure, 

 
23 Note that both Chatterjee (2021) and Xia et a. (2024) test against two dependence measures not explored further herein: the 
HSIC measure of Gretton et al. (2007), and the HHG measure of Heller et al. (2013).  Both appear to have excellent power 
under circular and heteroskedastic data, and the former maintains reasonably large power under other conditions where both 
Chatterjee statistics outperform it.  While both HSIC and HHG are much more computationally intensive than either 
Chatterjee dependence measure (as is Zheng et al., 2012, as well), Sejdinovic et al. (2013) intriguingly prove that “reproducing 
kernel Hilbert space (RKHS)-based dependence measures are precisely the formal extensions of the [Szekely et al. (2007)] 
distance covariance.”  So HSIC is a generalized version of Szekely et al. (2007) that circumvents “the problem of 
nonintegrability of weight functions by using translation-invariant kernels called distance-induced kernels.”  RKHS-based 
dependence measures remain an active and intriguing area of continuing research (see Ke, 2019; Mitchell et al., 2022; Wahba, 
2017; and Zhang & Songshan, 2023), especially because they all are positive definite by design and definition (see Tripathi et 
al., 2022, for an example), and thus, are suitable for NAbC.  A related and similarly intriguing approach is that of Pascual-
Marqui et al. (2024) who combine Szkely’s and Chatterjee’s measures in directional regressions within a causal modeling 
framework.  This is discussed further below, alongside NAbC’s potential use within causal frameworks. 
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DDC is directional, so in the general case, ( ) ( )| |n nDDC X Y DDC Y X , although also like 

Chatterjee’s measure, a symmetric, non-directional version may be obtained via (14c)24: 

(14c) ( ) ( ) ( ), max | , |n sym n nDDC X Y DDC X Y DDC Y X− =     

Finally, asymmetric, directional dependence measures also can be applied only to the tails of X and Y, 
and it is important to note that correlation breakdowns often are associated specifically with 
(asymmetric) tail dependence: “Extensive evidence has been gathered showcasing the prevalence of 
heavy-tailed distributions and asymmetric tail interdependence within equity and foreign exchange 
markets, particularly during times of crisis.  …This phenomenon causes markets that typically exhibit 
minimal or no correlation to behave similarly, often in opposition to fundamental principles.” (Pramanik, 
2024).25  One straightforward example of an asymmetric tail dependence measure is that of Deidda et al, 
(2023) which is essentially Kendall’s Tau applied conditionally, only when the percentile, q, of X (or Y) is 
exceeded: 

(15) ( ) ( ) ( ) ( )( ),

1

1
ˆ sgn sgn ,

2

X Y i j i j i j n k
i j n

q X X Y Y I X X X
k


−

  

= − − 
 
 
 

  

where 1 ,  and q k n k n= −   is the number of exceedences used in the tail, and ( )I is the indicator 

function (one when true, zero otherwise) ensuring that only the k largest observations of X are used.  Note 

again that generally, ( ) ( ), ,
ˆ ˆ
X Y Y Xq q  , that is, this tail dependence measure is directional, and the effect 

of X’s tail on Y’s tail is not assumed to be the same as that of Y’s tail on X’s tail. 

Other directional, asymmetric dependence measures include the dynamic asymmetric tail dependence 
measure of Ito and Yoshiba (2025), the QAD measure of Junker et al. (2021), the generalized correlation of 
Zheng et al. (2012) and the measures of Vinod (2022), and others described in Jondeau (2016).26 

It remains notable that NAbC’s broad scope allows for its application to these asymmetric, directional 
dependence measures as readily as it is applied to the big 3.  As seen in a later section, this gives NAbC 
great utility in some surprising settings.  Even as it is designed fundamentally as a method for robust 
statistical inference, and is thus associational, when used on these directional dependence measures 
NAbC can be applied to increase the power of causal models to accurately recover directed acyclic 
graphs (DAGs).  It also can be used effectively to robustify other causal frameworks.  These are areas of 

 
24 Based on email correspondence with author Yixiao Liu, July 9, 2025. 
25 See also Ito and Yoshiba (2025): “We provide new evidence that lower tail dependence coefficients increased compared to 
upper ones for all pairs in the COVID-19 crash…” 
 
26 Note that under certain conditions, such as when categorical and ordinal data are being analyzed and the number of 
categories between the two variables differs dramatically, even Pearson’s correlation can be unambiguously directional (see 
Metsämuuronen, 2022, for details). 
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continuing research, but they serve as examples of how NAbC’s breadth of application can be useful 
even beyond ceteris paribus comparisons of the inferential power of competing dependence measures.  
Yet this remains invaluable as it stands, as such comparisons often would not be possible without NAbC.  
All dependence measures have strengths and weaknesses, not only under different data conditions, but 
also depending on the specific questions applied researchers and practitioners need to answer.  So we 
need to be able to test them using the same unifying method under controlled conditions if we are to 
determine which is most appropriate for a given situation.   

With this brief but important review of dependence measures aside, I address their estimation in the next 
section before turning to the derivation of NAbC in subsequent sections. 

 

3. Estimation 

 

3.a. Covariance and Pearson’s Correlation 

Regarding estimation of the all-pairwise matrix, the lion’s share of the literature focuses on estimators for 
the covariance matrix and Pearson’s correlation matrix.  This is not terribly surprising given the relatively 
long history and widespread usage of Markowitz’s portfolio framework (see Markowitz, 1952) and related 
models. 

“Accurate covariance matrix prediction is crucial for portfolio optimization and risk management 
because it captures the relationships and co-movements between asset returns.” (Lee et al., 2024) 

But fortunately, some see the bigger picture, that these analyses can and should be broadened to ALL 
positive definite dependence measures:  

“Modeling covariance matrices – or more broadly, positive definite (PD) matrices – is one of the most 
fundamental problems in statistics” (Lan et al., 2020). 

So I first focus below on estimation of Pearson’s matrix, and then on the other dependence measures 
discussed in the previous section. 

The first of the two major challenges of estimating the all-pairwise matrix of any dependence measure is 
sample size, because we are not just estimating a single parameter, say, a volatility or a beta of a single 

asset, but rather , 
( )1

2 2

p p p − 
= 

 
 pairwise associations.  To do this accurately and with reasonable 

precision, we need more data than is needed for a single estimate.  Regarding accuracy, the sample 
covariance matrix, and thus, the sample Pearson’s matrix are consistent estimators, that is, they are 
asymptotically unbiased.  But regarding precision, their estimates will be way too variable to be useable 
or useful, not to mention biased in the finite-sample case, in the absence of large(r) data samples.  A 
widely recognized rule of thumb is that the sample size needs to be at least ten times the dimension of 
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the matrix (N≥10p; see Bongiorno et al., 2023), but this arguably depends on the method used to 
estimate it.  For example, Bun et al. (2016) devise a rotationally invariant estimator that “cleans” or “de-
noises” the estimate of Pearson’s matrix27 using functions of its eigen values, a method for which they 
argue that N≥2p is sufficient.  Note that the estimators of all the dependence measures presented herein 
are at least asymptotically unbiased, and that some researchers believe the sample size issue has been 
addressed as well as it can be, especially if the best methods are being used (see Bouchaud, 2021: “Now 
the data problem is solved as best as possible…” referring to Bun et al., 2023, among others).  With this in 
mind, currently it would appear that Bun et al. (2016) is the state-of-the-art estimator for the 
unconditional estimate of Pearson’s matrix (see du Plessis & van Rensburg (2020) for a comparison 
study).  However, in most cases in this setting, obtaining accurate and realistic estimates of dependence 
structure requires conditioning on time, because in reality, time series of financial returns do change 
over time, and so does their dependence structure.  And this is the second major challenge when 
estimating any all-pairwise dependence matrix: non-stationarity.   

As Bouchard (2021) rightly points out, portfolio frameworks like that of Markowitz (1952), and really any in 
applied usage, require knowledge of the dependence measure to be representative of the future realized 
correlations, because financial data is non-stationary (i.e. its distribution changes over time; the term 
‘conditional distribution’ refers to the distribution conditional on a specific time period).  Therefore, we 
need a forecast, into the near-term future, of the conditional dependence matrix.  And a very compelling 
one for Pearson’s and the covariance matrix, dubbed “Average Oracle” (AO), is exactly what is provided by 
Bongiorno et al. (2023) (see also Bongiorno & Challet, 2023a, for an extensive empirical study against 
competitors).  Conceptually AO is very straightforward: based on the eigen decomposition of Pearson’s 
matrix, it uses the (oracle) covariance of the next-period ‘future’ with the eigenvectors of the adjacent 
past period to obtain eigenvalues that, when averaged over many samples, embed the desired, dynamic 
time effects for a robust forecast of Pearson’s matrix.  Somewhat surprisingly, this intuitive method 
outperforms all flavors of advanced “shrinkage,” both non-linear (see Ledoit & Wolf, 2017) and quadratic 
(see Ledoit & Wolf, 2022a, 2022b) as well as DCC and NLS combinations (see Engle et al., 2019).  It is 
fast, straightforward to understand and implement, and importantly, fully nonparametric.  AO’s 
outperformance of the widely used NLS approach perhaps should not be so surprising given that 
Bongiorno & Challet (2023b) recently proved that NLS is not optimal for portfolio optimization, as was 
widely believed, because it does not optimize under non-stationarity.28  So I recommend AO as the 
current state-of-the-art conditional estimator of Pearson’s matrix.  However, this literature is vast, 
comprising easily many hundreds of papers when both covariance and Pearson’s correlation estimation 

 
27 See also Palomar (2025), 3.5.3 (pp. 52-55), for several robust estimators of the covariance (Pearson’s correlation) matrix that 
can be very useful when the marginal returns distributions are decidedly non-Gaussian, which is the rule rather than the 
exception for most financial markets.  For additional recent, innovative robust estimators of the covariance (Pearson’s 
correlation) matrix, see Centofanti et al. (2025), Besson (2025), Carrara et al. (2025), Casa and Cappozzo (2025), and Sun and 
Huang (2025). 
 
28 For those that view shrinkage favorably in general, an improved shrinkage competitor with arguably better properties than 
NLS is that of Kelly et al. (2024). 
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are included, and given the current rapid pace of research in this area, it is certainly possible that new, 
worthy competitors exist, especially under specific data conditions (see for example Zhang et al. (2022), 
Zhang et al. (2023), Vanni et al. (2024), and Zhangshuang et al. (2025)). 

 

3.b. Other Dependence Measures 

For estimation, conditional or unconditional, of the all-pairwise matrices based on the other dependence 
measures listed in the previous section, the literature has little to offer beyond the fact that all of the 
sample estimators presented in the previous section are at least asymptotically unbiased.29  So as long 
as sample sizes are sufficiently large these estimators will retain good statistical properties.  However, I 
offer two additional suggestions below for possible improvements under specific conditions.  The first is 
simply the inverse of a common robustification technique using a well established relationship between 
Pearson’s and the rank-based measures, Kendall’s and Spearman’s.  Estimates of (bivariate) Kendall’s 
Tau or Spearman’s Rho often are used to robustify those of Pearson’s using the widely known 

relationships of ( )sin 2r  = and ( )( )2sin 6r sr = , respectively, which are valid under iid elliptical data 

distributions (see Sheppard, 1899; Greiner, R., 1909; Lindskog et al., 2003; Heinen & Valdesogo, 2022; 
McNiel et al., 2005;and Hansen & Luo, 2024; and for advanced methods on this, see Barber & Kolar, 
2018, and Niu et al., 2020).  Yet under specific, known data conditions that are non-elliptical, it may be 
demonstrable that these transformations remain reasonably accurate (see Hamed (2011) and Hansen & 
Luo (2024) for examples).  In this case, given a strong estimator of Pearson’s from an improved estimation 
method like those described above (e.g. Average Oracle of Bongiorno et al. (2023)), the inverses of these 
functions could be used to obtain estimates for the all-pairwise matrices of Kendall’s and Spearman’s 
that likely would share some of the benefits of an improved estimate for Pearson’s matrix, especially 
when it is conditional.  Note, however, that these transformations would require verifying, and sometimes 
enforcing, positive definiteness ex post (see McNeil et al. (2015) and Higham (2002)).  Also, they apply 
only to Kendall’s tau and Spearman’s rho. 

An approach with a much broader range of application would be the implementation of Average Oracle 
on ANY of the above-mentioned dependence measures directly, simply replacing Pearson’s matrix with 
the measure of choice, but keeping the methodology otherwise identical.  Because their all-pairwise 
matrices will be verified to be positive definite, any of these dependence measures will have valid eigen 
decompositions wherever the covariance matrix does (and even in some cases where the covariance 
matrix is singular): the ‘training’ eigenvectors of the adjacent past can be used in exactly the same 
manner with next-period ‘future’ all-pairwise dependence matrices to obtain (averaged) eigenvalues that 
embed the measured, average, empirical time dependency.  This approach would presumably share the 
benefits of AO’s conditional correlation estimates (i.e. its robustness and fully nonparametric nature) to 
other measures of dependence in this setting. 

 
29 However, see Zhao et al. (2014) for an intriguing exception. 
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The above discussion regarding estimation should clarify and reemphasize the fact that NAbC is not an 
estimator of any of these dependence measures: rather, it provides the finite-sample distribution of the 
estimator, as long as its estimate is positive definite, for any dependence measure under any real-world 
data conditions.  This allows us to make actionable inferences about dependence structure in a unified 
way, allowing for comparative, ceteris paribus analyses.  The literature to date provides such distributions 
in a highly piecemeal fashion for some of the dependence measures under some (often very limited 
and/or unrealistic) data conditions for some (often very limited and/or unrealistic) ranges of values.  
These derivations also can be extremely complex and unwieldy, making them unusable for all intents and 
purposes for many practitioners.  NAbC sidesteps all of these problems with a single, unified, and 
straightforward method that allows for ceteris paribus comparisons of different measures, or different 
estimators of a particular measure.  Estimation of the all-pairwise matrix is the only thing out-of-scope for 
NAbC, but in a sense this is a strength of the approach since it permits NAbC to remain “estimator 
agnostic,” allowing for its application on any reasonable and relevant estimator of the all-pairwise matrix.  
It thus provides the flexibility to use those that are most robust and/or most precise and/or most accurate 
– or any combination thereof – under different conditions.  So we do not need to reinvent the already well-
established wheel of estimation here:30 NAbC can provide the finite sample distribution of any estimator, 
and thus, make statistically valid and actionable inferences about a portfolio’s dependence structure 
with those estimator(s) that are ‘best’ under specific conditions.  Derivation and application of NAbC 
follows below in the next section. 

 

4. NAbC: (Robust) Statistical Inference 

 

4.a. Brief Literature review of Pearson’s Matrix: Distributional Results and Sampling Algorithms 

I begin with Pearson’s product moment correlation matrix, the oldest and arguably most widely used 
measure of dependence (see Pearson, 1895), in part because I derive below a fully analytic solution for 
NAbC for a special case of Pearson’s matrix.  Although its limitations often are mischaracterized or 
misunderstood, especially as they relate to widely held views classifying it strictly as a measure of linear 
association (see van den Heuvel & Zhan, 2022), in many settings Pearson’s remains either optimal or 
centrally relevant for wide-ranging purposes.31  These include robust asset allocation (Welsch and Zhou, 
2007), Black-Litterman variants (Meucci, 2010a, Qian and Gorman, 2001), entropy pooling with fully 
flexible views (Meucci, 2010b), portfolio optimizations combined with random matrix theory (Pafka and 

 
30  The possible exception here, mentioned above as the topic of current research, is applying Average Oracle to dependence 
measures beyond Pearson’s, which could be a notable improvement to their estimation over other methods for forecasting 
their conditional values. 
 
31 In addition to the linearity ‘myth’ effectively addressed in van den Heuvel & Zhan (2022), note also that while Pearson’s, 
under dependence, does not retain invariance under marginal transforms generally, the set of cases where it does retain 
invariance is broader than previously thought (see Koike et al., 2024). 
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Kondor, 2004), stress testing (Bank for International Settlements, Basel Committee on Banking 
Supervision, 2011a), and even non-linear, tail-risk-aware trading algorithms (Li et al., 2022, and Thakkar 
et al., 2021) to name a few.  Consequently, Pearson’s is the foundational dependence measure we start 
with (see also Rodgers & Nicewander (1988) for a broad, useful, and applied introduction to Pearson’s). 

When it comes to statistical inference and simulation-based decision-making, the extant literature on 
Pearson’s matrix can be placed roughly into two categories: 1. distributional derivations that preserve 
inferential capabilities, and 2. sample-generating algorithms.  The former typically are limited by 
unrealistic distributional assumptions, while the latter attempt to generate stylized, real-world 
distributions, but fail to preserve inferential (probabilistic) validity.  Of course, we want both worlds: 
robust, fast, straightforward algorithms to generate samples when needed (i.e. in the absence of fully 
analytic solutions), that also preserve inferential capabilities, so that we can base decisions on rigorously 
defined probabilities.  Unfortunately, none of the methods reviewed below provide both, which was a 
strong motivator for NAbC’s development. 

I begin with a brief and admittedly non-comprehensive, but well-targeted literature review of both 1. And 
2. under more restricted cases.  I follow with a review of 1. snd 2. under more general conditions.  
Subsequently I develop NAbC under both a narrowly defined but foundational case, and then under fully 
general conditions that satisfy the eight original objectives listed in the Introduction and Background.  
Defining NAbC under a narrow case provides a fully analytic version that very transparently shows how 
NAbC accomplishes both objectives listed above – useful sample generation and valid statistical 
inference, simultaneously – while also serving as a helpful, transparent referential baseline for NAbC’s 
generalization to all positive definite dependence measures, under all data conditions. 

 

4.a.i. Distributional Results 

Derivations of the distribution of Pearson’s matrix go all the way back to one of the fathers of modern 
statistics, Sir Ronald A. Fisher (see Fisher, 1915, 1928).  Intriguingly, Fisher (1928) recognizes the 
relationship between the Pearson’s correlation formulae and the cosine between the angles of the two 
data vectors in the bi-variate case, i.e. what is now widely referred to as “cosine similarity” (described in 
more detail later).32  He builds on this in his derivations (as does NAbC below), and although without 
closed forms some of the mathematical results prove unwieldy, they are foundational for those 
(re)derived below.  Joarder and Ali (1992) replicate some of Fisher’s earlier results (see Fisher, 1915), and 

 
32 Briefly, this widely used mathematical relationship recognizes that the cosine of the angle between two mean-centered data 
vectors equals Pearson’s (bivariate) correlation coefficient, as shown below: 
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more generally derive the distribution of Pearson’s for any dimension when the underlying data is 
elliptically distributed (which includes the case of Gaussian data).  Their density, however, requires 
iterated integration on the order of the dimension of the matrix, so like many of Fisher’s results, while 
mathematically correct, it remains unscalable and less readily implemented. 

For more recent results, below I start with narrowly defined cases and then expand.  Restrictions on the 
narrow cases include i. on the underlying data (e.g. only Gaussian); ii. on the dimension of the matrix (e.g. 
only the bivariate case of p=2); iii. on the values of the matrix (e.g. only the identity matrix, where all 
correlations equal zero); and iv. with a priori known, rather than estimated, parameter values (e.g. known 
variances). 

Gaussian data, any matrix, p=2 

For Gaussian data with matrix dimension p=2, i.e. the bi-variate case, Taraldsen (2021) derives the exact 
confidence distribution of Pearson’s correlation: 
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It is important to note here, as discussed later in this monograph, that Taraldsen (2021) shows that the 
Fisher’s Z-transformation (Fisher, 1921), a widely used approximation of this distribution, loses accuracy 
as correlation values approach one or negative one, especially for smaller samples. 

Gaussian data, identity matrix only, p≥2 

For the Gaussian identity matrix (all correlations of zero) with p≥2, Gupta & Nagar (2000) derive the 
density  
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Although Pham-Gia & Choulakian (2014) claim this is a new result, it actually is identical to that of 
Joarder and Ali (1992) (see (4.2)) under these conditions, and after some manipulation, that of Fisher 
(1915) for the bivariate case (see (4.2), (4.3), and (3.1) in Joarder & Ali, 1992). 

 
33 Interestingly, the Gaussian hypergeometric function makes many appearances in this and related settings: i. in derivations of 
the distribution of individual (bivariate) correlations (besides Taraldsen, 2021, see also Muirhead, 1982); ii. in moments of the 
spectral distribution under some conditions (see Adams et al. 2018, and 
https://reference.wolfram.com/language/ref/MarchenkoPasturDistribution.html); iii. in the cumulative distribution function of 
Pearson’s under the Gaussian identity matrix of any dimension (see Opdyke, 2022, 2023, and 2024a; and iv. in the definition of 
positive definite functions (see Franca & Menegatto, 2022). 

https://reference.wolfram.com/language/ref/MarchenkoPasturDistribution.html


JD Opdyke, Chief Analytics Officer                 Page 29 of 91                                Correlation and Beyond 
 

Gaussian data, any matrix, with p≥2 

Under Gaussian data, with p≥2, Pham-Gia & Choulakian (2014) provide the distribution of the sample 
Pearson’s matrix under any values, not just the identity matrix: 

(19) 
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  1

, ,known variance ,   is the determinant function,  is the true correlation matrix, and  the diagonals of i i i i  −   

The limitations of Pham-Gia & Choulakian (2014) include the requirement of a priori knowledge of true 
(not estimated) variances, and of course the fact that it is valid only for normally distributed data.  It also, 
arguably, is quite cumbersome to implement.   

 

4.a.ii. Sampling Algorithms 

Moving now to sample generation under various ‘non-generalized’ conditions, i.e. conditions that are not 
generalized to those common in financial portfolios, the literature provides a number of methods, many 
of which are quite involved.  Note that I have focused on more recent ones, as these usually explicitly 
subsume previously published algorithms, and many of the below are even compared against each other 
in their own empirical simulation studies.  Note that none of these are generalized to include the stylized 
empirical characteristics observed in financial portfolios, and hence are labelled here as ‘non-
generalized’.  

i. The onion and c-vine methods, the former of which can generate random correlation matrices 
with the joint density of the correlations being proportional to a power of the determinant of the 
correlation matrix, and the latter of which is based on partial correlations specified in a vine 
copula (specifically, a c-vine copula). (Lewandowski et al., 2009) 

ii. the chordal sparsity method of Kurowicka (2014), which generalizes Lewandowski et al. (2009), 
although “it is not clear whether it is possible to extend them to other patterns of unspecified 
correlations” beyond those with chordal sparsity patterns. 

iii. The restricted Wishart distribution approach of Wang et al. (2018), which is equivalent to 
Lewandowski et al. (2009) but somewhat more efficient. 

iv. The hyperspherical coordinate approach of Pourahmadi et al. (2015)  
v. The Cholesky-Metropolis method of Cordoba et al. (2018), which claims to be faster than the 

previously listed methods. 
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vi. The direct formulation method of Madar (2015) 
vii. The flexible bijection method of Veleva (2017) 

viii. The rejection algorithm of Makalic and Schmidt (2018), which is based on the polar 
(hyperspherical) angles representation of Pearson’s matrix34 

Makalic and Schmidt (2018) is treated in more detail below.  Implementation of all but vi., vii., and viii. 
above arguably remain quite involved, but one of the self-described focuses of most of these is 
computational efficiency (which is not surprising as they are sampling algorithms).  From a close read of 
the runtime results of the successively published and compared algorithms above, it appears that 
Makalic and Schmidt (2018) is the fastest among them (excepting those of Madar (2015) and Veleva 
(2017), which have not been compared to the others).  However, as discussed in more detail below, 
Rubsamen (2023) shows that for the case of the Gaussian identity matrix, when NAbC is used in its 
sample generation capacity, it is over 30% faster than Makalic and Schmidt (2018); when NAbC is used 
for this specific case analytically, its results are, for all intents and purposes, instantaneous, as can be 
seen in the excel workbook at the following link (see http://www.datamineit.com/JD%20Opdyke--
The%20Correlation%20Matrix-
Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-
24.xlsx).   
Runtimes of NAbC under the fully general case, i.e. that of fully realistic financial data conditions (which 
none of the algorithms above claim to cover), as well as any valid matrix values, are discussed in later 
sections below.  

But beyond speed, the more important issue regarding these sampling algorithms is that none preserve 
inferential validity, on a sample-by-sample basis, by providing a readily calculated cumulative 
distribution function (cdf) value (probability density function (pdf) values will be more cumbersome and 
less useable here).  In other words, to make these simulation results truly useful for valid hypothesis 
testing and other inferential purposes, we need to know where in the distribution of correlation matrix 
samples a particular sample sits: given a known/true correlation matrix (our null hypothesis, if hypothesis 
testing), what probability is associated with observing a particular sample correlation matrix, or one more 
extreme, relative to the known matrix?  Is it larger than 5% of all randomly generated samples?  Or 99%?  
Calculating this cdf value is tortured, if not impossible for these methods, although this arguably should 
be the primary focus of such algorithms. 

The counter argument is that the group of samples that these algorithms generate, taken as a whole, is a 
valid representation of the data generating mechanism behind the specified correlation matrix.  This 
group of samples can then be used as inputs to comprehensive and arguably real-world portfolio 
simulations.  While this is certainly true, at best the group of sample correlation matrices, then, only 
provide indirect inferential value, with what is arguably a notable lack of control.  For example, the group 

 
34  See Joarder & Ali (1992), Pinheiro & Bates (1996), Rebonato & Jaeckel (2000), Rapisarda et al. (2007), and Pourahmadi & 
Wang (2015).  The use of spherical angles for analysis of Pearson’s matrix goes back at least to Fisher (1915), but Joarder & Ali 
(1992) and Rapisarda et al. (2007) provide geometrically motivated, thorough, and clear descriptions of its derivations, and 
Rebonato & Jaeckel (2000) appears to have been the first to propose its application in financial settings. 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
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of samples cannot be used to specify, for controlled portfolio simulations, the two matrices representing 
the 95% confidence interval under a given null hypothesis for the dependence structure, which is the 
kind of targeted, controlled capability needed for precise, powerful testing and consequent, targeted 
decision-making.  Some may argue that the group of sample matrices can be used with ad hoc measures 
of ‘distance’ from a hypothesized matrix of ‘true’ values (e.g. a Euclidean ‘norm’ distance from, say, the 
identity matrix), yet such multivariate distances can be measured in many different and equally valid 
ways under various conditions (this is addressed in more detail in the Section 7 below).  The same 
‘distances’ also can have different interpretations under different conditions, and even widely used ones 
can be ‘wrong’ when applied to very commonly used dependence measures in this setting (see Zhang et 
al., 2024, for a compelling example).  So making inferences based on them remains arguably as ad hoc, 
at best, as the arbitrary choice of how to measure distance between a sample matrix and its null 
hypothesis.  Neither can such distances be used to rank order the sampled matrices to obtain, say, an 
empirical cdf, because different distances will yield different rank orderings.  The only ‘distance’ that 
avoids these issues is probability itself, most conveniently and rightly represented as a cdf value. 

In the end, for inferential capability and subsequent probability-based decision-making ability, what is 
necessary here is an analytically rigorous connection between a specific sampled correlation matrix and 
its associated, properly defined cdf value, and none of these sampling methods provide this.  Fortunately, 
NAbC does, as is discussed further below.  But first, I finish reviewing results from the extant literature 
that cover 1. distributional derivations of Pearson’s matrix, but under the more general case of realistic, 
financial returns data, as well as 2. sample generation algorithms of Pearson’s matrix under these same 
conditions (which should correspond to their stylized, empirical characteristics).  For 1., I cover three 
recent and intriguing methods below. 

 

4.a.iii. Distributional Results, More General Conditions 

Archakov & Hansen (2021) introduce an original parameterization of Pearson’s matrix that maps uniquely, 
one-to-one, to the positive definite space, thus providing a density for inference.  It is valid under general 
conditions, based on the Fisher Z transformation, remains invariant to reorderings of the 
variables/assets, i.e. the rows and columns of the matrix, and is accompanied by an algorithm that 
provides the inverse mapping from the parameterization to the correlation matrix (i.e. a matrix level 
quantile function).   

This approach is original, but the method still has limitations.  As the authors state, “This makes the 
transformation potentially useful for … inference.  These attributes tend to deteriorate as C approaches 
singularity.  This is not unexpected, because it is also true for the Fisher transformation when the 
correlation is close to ±1.”  As previously noted, Taraldsen (2021) similarly shows that the approximate 
density of the pairwise correlation using Fisher’s Z-transformation loses accuracy as correlation values 
approach ±1, especially for smaller samples.  This is consistent with the authors’ comments here, but 
they state this may only be material under extreme conditions.  However, extreme conditions are exactly 
when correlation breakdowns occur, and when we most need robust, accurate inferences.  All else equal, 
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it would be preferrable and important in practice to have a method that avoided this non-robustness 
issue altogether. 

In addition, the method only provides the distribution of the entire correlation matrix: it does not appear 
to be able to modify correlation matrices, cell-by-cell, probabilistically, based on their individual cell-
level distributions, for things like scenarios and ‘what if’ analyses.  While this may not be a stated 
objective of the method, all else equal it would be a very useful feature for stress testing and scenario 
analysis, as well as attribution analyses.  The same holds true for larger submatrices of the matrix, i.e. 
submatrices larger than one cell.  Note that NAbC shares none of these limitations, but shares all of the 
method’s advantages listed above, in addition to many others. 

Lan et al. (2020) take a fully Bayesian approach to this problem for both covariance and Pearson’s 
correlation matrices.  Similar to NAbC, they use the Cholesky factorization to automatically enforce 
positive definiteness, and by defining distributions on spheres as NAbC does, utilize a large class of 
flexible prior distributions.  This method includes estimation of the correlation/covariance matrix, which 
as described above, NAbC does not.  But it also lacks very important advantages that NAbC provides.  As 
the authors state, “The priors for correlation matrix specified through the sphere-product representation 
are in general dependent among component variables.  For example, the method we use to induce 

uncorrelated prior between ( ) and  by setting 0 for i j jky y i j l k i   has a direct consequence that 

( )Cor , 0 for .i jy y i i     In another word [sic], more informative priors (part of the components are 

correlated) may require careful ordering in  .iy   To avoid this issue, one might consider the inverse of 

covariance (precision) matrices instead.  This leads to modeling the conditional dependence, or Markov 
network …  Our proposed methodology applies directly to (dynamic) precision matrices/processes, 
which will be our future direction.”   

Fortunately, NAbC does not suffer from this order-dependence problem.  Like Archakov & Hansen (2021) 
its results are invariant to the ordering of the rows and columns of the matrix, but unlike Archakov & 
Hansen (2021) or Lan et al. (2020) it can ‘freeze’ any submatrix of the correlation matrix, even if it is non-
contiguous, as dictated by any particular scenario or stress test, and still obtain a valid, finite-sample 
distribution for the (rest of the) matrix.  In all cases within the framework of the all-pairwise matrix, there 
are no unintended ‘dependencies’ between cells that confound these results.  As discussed further 
below, the ‘unintended dependencies’ problem is one that other researchers have struggled with, but 
which NAbC avoids. 

Like Lan et al. (2020), Ghosh et al. (2021) also take a fully Bayesian approach to this problem, and just like 
NAbC, they reparameterize Cholesky factors in terms of hyperspherical coordinates where the angles 
vary freely in the range [0, π). Their focus is on estimation, although as a Bayesian approach it is 
comprehensive and provides credible regions.  Among its arguable limitations, however, is that its use is 
restricted to parametric priors, which given the non-small dimensions of most financial portfolios (e.g. 
Bongiorno & Challet (2023a) call p=100, which has p(p-1)/2=4,950 pairwise cells, ‘mid-sized’) it is hard to 
see how this would not limit its implementation under complex, real world financial data conditions (e.g. 
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4,950 distributions with different and varying degrees of serial correlation, asymmetry, non-stationarity, 
and heavy-tailedness).  In other words, it is hard to imagine a fully parametric multivariate distribution of 
dimension p=100 or greater that was analytically tractable but simultaneously able to adequately 
incorporate all of the distributional characteristics listed above, for 4,950 distributions (or more).  In 
contrast, NAbC makes use of flexible nonparametric kernels that fit ANY angles distribution resulting 
from ANY data generating mechanism (with finite mean and variance required for Pearson’s matrix).  Also, 
like both Archakov & Hansen (2021) and Lan et al. (2020), the approach of Ghosh et al. (2021) does not 
appear to have the capability of modeling submatrices while leaving select cells of the correlation matrix 
‘untouched.’  This is absolutely essential for flexible and realistic scenario modeling and (reverse) stress 
testing, and one of the many advantages NAbC provides.  Now I treat some of the more recent, general-
case sample generation algorithms.   

 

4.a.iv. Sampling Algorithms, More General Conditions 

Marti (2019) proposes using generative adversarial networks (GANs) to incorporate the stylized empirical 
characteristics of financial portfolios’ correlation matrices into an algorithm (CorrGAN) that directly 
generates samples of the all-pairwise matrix, as opposed to generating samples of returns from which 
correlation matrices are then estimated.  This appears to be the first method to attempt this approach.  
The stylized characteristics include positive-shifted correlations, Marchenko-Pastur distributed 
correlations excepting a few large eigenvalues, Perron-Frobenius property (positive entries of the first 
eigenvector), hierarchical correlation structure, and scale-free property of the corresponding minimum 
spanning tree.  Marti (2019) does not address how computationally intensive is the method, but 
apparently it is not prohibitively so as he implements it on 100x100 matrices in a follow-on blog post (see 
Marti, 2020).   

There are three main limitations to this approach.  First, as the author notes, while it appears to capture 
most of the identified distributional stylized facts, it does not capture the tails well.  This arguably is the 
most important part of the distribution, as it is critically related to portfolio risk analytics, and many if not 
most scenarios, especially those that incorporate events like correlation breakdowns.  In addition to use 
in trading algorithms, these are the stated purposes of the method, so difficulty estimating the tails of the 
distribution is not a minor limitation.  Secondly, the method generates samples that “are not exactly 
correlation matrices” with non-unit diagonals and negative eigenvalues.  Marti (2019) states that positive 
definiteness is enforced ex post using Higham (2002).  I have used Higham (2002) extensively in my 
research in this setting, closely examining its effects on both the spectral distribution and the distribution 
of the correlation matrix itself, and have found that both can be dramatically distorted when Higham 
(2002) is used.35  However, simply discarding non-positive definite samples is not the answer as this, too, 

 
35 To be clear, this is not a critique of Higham (2002), which is seminal and extremely useful in wide-ranging, applied settings.  
Rather, it is only to say that ‘fixing’ non-positive definite matrices that are generated by non-trivially complex algorithms 
typically, if not always in practice, strongly distorts the distribution of the sample matrices, as well as the associated spectral 
distribution.  This is readily verified empirically. 
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will distort its true sample distribution.  The only way to simulate the matrix and generate a valid, non-
distorted, representative pool of sample matrices is to use a method that automatically enforces positive 
definiteness, ex ante.  Finally, the last limitation is that the samples generated by this method do not 
retain inferential validity generally, that is, they are not associated with a probability of occurrence or a 
cdf value, as discussed above. 

Papenbrock et al. (2021) develop a novel and intriguing approach to simulating correlation matrices for 
financial markets using evolutionary algorithms.  These allow for the flexible yet robust incorporation of 
many observed features of real-world financial correlation matrices (the list is similar to that of Marti 
(2019), with some enrichments).  The algorithm scales well and can be used for backtesting, pricing, and 
hedging correlation-dependent investment strategies and financial products.  However, it has several 
limitations: the first relates to how upper and lower barriers are established for the sampled correlation 
matrices, which the authors describe as “This neighborhood could be defined in a static way or by expert 
knowledge.”  Regarding the latter option, making this criterion (strictly) subjective arguably defeats the 
purpose of objective, quantitative analysis in this setting.  Regarding the former option, Papenbrock et al. 
(2021) suggest using the most extreme values of the matrices, although none of the implementations 
listed (e.g. random matrix denoising, shrinkage, or exponential weighting) are inferentially valid in 
themselves, that is, they do not allow for probabilistic inference.  Arguably, if the range of the matrices 
sampled needs to be restricted at all, it should be restricted based on rigorously defined probabilistic 
bounds, say, 99% confidence intervals.  Fortunately, this is a capability that NAbC provides.   

The second limitation of Papenbrock et al. (2021) is shared with Marti (2019) in that the algorithm does 
not enforce positive definiteness ex ante.  The authors do acknowledge the importance of positive 
definiteness in this setting, but do not explain how their algorithm handles non-positive definite samples.  
Again, both ignoring/eliminating them from consideration, and/or ‘fixing’ them with algorithms like that of 
Higham (2002), distort the distribution of the correlation matrix in non-trivial ways, and thus invalidate 
inferences based on it.  Finally, the sample correlation matrices generated by the evolutionary algorithms 
are not inferentially valid in themselves, i.e. each is not associated with a cdf probability.  Again, none of 
these limitations – subjective or ad hoc restriction of the sample space, ex post enforcement of positive 
definiteness, or lack of inferential validity – apply to NAbC. 

A sophisticated and more recent attempt at directly generating sample correlation matrices with stylized 
characteristics of real-world financial data is that of Kubiak et al. (2024).  They develop denoising 
diffusion probabilistic models (DDPMs) that, across multiple asset classes and market regimes, compare 
favorably against a number of alternate modern approaches, including CorrGAN of Marti (2019) and other 
GANs approaches,36 variational autoencoders, and more traditionally, block bootstraps.  Limitations of 
the approach are similar to those of the other ‘direct sampling’ algorithms: i. the matrices generated are 
not true correlation matrices, lacking unit diagonals and true asymmetry; ii. the matrices are not 
guaranteed to be positive definite, and when they are not, positive definiteness is enforced ex post using 

 
36 Kubiak et al. (2024) believe this is due to “the standard instability issues commonly associated with GAN training. (p.5)” 
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Higham (1988); and iii. the sampled matrices do not retain inferential validity, that is, they are not 
associated with a probability of occurrence (a cdf value), as described above. 

This is an interesting area of research and the work of these approaches, real limitations notwithstanding, 
is encouraging.  This is especially true because NAbC, which shares none of these limitations, can be 
applied to the realistic groups of samples that they generate to give them inferential validity (as long as 
the sample distribution is not distorted).  If researchers can find a way for these algorithms to generate 
true correlation matrices and automatically enforce positive definiteness ex ante, or convincingly prove 
that deviations from either are truly numerically de minimis along any dimension of analysis (which 
certainly has not been done to date), NAbC can be applied to their samples to provide inferential validity, 
that is, to associate a cdf value with each and every sample matrix generated so that the distribution can 
be used inferentially.  Again, the starting point for NAbC’s application is the known or well-estimated 
dependence matrix, and the known or well-estimated data generating mechanism (in these cases, the 
matrix generating mechanism), and these methods provide both (again, as long as the samples are 
representative of the true distribution).  But until these two ‘fixes’ can be applied (i.e. use only non-‘fixed’ 
matrices for which positive definiteness always holds ex ante), with proof that this truly has been 
achieved numerically, if not analytically, real inferential challenges will remain as obstacles for this path 
of ‘direct matrix simulation’ research.   

It also is notable that none of this work has demonstrated that generating samples of correlation 
matrices by first generating synthetic returns data that have all of the empirical, stylized characteristics of 
actual returns data, is not sufficient, if carefully done, to generate the desired correlation sample 
matrices (even if not based on historically realized data, but rather, for plausible future scenarios).  This 
connection needs to be established, mathematically and explicitly, because in reality the sample 
matrices are only and exclusively based on the sample returns, and without mathematically defining the 
path from the returns data to the stylized sample matrices, something is missing, if not wrongly specified, 
on one end or the other.  It is not that we cannot or should not jump right to directly sampling the 
correlation matrix per se; only that the connection between all of the stylized characteristics of the 
correlation matrix, and those of the returns data on which it is based, needs to be rigorously established 
if we are to have real insight into the mechanics, provably appropriate simulations, and distribution-
based inferences (if not causal drivers) of the former.  This connection, in fact, likely holds the key to 
solving at least two of the three problems these methods face: i. the matrices generated are not true 
correlation matrices, lacking unit diagonals and true asymmetry; and ii. the matrices are not guaranteed 
to be positive definite. 

In the absence of an explanation as to why it is not preferable to start with the returns data itself (aside 
from computational considerations), I hypothesize that part of the motivation of taking the ‘direct 
simulation’ route, even if not explicitly stated, is the right-minded desire to separate and isolate the 
distribution of the correlation/dependence matrix from other characteristics of the distribution of the 
returns data.  And this is exactly what NAbC does, but it does so while managing to preserve inferential 
validity (not to mention valid matrices).  In some cases, it does this fully analytically, as I show in the next 
section.  I start with a narrow but foundational special case, which provides the fully analytical result, and 
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then expand NAbC’s application to very general conditions, because the first provides a useful referential 
baseline for understanding the mechanics of the latter. 

 

4.b. NAbC: Pearson’s Correlation, the Gaussian Identity Matrix 

4.b.i. Correlations to Angles, Angles to Correlations 

I continue with Pearson’s for the first derivation and implementation of NAbC, and the data and 
correlation structure I initially presume is Gaussian data under no correlation: that is, Pearson correlation 
values of zero off the diagonal of the matrix as below. 

identity matrix =  for p = 4 assets 

The key to the NAbC approach rests in its use of the spherical ANGLE, 𝛉 , between the two mean-
centered data vectors of X and Y, as opposed to directly and only using of the values of the correlations 
themselves.  As mentioned above, using angles to understand the distribution of Pearson’s goes back at 
least to Fisher (1915), and it turns out to be a much more general framework applicable to any 
dependence measure whose all-pairwise matrix is positive definite, not just Pearson’s.  But to start with 
Pearson’s, for a single pair of variables, providing a single bivariate correlation value, the relationship 
between angle value and correlation value is most readily seen in the widely known “cosine similarity,” 
where the cosine of the angle equals the inner product divided by the product of the two vectors’ 
(Euclidean) norms as in (16), which I show again below for the reader’s convenience. 
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If a portfolio has p assets, the number of its pairwise relationships is npr=p(p-1)/2.  For all these npr 
relationships, the matrix analogue to (16), as long as the matrix is symmetric positive definite,37 is well 
established in the literature (Joarder and Ali, 1992, Pinheiro and Bates, 1996, Rebonato and Jackel, 2000, 
Rapisarda et al., 2007, Pouramadi and Wang, 2015, and Cordoba et al., 2018) and shown below, 
formulaically in (20)-(22) and in computer code (SAS/IML) in Table A.  The steps for translating between 
correlations and angles, in both directions, are straightforward and shown in A.-C. below. 

A. estimate the correlation matrix from sample data 

 
37 Note again that this is true not only for Pearson’s, but also for all relevant (i.e. positive definite) dependence measures in this 
setting, as will be discussed below. 
 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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B. obtain the Cholesky factorization of the correlation matrix 
C. use inverse trigonometric and trigonometric functions on B. to obtain corresponding spherical angles 

and in reverse: 

C. start with a matrix of spherical angles 
B. apply trigonometric functions to obtain the Cholesky factorization  
A. multiply B. by its transpose to obtain the corresponding correlation matrix 
 
(see Rebonato & Jaeckel, 2000, Rapisarda et al., 2007, and Pourahmadi & Wang, 2015, but note a typo in 
the formula in Pourahmadi & Wang, 2015, for the first 3 steps) 

Central to this correlation-angle translation mechanism is obtaining the Cholesky factor of the 
correlation/dependence matrix, which is usually a built-in function in most statistical and mathematical 
software.  The relevant formulae are included below for completeness.   

(20) A correlation matrix R will be real, symmetric positive-definite,38 so the unique matrix B that satisfies  
TR BB= where B is a lower triangular matrix (with real and positive diagonal entries), and TB is its 

transpose, is the Cholesky factorization of R.  Formulaically, B’s entries are as follows: 

( )
1

2

, , ,

1

j

j j j j j k

k

B R B
−

=

=  −
,     

1

, , , ,

1,

1
 for 

j

i j i j i k j k

kj j

B R B B i j
B

−

=

 
= −  

 


 

The Cholesky factor can be viewed as a matrix analog to the square root of a scalar, because like a square 
root the product of it and its transpose yields the original matrix.  Importantly, the Cholesky factor places 
us on the UNIT hyper-(hemi)sphere (where scale does not matter) because the sum of the squares of its 
rows always equals one.  Next, we recursively apply inverse trigonometric and trigonometric functions to 
each cell of the Cholesky factor to obtain each cell’s angle value per (21); or in reverse, we obtain a 
correlation/dependence value from trigonometric functions applied to each cell’s angle value per (22) 
(see both Joarder & Ali, 1992, and Rapisarda et al., 2007, for meticulous derivations of these formulas).  
Note that this relationship is one-to-one, with a unique correlation/dependence matrix yielding a unique 
angles matrix, and vice versa. 

 
38 Semi-positive definiteness includes the case of eigenvalues exactly equal to zero, which I largely ignore herein as a border 
case relevant mainly for textbook examples since returns would have to exhibit perfect linear dependence for an eigenvalue to 
be exactly zero. 
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(21) For R, a p x p correlation matrix, 
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 where  is the Cholesky factor of  andtR BB B R=  
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( ),for  angles 0, .i ji j   
 

To obtain an individual angle ,i j , we have:39

( ) ( )
1

,1 ,1 , , ,

1
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(22) To obtain an individual correlation, ,i jr , we have, simply from TR BB= :

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

, ,1 ,1 , , , , , , ,

2 1 1

cos cos cos cos sin sin cos sin sin   for 1
i k i

i j i j i k j k i l j l j i i l j l

k l l

r i j n        
− − −

= = =

= + +     
 

SAS/IML code translating correlations to angles and angles to correlations is shown in Table A below. 

The above all is well-established and straightforward,40 and demonstrates, as we know intuitively, that 
scale does not (and should not) matter when it comes to dependence measures;41 again, in this 

 
39 Note that as shown in Madar (2015), a similar recursive relationship exists between partial correlations, and Madar (2015) 
generalizes this result beyond Pearson’s to any positive definite matrix. 
 
40 Reliance on spherical angles and hypersphere parameterizations is increasingly common in quantitative finance (see for 
some examples Li, Q., 2018; Helton, 2020; Golts & Jones, 2009; Zhang, 2022; Saxena et al., 2023; and Zhang & Yang, 2023), in 
large part due to its scale invariance: it has even been used to define entire financial markets (see Kim and Lee, 2016).  
 
41 Scale invariance is proved and widely cited for Pearson’s, Kendall’s, and Spearman’s (see Xu et al., 2013, and Schreyer et al., 
2017 for examples). 
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setting, this is because geometrically, the Cholesky factor places us on the UNIT hyper-(hemi)sphere.  
Importantly, the Cholesky factor also ensures that sampling based directly on the resulting angles will 
yield only positive definite matrices, as the Cholesky factor remains undefined otherwise.  This 
automatic enforcement of positive definiteness makes this approach much more efficient than 
others that require ex post verification of positive definiteness, and subsequent resampling or 
enforcement when this requirement is violated (examples of this, discussed above, include Makalic & 
Schmidt, 2018; Cordoba et al. 2018; Marti, 2019; Papenbrock et al., 2021; and Kubiak et al., 2024).  This  

TABLE A:  

 

inefficiency grows very rapidly with the size of the matrix/portfolio, as shown in the ratio below in (23) (see 
Bohn and Hornik, 2024, and Pourahmadi & Wang, 2015).   
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Even for relatively small matrices of dimension p=25, the odds of successfully randomly generating a 
single valid positive definite correlation matrix, by uniformly sampling the off-diagonal correlation values 
themselves across values ranging from –1.0 to 1.0, are less then 2 in 10 quadrillion, leading to 
prohibitively inefficient sampling.  Consequently, even when sampling-rejection algorithms achieve some 
efficiency gains, realistically the sampling approach in this setting should possess automatic 
enforcement of positive definiteness, ex ante.  Conceptually, an imperfect but apt analogy is to a rubik’s 
cube: the colored stickers on the cube cannot simply be peeled off and repasted, even some of the 
times, to solve the cube.  The valid solution must be obtained by (always) following the rules governing 
shifts in the cube, and every move of each of the small cubes (correlation cells) affects the positions of 
many of the other cubes (correlation cells), not just the one we need to reposition.  Similarly with 
sampling the correlation/dependence matrix: converting to the Cholesky factor (en)forces positive 
definiteness by forcing the matrix onto the UNIT hyper-(hemi)sphere, where we can subsequently use the 
distributions of the angles to perturb it and obtain, after re-translation, the distribution of the original 
correlation/dependence matrix, without violating positive definiteness.  This is done simply by following 
steps A., B., and C., and C., B., and A., above.  Importantly, aside from efficiency issues, this avoids 
distortion of the distribution of these samples via ex post enforcements of positive definiteness using 
algorithms like Higham (2002), and thus preserves inferential validity. 

Another crucial characteristic of these angles is that they are random variables whose multivariate 
relationship is one of independence (see Pourahmadi and Wang, 2016; Ghosh et al., 2021; Rapisarda et 
al., 2007; Tsay and Pourahmadi, 2017; and Zhang et al., 2015).42  This is critically important for practical 
usage as it enables the straightforward construction of the multivariate distribution of a matrix of angles, 
which is the more important objective here (vs merely sampling) and essential for the application of 
NAbC below. 

Finally and most critically, the above demonstrates that the angles between pairwise data vectors 
contain ALL the information that exists regarding dependence between the two variables because 
the only information we lose by translating to the unit hyper(hemi-)sphere is scale (see Fernandez-Duren 
& Gregorio-Dominguez, 2023, and Zhang & Songshan, 2023, as well as Opdyke, 2022).  This will be 
covered more extensively below. 

So with all this in mind we proceed with the use of the angles as described and defined above.43  The goal 
is to use the angles as the basis for 1. sample generation of the correlation/dependence matrix; and more 
importantly, 2. definition of the multivariate distribution of the correlation/dependence matrix. 

 

 
42 This independence is well established in the literature.  Zhang et al. (2015) (supplementary material) and Rapisarda et al. 
(2007) use a geometric interpretation of the correlation matrix, based on (orthogonal) Givens rotations, to explain in detail the 
relationship between correlations and angles as well as why the angles distributions are multivariate independent. 
 
43 Note that even for estimation, the spherical (angles) parameterization of the covariance (correlation) matrix is a preferred 
choice.  Per Pinheiro and Bates (1996): “Of the five parameterizations considered here, the spherical parameterization 
presents the best combination of performance and statistical interpretability of individual parameters.” 
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4.b.ii. Fully Analytic Angles Density, and Efficient Sample Generation 

Once we have the matrix of angles (per (21) and Table A above), one angle for each value in the all-
pairwise correlation/dependence measure matrix, we use the well-established finding that, to sample 
uniformly from the space of positive definite matrices, the probability density function (pdf) must be 
proportional to the determinant of the Jacobian of the Cholesky factor as in (24) (see Cordoba, 2018, 
Pourahmadi & Wang, 2015, and Lewandowski et al., 2009).   

(24) ( )
1

1

det 2   where  is the Cholesky factorization of correlation matrix 
p

p i t

ii

i

J U u U R UU
−

=

  = =     

We see directly from (24) that ( )sink x , suitably normalized in (25), satisfies this requirement (see 

Pourahmadi & Wang, 2015, and Makalic & Schmidt, 2018). 
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Although not explained in Makalic & Schmidt (2018), importantly note that k = #columns – column# (so 
for the first column of a p=10x10 matrix, k=9; for the second column, k=8, etc.). 

Beyond (25), however, we need both the cumulative distribution function (cdf) and its inverse, the 
quantile function, to make use of this density for sampling and other purposes.  The most widely used 
and straightforward method of sampling is inverse transform, whereby the values of a uniform random 
variate are passed to the quantile function to generate sampled values.  Yet regarding the cdf 
corresponding to (25) above, Makalic & Schmidt (2018) state, “Generating random numbers from this 
distribution is not straightforward as the corresponding cumulative density [sic] function, although 
available in closed form, is defined recursively and requires O(k) operations to evaluate. The nature of the 
cumulative density [sic] function makes any procedure based on inverse transform sampling 
computationally inefficient, especially for large k.” 

Fortunately, that turns out not to be the case, as Opdyke (2022, 2023, and 2024a) derived an analytic, 
non-recursive expression of the cdf below in (26): 
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As mentioned in a footnote above, the Gaussian hypergeometric function makes many interesting 
appearances in this setting, but it is admittedly cumbersome mathematically.  Yet Opdyke (2022, 2023, 
and 2024a) has shown that (26) can be simplified further, based on some arguably obscure 
hypergeometric identities shown in (27) below: 

(27) 

  ( ) ( )2 1For 1 and 0 1 simultaneously, which holds in this setting, we have , ; ; ; ,1 ac a r F a b c r B r a b a r= +   = −  
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11

0

where ; , 1  = the incomplete beta function

r
baB r a b u u du
−−= −  (see DLMF, 2024) 

In addition we have 
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( ) ( ); , ( ; , ) ,BetaB r a b F r a b B a b=    (see Weisstein, E., 2024a and 2024b) 

Combining terms we have 
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Recognizing that the complete Beta function is the inverse of the normalization factor of c(k) for these 
values, their product equals 1 and cancels, as do the two cosine terms, and we obtain the following 
signed beta cdf: 
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And now, with this straightforward, fully analytic, non-recursive cdf, we can obtain a straightforward, fully 
analytic quantile function of the angle distribution in (28): 
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( )Let  Pr .  Then for ,

2
p x X x


=  

 



JD Opdyke, Chief Analytics Officer                 Page 43 of 91                                Correlation and Beyond 
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We must reflect the symmetric angle density for p≥0.5, so we have 
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Importantly, although often ignored in the sample-generation literature (see, for example, Makalic & 
Schmidt, 2018), note that properly adjusting for sample size, n, and degrees of freedom gives 

# 2k k n cols + − − , so consequently, #  2k n column= − − .44 

So now from (28) above we have for the angles distribution, under the Gaussian identity matrix, for the 
first time together, the pdf, cdf, and quantile function in (29): 
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44 So notably, the angles distributions vary systematically based on their (column) position in the matrix, even though the 
distributions of the correlations themselves do not, as is discussed in later sections. 
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Apparently the first (and only other) presentation of this quantile function result comes from an 
anonymous blog post in March, 2018, although it was obtained via a different derivation, which serves to 
further validate the result.45 

The above (29) now provides a fully analytic solution,46 and in fact is so straightforward as to be readily 
implemented in a spreadsheet, and one is provided for download via the link below. 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-
Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-
24.xlsx 

So contrary to the assertions of Makalic & Schmidt (2018), the straightforward approach of inverse 
transform sampling can be used in this setting, for this narrow case, to very efficiently generate samples 
from the correlation matrix.  And in fact, this is the most efficient way to sample it.  Rubsamen (2023) has 
compared Makalic and Schmidt (2018) to the above method and obtained over 30% decrease in runtime 
when using inverse transform sampling via (29).  But of course, these results are instantaneous when 
used analytically (for example via the linked spreadsheet) as opposed to using inverse transform 
sampling, if, for example, only p-values and/or confidence intervals are needed, and generating many 
samples is not. 

 
45 See Xi’an, March, 2018 (https://stats.stackexchange.com/questions/331253/draw-n-dimensional-uniform-sample-from-a-
unit-n-1-sphere-defined-by-n-1-dime/331850#331850  
and  https://xianblog.wordpress.com/2018/03/08/uniform-on-the-sphere-or-not/ ).  In the interest of proper attribution, a 
reference on the website to the book “The Bayesian Choice” hints that the Xi’an pseudonym is Christian Robert, a professor of 
Statistics at Université Paris Dauphine (PSL), Paris, France, since 2000 (https://stats.stackexchange.com/users/7224/xian). 
 
46 Note that I use the term ‘analytic’ as opposed to ‘closed-form’ because I am unaware of a closed-form algorithm for the 
inverse cdf of the beta distribution (see Sharma and Chakrabarty, 2017, and Askitis, 2017).  However, for all practical purposes 
this is essentially a semantic distinction since this quantile function is hard-coded into all major statistical / econometric / 
mathematical programming languages. 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
https://stats.stackexchange.com/questions/331253/draw-n-dimensional-uniform-sample-from-a-unit-n-1-sphere-defined-by-n-1-dime/331850#331850
https://stats.stackexchange.com/questions/331253/draw-n-dimensional-uniform-sample-from-a-unit-n-1-sphere-defined-by-n-1-dime/331850#331850
https://xianblog.wordpress.com/2018/03/08/uniform-on-the-sphere-or-not/
https://stats.stackexchange.com/users/7224/xian
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So sampling arguably is the less important of our two goals, because with a fully analytic finite-sample 
distribution, we can define, exactly for a given sample size, the p-value of a given cell, and the confidence 
interval of a given cell.  The one-sided p-value simply is the cdf value for the lower tail, or [1 – (cdf value)] 
for the upper tail (30), and due to this pdf’s symmetry, the two-sided p-value is simply two times either 
one-sided value.  Correspondingly, the confidence interval for the critical value alpha is based on the 
quantile function as in (31). 

(30) one-sided p-value = ( );XF x k  or ( )1 ;XF x k−  where k = n – column# – 2;  

         two-sided p-value = 2 x one-sided p-value 

(31) ( )1 2;F k−  and ( )1 1 2;F k− −  where, for a 95% confidence interval for example, α = 0.05 

Notably, because the angles distributions are independent, the density of the entire matrix is simply the 
product of the densities of all the cells.  This means we can readily define the p-value and confidence 
intervals of the entire matrix such that they are analytically consistent with those of the cells, because 
they are determined based directly on the cell level p-values and confidence intervals, respectively, as 
shown below. 

 

4.b.iii. Matrix-level p-values and Confidence Intervals 

As mentioned above, a key characteristic of the angles is that they are independent random variables, 
which makes defining their multivariate distribution straightforward: it is simply the product of all the 
angles’ pdf’s.  But what does this mean for the p-value and confidence intervals for the entire matrix?  
Recall that a p-value is simply the probability of observing, based on a given data sample, a statistic value 
at least as extreme as what is observed, assuming the null hypothesis is true.  The p-values defined 
above for each correlation/dependence cell are the probabilities of observing, for a given sample, angle 
values as large as what is observed assuming the null hypothesis is true.  The fact that the angles are 
independent random variables, i.e. each is independent vis-à-vis all the other angles, makes obtaining 
the p-value for the entire matrix very straightforward.  Note that the probability that none of the 
correlation/dependence cells are as extreme as what was observed is simply the product of one minus 
every p-value, because they are independent.  So the probability that one or more of the  
correlation/dependence cells are as extreme or more extreme than what was observed is simply one 
minus this value, shown in (32) below, and this is the p-value for the entire matrix.   

(32) ( )
( )1 2

1

matrix (2-sided)  1 1 -
p p

i

i

pvalue p value
−

=

 
= − − 
 

    where - ip value  is the 2-sided p-value. 

Another way of conceptualizing this is that if the null hypothesis of just one of the matrix cells is not true, 
then the null hypothesis for the entire matrix is not true, and this is what the matrix-level p-value 
measures: the probability that at least one of the cell-level null hypotheses is not true.  If instead of p-
values we were using critical values in p(p-1)/2 hypothesis tests, this would be exactly consistent with 
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controlling the familywise error rate (FWER) of the joint hypothesis including all the cells of the all-
pairwise matrix.47  And just as no other approach to estimating FWER would increase statistical power in 
this case due to the independence of the angles distributions,48 no other definition of the matrix-level p-
value will have greater power49 for the same reason: independence means there is no correlation 
structure to exploit to increase power.50 

Similarly, calculation of the confidence interval for the entire matrix (33) is essentially the same as that of 
the p-value, but of course it is divided in half to account for each tail, and the root of the critical values is 
taken, rather than the product.  Otherwise, the calculations are identical to obtain the critical alphas for 
these ‘simultaneous confidence intervals.’ 

(33)  
( )( )( )1 1 2

1 1 2
p p

crit simult LOW 
−  

− − = − −   and 1crit simult HIGH crit simult LOW − − − −= −   

These critical alphas, when inserted in the quantile function (28) and applied to every cell, provide the 
two correlation matrices that define and capture, say, (1-alpha)=(1-0.05)=95% of randomly sampled 
matrices under the null hypothesis, which in this case is the identity matrix.  Again, it is the independence 
of the angles that makes these simultaneous confidence intervals very straightforward to calculate.   

Importantly, again note that because we derived the quantile (inverse cdf) function in (28) and (29) above, 
we can go in either direction regarding these results: we can specify a correlation matrix and, under the 
null hypothesis of the identity matrix, obtain its p-values, both for the individual cells and the entire 
matrix, simultaneously.  We also can specify a matrix of cdf values and obtain its corresponding 
correlation matrix, which is extremely useful and straightforward when constructing both stress and 

 
47 Note that this approach has been used in the literature for addressing very closely related problems (see Fang et al., 2024).  
 
48 Other approaches for calculating the FWER that rely on, for example, resampling methods (see Westfall and Young, 1993, 
and Romano and Wolf, 2016) exploit dependence structure to increase power; here, under independence, they would provide 
no power gain over the analogue to (32) because there is no dependence structure for them to exploit.   
 
49 A maximal power p-value is the lowest p-value attainable for a given power level, significance level (alpha), and effect size. 
 
50 Note that while (32) provides the maximal power p-value for this matrix-level null hypothesis, other methods (e.g. False 
Discovery Rate (FDR) methods; see Benjamini & Hochberg, 1995) could provide a more powerful test of the joint hypothesis 
of “no change” to any of the cells of the matrix.  However, FDR and related methods will not provide a valid p-value here, which 
is important for providing analytic consistency across levels.  Also, the arguable conservatism of (32) relative to FDR-type 
methods for such a test is less of a concern here than it would be in some other settings because NAbC also provides every p-
value for every cell of the matrix, which, of course, is how (32) is calculated.  If one is concerned that the p-value of the matrix 
might be too conservative in cases where individual cells or groups of cells of particular interest truly are changing, one can 
simply examine the cell-level p-values of interest: if these are highly statistically significant even when (32) may not be, such 
findings could serve as sufficient empirical evidence to justify decision making, or at the very least, further exploratory 
research.  In this way NAbC allows us to have our cake and eat it too: we not only have a valid and most powerful matrix-level 
p-value in (32), but also straightforward, transparent, analytically consistent attribution analysis at the cell level.  This arguably 
would not be possible with a more complex multivariate measure of dependence outside the framework of the all-pairwise 
matrix. 
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reverse stress scenarios.  Finally, we can use simultaneous confidence intervals to obtain the two 
correlation matrices that form the matrix-level confidence interval.   

Note that all these calculations are included in the downloadable spreadsheet (link provided above), with 
visible formulae corresponding to each step of these calculations for full transparency.  In the next 
section below I expand these results for Pearson’s to apply to all data conditions, and all values of the 
null hypothesis (i.e. any values for the matrix, not just the identity matrix). 

 

4.c. NAbC: Pearson’s Correlation, Real-World Financial Data, Any Matrix Values 

Currently, the extant literature does not provide analytic forms for the angles distributions under general 
conditions.  Deriving these appears to be a non-trivial problem.  Spectral (eigenvalue) distributions, 
which many researchers turn to in this setting, have been shown to vary dramatically when data is 
characterized by different degrees of heavy-tailedness (see Burda et al., 2004, Burda et al., 2006, 
Akemann et al., 2009; Abul-Magd et al., 2009, Bouchaud & Potters, 2015, Martin & Mahoney, 2018; Heiny 
and Yao, 2022, and Opdyke, 2022), as well as by different degrees of serial correlation (see Burda et al., 
2004, 2011, Hisakado and Kaneko, 2023, and Opdyke, 2022), and the literature provides no general 
analytic form under general, real-world financial data conditions – certainly nothing that is analogous to 
convergence to the Marchenko-Pastur distribution under iid conditions (see Marchenko and Pastur, 
1967).51  If angles distributions are of similar complexity, then deriving their analytic form under general 
conditions, if possible, currently appears to be a non-trivial, unsolved problem. 

However, this should not be (and does not need to be) a showstopper for our purposes, in part because 
angles distributions have many characteristics that make them useful here generally, and more useful 
specifically than spectral distributions, by multiple criteria: empirically, distributionally, and structurally.   

Empirically: If an angle distribution approaches degeneracy, most of its values typically will approach 0 or 
𝛑.  But the relevant trigonometric functions (sin and cos) of these values are stable, and will simply 

approach -1, 0, or 1.  This makes TR BB= a relatively stable calculation empirically, even if it produces an 
R matrix that is approaching non-positive definiteness (NPD).  In contrast, eigenvalue/vector estimations 
are more numerically involved compared to the application of simple trigonometric functions, and this, 
combined with the fact that empirically, their upper bound is not well-bounded (in the general case),52 
makes their computation comparatively less numerically stable as matrices approach NPD. 

 
51 Note that some exceptions to convergence to this celebrated distribution do exist (see Li and Yao (2018), Hisakado and 
Kaneko (2023), Heiny and Yao (2022), and Maltsev and Malysheva (2024) for examples). 
 
52 Even though the largest eigenvalue is known to follow the Tracy-Widom distribution under certain sets of conditions, under 
others it can diverge, with unbounded support (see for example Li, 2025).  Even when the latter cases do not hold 
mathematically, in practice, empirically, the largest eigenvalue can become so large that it is essentially unbounded. 
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Distributionally: As shown graphically below under challenging, real-world financial data conditions, the 
angles distributions are relatively “well behaved,” both in the general sense and relative to spectral 

distributions.  They are relatively smooth and typically unimodal, and clearly bounded on ( )0,  .  

Spectral distributions, based on the same data, very often are spikey,53 multimodal, and for practical 
purposes, empirically unbounded (at least in higher dimensions), all of which translates into larger 
variances and less tail accuracy.  Simply put, they typically are much more complex and challenging to 
estimate precisely and accurately compared to individual angles distributions for a given 
correlation/dependence matrix R under real-world financial data.  At least part of the reason for this is the 
much larger number of cells that need to be estimated compared to the relatively few eigenvalues that 
need to be estimated, which leads to more structural stability of the former when all are combined into a 
unified, estimated matrix. 

Structurally: Aggregation level becomes relevant and important here.  For a given correlation/dependence 
matrix R there are many more angles than eigenvalues (i.e. p(p-1)/2 cells vs p eigenvalues, for a factor of 
(p-1)/2 more).  By capturing the pairwise dependence structures of p(p-1)/2 cells using only p 
eigenvalues, we unavoidably increase the complexity of each eigenvalue distribution, at least compared 
to those of the angles which can more accurately reflect each pairwise association.  Consequently, as a 
matrix approaches singularity (NPD), which arguably is the rule rather than the exception for non-small 
investment portfolios, a much smaller proportion of angles distributions will approach degeneracy (i.e. 
minimum/maximum values of zero and 𝛑) than is true for eigenvalue distributions (where more values 
will wrongly fall below zero).  The overall construction, then, of the correlation matrix based on angle 

estimates via TR BB= generally will remain much more stable than one based on eigenvalue estimates 

using a decomposition of 1R VΛV −= where V is a matrix with column eigenvectors and 𝛬 is a diagonal 
matrix of the corresponding eigenvalues. 

All of this adds up to a more robust and granular basis for inference and analysis when relying on angles 
distributions as opposed to spectral distributions.  The underlying reason for this is the fact that spectral 
distributions simply are at the wrong level of aggregation for these purposes: they remain at the (higher) 
level of the p assets of a portfolio – NOT at the granular level of the p(p-1)/2 pairwise associations of that 
portfolio, which is where both the angles distributions, and those of the correlations/dependence 
measure values themselves, lie.  Consequently, while potentially very useful for things like portfolio 
factor analysis, spectral analysis simply is too blunt a tool for our purposes here.  We need to be able to 
make inferences and monitor processes and conduct (reverse) scenario analyses and customized stress 
tests on ALL aspects of the dependence structure measured by the all-pairwise correlation/dependence 

 
53 In fact, one of the most commonly encountered covariance (correlation) matrices under real world financial data conditions 
is the spiked matrix (see Johnstone, 2001), where one or few eigenvalues dominate and the majority of eigenvalues are close 
to zero, i.e. not reliably estimated.  This further demonstrates that spectral approaches are far too limited and limiting to 
effectively solve this problem under real-world conditions. 
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matrix, at the granular level at which it is defined.  The specific need for this in scenario and reverse 
scenario analyses is covered in more detail below. 

So given the useful characteristics of the angles distributions, not to mention the fact that they remain at 
the right level of aggregation for granular analysis of the correlation/dependence matrix, we are able to 
proceed WITHOUT their analytic derivation.  Rather, we can use a time-tested nonparametric approach, 
such as kernel estimation, to reliably define them.  All this requires is a single simulation (say, N=10,000) 
based on the known or well-estimated values of the correlation/dependence matrix, and its known or 
well-estimated data generating mechanism.  These are the two stated requirements for the application of 
NAbC under general conditions.  Then, after translating all N simulated correlation matrices to N 
matrices of angles, we fit a kernel to each empirical angle distribution, i.e. the empirical distribution of 
each angle for each cell of the matrix.  We now have not only the distributions of all the individual angles, 
but also the multivariate distribution of the matrix, which is just the product of all the individual 
distributions due to their independence.  Note that this goes in both directions: we can perform ‘look-
ups’ on the empirically defined distribution to obtain the cdf value(s) corresponding to particular angle 
value(s), or use cdf value(s) to ‘look up’ corresponding angle (quantile) value(s).  The subsequent kernel 
fitting smooths this empirical density to all (continuous) values, and sampling readily can be performed 
using these kernel densities.  This process is described step by step as in Section 2.c (but with more 
brevity here as the steps are explained in more detail above). 

5 Steps for Obtaining Angles Distributions 

1. Simulate N samples (N=10,000 typically is sufficient) based on the dependence matrix and the data 
generating mechanism (each can either be specified/known, or well estimated). 

2. Calculate the corresponding N all-pairwise dependence matrices, and their Cholesky factorizations, 
and transform each of these factorizations into a lower triangle matrix of angles. 

3. Fit a kernel density to each cell of the matrix of angles based on the N values obtained from the N 
samples in 2. 

4. Generate N samples based on the kernel densities in 3.54 
5. Convert each of the N samples from 4. back to a re-parameterized Cholesky factorization, and then 

multiply it by its transpose to obtain a set of N validly sampled dependence matrices.  Positive 
definiteness is enforced automatically as the Cholesky factor places us on the unit hyper-
hemisphere.  All sample generation hereafter uses just 4. and 5. 
 

The samples of correlation/dependence measure matrices from 5. will follow the same distribution as 
those generated in 2., but after the kernel densities are fit once in 3., generating samples based on 4. and 
5. is orders of magnitude faster than relying on direct simulations in steps 1. and 2.  So one simulation 
gives us the distribution of each and every angle, corresponding to each and every 

 
54 Algorithms for sample generation based on commonly used kernels (e.g. the Gaussian and Epanechnikov) are widely known.  
An example of the latter is simply the median of three uniform random variates (see Qin and Wei-Min, 2024). 
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correlation/dependence cell.  And now going forward using 4.-5., rather than 1. and 2., allows for correct 
probabilistic inference, both at the cell level and at the matrix level, due to the independence of the 
angles distributions (remember the correlations themselves are NOT independent, so 1. and 2. provide 
no direct inferential capability).  This reliance on the angles, and their subsequent transformation to 
correlations, allows us to isolate specifically the distribution of the entire correlation/dependence matrix, 
for probabilistic inference, without touching any other distributional aspect of the data, which is the point 
of the methodology.  Of course, either a direct data simulation (step 1. above) or a cavalier ‘bootstrap’ of 
the matrices calculated based on step 1. fails at this objective, because the non-independence of the 
correlation cells undermines the validity of any empirically-based inference based on simple metrics 
(e.g. distances) across the group of sample matrices.  In other words, a group of sample correlation 
matrices based on simulated data does not provide any inferential capabilities about the correlations, 
but a group of matrices based on simulated angles does. 

So this framework is essentially identical to that for the specific case of the Gaussian identity matrix, with 
the only difference being it is based on nonparametrically defined, as opposed to parametrically defined, 
angles distributions.  Before covering implementation details below, I show some examples of graphs of 
the angles distributions and the corresponding spectral distribution under challenging, simulated 
financial returns data (these are all generated based on the 5 Steps above).  The multivariate returns 
distribution of the portfolio is generated based on the t-copula of Church (2012), with p=5 assets, varying 
degrees of heavy-tailedness (df=3, 4, 5, 6, 7), skewness (asymmetry parameter=1, 0.6, 0, -0.6, -1), non-
stationarity (standard deviation=3σ, σ/3, and σ, each with n/3 observations), and serial correlation (AR1=-
0.25, 0, 0.25, 0.50, 0.75), with a block correlation structure shown in (34) below and n=126 observations 
for a half year of daily returns.55  The spectral distribution is compared against Marchenko-Pastur as a 
referential baseline that assumes independence (and identically distributed asset returns).   

 

(34)    

 
Several points are worth noting and reemphasizing based on these graphs.  First, the graphs of the angles 
distributions, all of which are based on the 5 Steps above, contain three densities: A. one based on 
angles perturbation (i.e. sampling from the fitted kernel) as described above in steps 3.-4., B. one based 
on direct data simulations (steps 1.-2.), and C. the analytical density under the (Gaussian) identity matrix 
as a comparative baseline.  Note that the only reason I include B. is to demonstrate the validity of A., and 

 
55 Note that this is only approximately Church’s (2012) copula, which incorporates varying degrees of freedom (heavy-
tailedness) and asymmetry, because I also impose ex post serial correlation and non-stationarity on the data (and 
subsequently rescale the marginal densities). 
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as expected, the angles distributions from A. and B. are empirically identical (with A. being orders of 
magnitude faster and more computationally efficient, not to mention providing a basis for valid 
inference).  The spectral distributions based on the samples generated in both A. and B. also are 
identical, as are a wide range of additional aggregated metrics not presented herein (e.g. various norms, 
VaR-based economic capital, and ‘generalized entropy’ as described in a later section below).  This  

Graph 1a:  
Spectral Distribution Based on i. NAbC Angles Kernel (Step 4) vs. ii. Data Simulations (samples from 
Step 2) vs. Marchenko Pastur Distribution 
 

 
 

Graphs 1-10:  
Angles Distributions Based on i. NAbC Angles Kernel (Step 4) vs. ii. Data Simulations (samples from 
Step 2) vs. iii. Gaussian Identity Matrix 
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empirically validates that the angles/kernel perturbation approach (steps 3.-5.) is an effective and correct 
method for isolating and generating the distribution of the correlation/dependence matrix, and unlike 



JD Opdyke, Chief Analytics Officer                 Page 53 of 91                                Correlation and Beyond 
 

steps 1. and 2., one that preserves inferential capabilities.  In other words, these results empirically 
validate that the angles contain all extant information regarding dependence structure (see Fernandez-
Duren & Gregorio-Dominguez, 2023, and Zhang & Yang, 2023, as well as Opdyke, 2022). 

Second, note again that a nonparametric approach works in practice here at least in part because the 
angles distributions are ‘well behaved.’  Since they are relatively smooth, typically if not always unimodal, 
and well bounded, N=10,000 simulations typically suffices to provide a precise and accurate measure of 
their distributions.  Poorly behaved distributions that are very spikey, multi-modal, and essentially 
unbounded for all empirical, practical purposes could require numbers of simulations orders of 
magnitude larger.  If N=10,000,000 or even 1,000,000 for example, this approach could be 
computationally prohibitive in many cases for real-world-sized portfolios, which often exceed p=100 with 
p(p-1)/2=4,950 pairwise associations/cells. 

Finally, as described above, note the multi-modal and long tailed / high-upper-bounded nature of the 
spectral distribution for this portfolio compared to the angles distributions, where the biggest thing 
approaching an estimation challenge is a modest asymmetry.  But this speaks only to estimation issues.  
More notable is the fact that on a cell-by-cell basis, the angles distributions deviate materially i. not only 
from central values of 𝛑/2, and less dramatically from perfect symmetry when compared to their 
(analytic) distributions under the (Gaussian) identity matrix, but also ii. from each other!  Each angle’s 
distribution can vary quite notably compared to the other angles’ distributions, especially under smaller 
sample sizes.  There simply is no way that one spectral distribution for a matrix, or even p distributions for 
each eigenvalue individually and even if perfectly estimated, will be able to capture and reflect all the 
richness of dependence structure reflected here at the granular level of all the p(p-1)/2 pairwise cells.  
This remains true regardless of their use in this setting, whether for cell-level attribution analyses, 
granular scenario and reverse scenario analyses, cell-level intervention ‘what if’ analyses, or customized 
stress testing, let alone precise and correct inference at either the cell level OR the matrix level.  I now 
leave comparisons to spectral distributions behind56 to cover implementation issues below. 

 

4.c.i. Nonparametric Kernel Estimation 

Due to the bounded nature of the angles distributions on ( )0,  , the nonparametric kernel must be 

appropriately reflected at the boundary (see Silverman, 1986) via:

( )if 0 then ;if  then 2         −   − , which is asymptotically valid.   

 
56 Continued reliance on spectral approaches for this specific problem brings to mind a quotation attributed to John M. 
Keynes: “the difficulty lies not so much in developing new ideas as in escaping from old ones.” 
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As per the standard implementation, the kernel itself is defined as   

(35) ( ) ( ) ( )
1 1

1 1N N

h h i h i

i i

f K K h
N hN

    
= =

= − = −     with 

( ) ( )
2 2Gaussian: 1 2K e   −= 

,     
( ) ( ) ( )2Epanechnikov: 3 4 1 ,  1K   =  − 

. 
I have tested both the Gaussian and the Epanechnikov kernels extensively in this setting,57 along with 
three different bandwidth estimators, h, from Silverman (1986) and one from Hansen (2014), 

respectively: 1 5ˆ1.06h N −=   , 
1 50.79 IQRh N −=   , ( ) 1 5ˆ0.9 min IQR 1.34,h N −=   , and lastly, 

1 5ˆ2.34h N −=   for Epanechnikov only, where ̂ = sample standard deviation and IQR = sample 
interquartile range. 
 
As with virtually all kernel implementations, the choice of kernel matters less than the choice of 
bandwidth, although in this setting, across a broad range of data conditions and correlation/dependence 
values, the Epanechnikov kernel appears to perform slightly ‘better’ (i.e. with slightly less variance, thus 
providing slightly more statistical power) than the Gaussian, perhaps because its sharp bounds require 
reflection at the boundary less often than the Gaussian kernel (although reflection at the boundary is 
quite uncommon, even for ‘extreme’ dependence matrices).  The bandwidth that appears to perform best 

across wide-ranging conditions is ( ) 1 5ˆ0.9 min IQR 1.34,h N −=   .  Additionally, for larger matrices 

(e.g. p=100), bandwidths need to be tightened by multiplying h by a factor of 0.15.  When there are many 
cells (e.g. for p=100, #cells=p(p-1)/2=4,950) this tightening avoids a slight drift in metrics that are 
aggregated across all the cells (e.g. correlation matrix norms, spectral distributions, and LNP (a type of 
‘generalized entropy’ defined in a later section below)).  Multiplying by this factor for smaller matrices 
does not adversely affect the density estimation in any way, so this factor always is used.  For matrices 
much larger than p=100, a further tightening of this factor may be required, and this is readily determined 
by empirically comparing the distributions of these aggregated metrics under direct data simulation 
(steps 1. and 2.) vs. NAbC’s kernel-based sampling (steps 3., 4. and 5.). 

Once the kernels have been estimated and the angles distributions generated by perturbing/sampling 
based on those kernels, the p-values and confidence intervals for both the individual 
correlation/dependence cells and the entire correlation/dependence matrix are the same as those 
derived for the Gaussian identity matrix.  The only difference, aside from their now-nonparametric basis, 
is that the angles distributions are no longer symmetric by definition, as is true under the (Gaussian) 
identity matrix.  This can be seen in the Graphs 1-10 of the angles distributions provided above.  The p-
value calculation, however, remains very straightforward, and it requires just a bit of care to properly 
account for asymmetry.  The one-sided p-value remains simply as in (30), shown in (36) below: 

 
57 Note that the Epanechnikov kernel is used in very closely related problems in this setting (see Burda and Jarosz, 2022). 
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(36) one-sided p-value  = ( );XF x k  or ( )1 ;XF x k−  for lower and upper tails, respectively,  

             where k = n – column# – 2 

However, due to possible (probable) asymmetry, the two-sided p-value differs, and is not just two times 
the one-sided p-value as in (30), requiring first the calculation of the empirical mean correlation matrix 
from the simulations in step 2. of the five sampling steps above.  This mean correlation matrix is then 
translated into a matrix of angles, and we obtain the empirical cdf values corresponding to these “mean 
angles” with a “look-up” on the entire angles distributions generated in step 4.  These cdf’s will be close 
to 0.5 when the angles distributions are close to symmetry, and they will deviate from 0.5 under 
asymmetry, and will serve as the baseline off of which the two-sided p-values are calculated.  
Specifically, the difference between the cdf values of each of the angles of the specified correlation 
matrix being ‘tested,’ and those of the corresponding “mean angles,” defines the two-sided p-values, 
which are simply the sum of the probability in the tails BEYOND this difference.  Formulaically this is 
shown in (37): 

(37)    two-sided p-value = max[0, Mcdf – d] + max[0, 1 – (Mcdf + d)],  where 
                     d = abs(Mcdf – cdf), Mcdf = mean angle cdf, cdf = cdf of specified angle 
 
This usually results in summing both tails, but under notable asymmetry, sometimes only one tail is used.  
Below is a graphical example of both cases, where the cdf of the “mean angle” is 0.6 and the cdf of the 
relevant angle in the specified correlation matrix (i.e. the correlation matrix for which we are obtaining p-
values) is cdf=0.1 in the single-tail case (Graph 11) and cdf=0.85 in the double-tail case (Graph 12).  In the 
statistical sense, however, both cases remain two-sided p-values. 

 
 

Note that while cdf=0.1 is hardly more ‘extreme’ than cdf=0.85 in absolute terms, relative to the mean 
angle cdf=0.6, it is twice as ‘extreme,’ i.e. twice as far from the mean cdf=0.6 with a distance of 0.5 for 
Graph 11, but a distance of only 0.25 for Graph 12.  Moreover, the tail probability of Graph 11 (0.1) is only 
1/5 that of Graph 12 (0.5) (compare the red shaded areas).  This example demonstrates why asymmetry 
must be properly taken into account in this setting, but the two-sided p-value still remains a very 
straightforward calculation, and the “mean angles” matrix is used for additional, important purposes 
below, as discussed in Section 5. 
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Cell-level confidence intervals still are simply calculated as in (31), which automatically takes 
asymmetry into account as we are using the empirically fitted kernel.  This is identical to the same 
calculation under the (Gaussian) identity matrix (sans the known symmetry of the cdf).  And the matrix-
level p-value, again, is simply one minus the probability of observing the sample matrix that was 
observed, or one ‘less extreme,’ exactly as in (32).  This, again, is analogous to the definition of controlling 
the family-wise error rate (FWER) where all the cells of the matrix comprise the joint null hypothesis.  
Finally, just as under the (Gaussian) identity matrix, calculation of the confidence interval for the entire 
matrix remains (33) as previously.  

Importantly, again note that we can go in either direction regarding these results: we can specify a 
correlation/dependence matrix and, under the null hypothesis of the specified correlation matrix, obtain 
the p-values of an observed matrix, both for the individual cells and the entire matrix, simultaneously.  
We also have the matrix-level quantile function: we can specify a matrix of cdf values and obtain its 
corresponding, unique correlation/dependence matrix, which can be extremely useful and 
straightforward when constructing reverse (stress) scenarios.  Finally, we can use simultaneous 
confidence intervals to obtain the two correlation matrices that form the matrix level confidence interval.  
An example with all these results is shown in Section 6 below, but first I extend NAbC’s range of 
application beyond Pearson’s to all dependence measures with positive definite all-pairwise matrices. 

 

4.d. NAbC: Any (Positive Definite) Dependence Measure, Any Data, Any Matrix Values 

First, I reemphasize here that that the relationship between spherical angles and Pearson’s matrix shown 
in (21) and (22) above holds for any positive definite matrix (see Joarder and Ali, 1992, Pinheiro and Bates, 
1996; Rebonato and Jackel, 2000; Rapisarda et al., 2007; Pouramadi and Wang, 2015; Cordoba et al., 
2018; and Lan et al., 2020), and so applies to all other positive definite dependence measures discussed 
herein.  The Cholesky factor, defined in terms of these angles in (21) and (22), remains undefined under 
non-positive definiteness, and because NAbC relies on this formulation of the Cholesky factor, its 
application requires the positive definiteness of the matrix to which it is being applied.  As mentioned 
above, for long-established dependence measures like Pearson’s, Kendall’s, Spearman’s, and the tail 
dependence matrix, positive definiteness has been proven analytically (see Sabato, 2007, for the first 
three, and Embrechts et al., 2016, for the last).  But when analyzing their empirical results in any given 
simulation or estimation, positive definiteness always should be verified, since for matrices that 
approach non-positive definiteness (which is not uncommon for non-small financial portfolios), their 
corresponding sample-based empirical estimates can sometimes be non-positive definite due strictly to 
numerical issues. Consequently, verifying the positive definiteness of estimates of those measures for 
which analytical proofs have not (yet) been derived does not require any special treatment: best 
practices dictate that positive definiteness always is verified empirically for all sample-based estimates 
of these matrices, regardless of the dependence measure being used.  Notably, in the many millions of 
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simulations conducted when testing and developing NAbC, none of the ‘newer’ measures58 generated 
empirically non-positive definite estimates.  This admittedly is driven by the range of data conditions 
being examined, and so scientific caution remains warranted, and positive definiteness should never be 
presumed in the absence of analytical proof.  Yet the bottom line remains: as long as a measure’s matrix 
is positive definite, NAbC is applicable and will ‘work’ to provide inferentially valid simulated samples, 
and/or inferential statistics related to its sample-based estimate.  And all of the ‘newer’ measures tested 
herein always remained positive definite under a very broad range of challenging, real-world data 
conditions (see Opdyke, 2022, 2023, and 2024a). 

But to flip this script on this requirement of positive definiteness, one reasonably could argue that if a 
dependence measure was analytically shown to be non-positive definite, at least under relevant 
conditions, and/or its empirical estimates were non-positive definite more often than could be 
attributable solely to numeric considerations, then researchers and practitioners might want to question 
the wisdom of using it.  Non-positive definiteness also could be a function of unknown or mis-specified 
data conditions, such as perfect linear dependence unwittingly built into a simulation (although with 
actual market data, it could be a very useful flag for extreme multicollinearity).  Or non-positive 
definiteness perhaps could be due to a combination of the dependence measure used and the specific 
data conditions being examined.  Either way, the non-positive definite results could be serving as a 
correct and useful warning to avoid the dependence measure (and/or those simulated data conditions) 
altogether.  In such cases, the requirement of positive definiteness is less a limitation of a method like 
NAbC and more a proper boundary on the right measures and conditions under which such analyses 
should be conducted in the first place. 

On a separate but related note, the ranges of many of the ‘newer’ dependence measures (e.g. Szekely’s, 
Lancaster’s, and Chatterjee’s) are (0, 1) instead of (–1, 1) like the big 3, but operationally, implementing 
NAbC on these measures does not change, even as it relates to how we reflect at the boundary when 
fitting the nonparametric kernel.  This is because specific cells of the Cholesky factor can validly be 
negative, making the assignation in the last line of the “Correlations to Angles” code in Table A above 
sometimes assign an angle value slightly above 𝛑/2, even though 𝛑/2 corresponds to a measure value of 
zero.59  So this is a soft upper boundary in this case, even though the measure’s range of (0,1) typically is 

 
58 The ‘newer’ measures on which NAbC has been tested include most of those listed in the Introduction and Background 
section, such as Chatterjee’s correlation (both the asymmetric and symmetric versions), the ‘improved’ Chatterjee’s 
correlation of Xia et al. (2024) (both the asymmetric and symmetric versions), the combination of Chatterjee’s+Speaman’s due 
to Zhang (2024a) (both the asymmetric and symmetric versions), Szekely’s (2007) distance correlation, the asymmetric tail 
dependence measure due to Diedda et al. (2023), both the symmetric and asymmetric versions of Liu and Shang’s (2025) DDC 
method, and both Lancaster’s correlation and Lancaster’s linear correlation (see Holzmann and Klar, 2024).  Including the ‘big 
3’ and the tail dependence matrix (upper and lower tails counted separately), this makes a total of 19 dependence measures 
to which NAbC has been successfully applied. 
 
59 Note that angle values (which range from zero to 𝛑 on the hyper-hemisphere) decrease while dependence measure values 
increase, so a measure value of -1 corresponds to an angle value of 𝛑, a measure value of zero corresponds to an angle value 
of 𝛑/2, and a measure value of 1 corresponds to an angle value of zero (see Zhang et al., 2015 and Lu et al., 2019). 
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not.60  So when NAbC generates angle 𝛉, we continue to reflect based on: 

( )if 0 then ;if  then 2         −   − , since for measures with a (0,1) range, the upper bound of 𝛑 

will never be reached, and the lower bound of zero remains valid and hard.  So NAbC applies in exactly 
the same way, for all of these dependence measures, whether their range of values is (–1, 1) or (0, 1). 

Finally, again note that the condition of symmetric positive definiteness holds not only for all relevant 
dependence measures, as shown above, but also under all relevant real-world data conditions: that is, 
multivariate financial returns data whose marginal distributions typically are characterized by varying and 
different degrees of asymmetry, heavy-tailedness, non-stationarity, and serial correlation.  So this is a 
very weak and general condition, allowing for the extremely wide-ranging application of NAbC. 

 

4.d.i. Spectral and Angles Distributions, Examples from Other Dependence Measures 

I present below graphs of the spectral and angles distributions for some of the dependence measures 
discussed above, beyond Pearson’s, under simulated data reflecting challenging, real-world data 
conditions (see Opdyke, 2022, for the application of NAbC to a wide range of data conditions).  As in the 
above example, the multivariate returns distribution of the simulated portfolio is generated based on the 
t-copula of Church (2012), with p=5 assets, varying degrees of heavy-tailedness (df=3, 4, 5, 6, 7), 
skewness (asymmetry parameter=1, 0.6, 0, -0.6, -1), non-stationarity (standard deviation=3σ, σ/3, and σ, 
each with n/3 observations), and serial correlation (AR1=-0.25, 0, 0.25, 0.50, 0.75), with a block 
correlation structure shown in (34) below and n=126 observations, for half a year of daily returns.61  
 

(34)  
 
For verification purposes only, I compare those angles distributions based on the data simulation directly 
against those based on NAbC’s kernels, and in all cases the results are empirically indistinguishable.  The 
same is true for the spectral distributions, which I also present below against the Marchenko-Pastur  

 
60 On a related issue, note that Chatterjee’s correlation, for example, is bounded by (0,1) only asymptotically, and finite sample 
results can exceed these bounds.  However, when applying NAbC to this and other measures in millions of data simulations 
under widely varying conditions, as an empirical matter such finite sample exceedences never caused NAbC’s angles 
distributions to deviate from those of direct data simulations, nor did they ever make empirical matrices non-positive definite. 
 
61 Note again that this is only approximately Church’s (2012) copula, which incorporates varying degrees of freedom (heavy-
tailedness) and asymmetry, because I also impose serial correlation and non-stationarity ex post on the data (and 
subsequently rescale the marginal densities). 
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Graph 14: Spectral Distribution, by Dependence Measure, Based on 
           i. NAbC Angles Kernel vs. ii. Direct Data Simulations vs. iii. Marchenko Pastur 
 

          Pearson’s Rho           Kendall’s Tau     

   
    Chatterjee’s      Spearman’s Rho+Chatterjee 

  

 

distribution as a referential baseline (that presumes iid data; see Marchenko and Pastur, 1967).  The 
empirical results yield some expected, and some additional interesting findings.   

First, note that the spread, and the spread and shifts, of both the spectral and angles distributions, 
respectively, are larger for Pearson’s than for Kendall’s, which is consistent with the former’s relative 
sensitivity to more extreme values under many conditions.  The shifts and spread of both measures are 
much larger than those of Chatterjee,62 although this is largely due to the fact that while Chatterjee is 
generally more powerful under dependence that is cyclical or non-monotonic in some way, it is less 
powerful under associations that are more monotonic, and the data conditions of this example fall more  
(but not entirely) into the latter category.  The story changes a bit when we use the dependence measure 
suggested by Zhang (2024a), which is essentially a maximum between Spearman’s rho and Chatterjee’s 
correlation, its objective being to obtain large, if not maximum power under both types of dependence 

 
62 The symmetric version of Chatterjee’s correlation coefficient is used here (see Chatterjee, 2021), with the finite sample bias 
correction proposed by Dalitz et al. (2024). 
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structures (i.e. strong monotonic dependence as well as cyclical or otherwise non-monotonic 
dependence).  This shows how readily NAbC can be applied to any (positive definite) dependence 
measure, and its utility for making cross-measure comparisons, all else equal, using the same, 
universally applicable method. 

Before providing a complete example of NAbC’s application below, i.e. one that provides both matrix and 
cell level p-values and confidence intervals, and checks all (but one) of the original objectives listed in 
the Introduction and Background, I discuss three of its additional and important capabilities: the first is 
its use as a two-sample test comparing two correlation/dependence matrices; the second is that fact 
that it remains “estimator agnostic”; and the third is its capability to perform fully flexible scenario 
analytics, providing granular, realistic scenario analytics far beyond what its competitors can provide. 

 

4.e. NAbC: Fully General Conditions, Statistical Comparison of Two Matrices 

The above development of NAbC has so far covered only hypothesis tests against a matrix of fixed values, 
i.e. a one-sample test.  But the NAbC approach allows us to perform two-sample tests of one sampled 
matrix against another sampled matrix, say, from two different sectors or two different business lines, 
where the null hypothesis is no difference between the dependence structures of the two sectors.  The 
implementation is very similar to the one sample case, except that N=10,000 samples based on the 
estimates of each of the two angle matrices are generated separately.  Then the differences between the 
two groups of samples of angles (sample i from a particular cell of the first matrix minus sample i from 
the same cell of the second matrix) are calculated, and the N differences are tested against the values of 
the identity matrix, i.e. values of zero representing zero difference between the two matrices, similar to 
testing a single sample against the null hypothesis of the identity matrix.  The only difference is that we 
must use the “mean angles” cdfs to account for asymmetry in the angles distributions slightly differently: 
instead of averaging the correlation matrices and then converting this average matrix into the matrix of 
“mean angles” cdfs (as described above in step 2. of the kernel-based angles simulations), we first take 
the difference between angles and then calculate the mean of these differences before obtaining the 
corresponding cdf values for each cell.  This avoids incorporating into our ‘accounting for asymmetry’ 
what are possibly true differences between the two matrices, i.e. the hypothesis we are testing.  
Otherwise, the approach is exactly the same as the one-sample test.  The only obvious constraints on 
this approach are that the two matrices being compared should be the same type of dependence 
measure (e.g. Szekely’s vs. Szekely’s, not Szekely’s vs. Chatterjee’s) and have the same dimension.63  I 

 
63 Note that, as an empirical method, the ability to implement NAbC relies on the degree to which the empirical (kernel-based) 
simulations of the angles approximate continuous distributions over their entire sample spaces.  This is largely controlled by 
the number of simulations run, and fortunately the “good behavior” of the angles distributions renders N=10,000 simulations, 
which is computationally feasible even for non-small matrices, more than sufficiently large in most cases.  However, 
empirically challenging cases can arise.  For example, if we are comparing two sample matrices where some cell values are 
very different, the distribution of the difference between the two angles distributions (corresponding to the same cell in each 
matrix) may not contain the value zero, in which case the empirically-based p-value would be exactly zero.  Like any empirical 
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include in Section 6 below an empirical example of such a two-sample test, under both unrestricted and 
scenario-restricted conditions.  Extending this approach to the multi-sample case is addressed in more 
detail in future research.  Below, I briefly describe how NAbC remains “estimator agnostic” before moving 
on to NAbC’s application to fully flexible scenarios. 

 

4.f. NAbC Remains “Estimator Agnostic” 

As mentioned briefly in the Introduction and Background, another important and useful characteristic of 
NAbC is that it remains “estimator agnostic,” that is, valid for use with any reasonable estimator of any of 
the dependence measures being utilized.  Different estimators will have different characteristics under 
different data conditions.  For example, some will provide minimum variance / maximum power, while 
others may provide unbiasedness or less bias, while others may provide more robustness, and/or 
different combinations of these characteristics under different data conditions.  Ideally, we would like to 
be able to use estimators that provide the best trade-offs for our purposes under the conditions most 
relevant to our given portfolio.  Fortunately, NAbC “works” for any estimator, as the relationship between 
correlations/dependence measure values and angles requires only symmetric positive definiteness.  
NAbC’s finite sample distribution and its resulting inferences obviously will inherit the advantages and 
disadvantages of the estimator being used, but this is generally an advantage as it provides flexibility to 
use the ‘best’ estimator under the widest possible range of conditions.  And the ability to apply NAbC as a 
single, unifying method across very wide-ranging data conditions is what allows for very effective ceteris 
paribus analyses that otherwise may not possible, as when the inferential/distributional characteristics 
of an estimator are only known or derived under restrictive distributional assumptions.  NAbC eschews 
such restrictions, thus permitting accurate, all-else-equal comparisons. 

Note that all empirical results presented herein use the sample estimators specified in the Introduction 
and Background section, and sample sizes in every example all exceed 10p (10 times the dimension of 
the matrix), which is a widely used threshold for whether a more sophisticated, bias-correcting estimator 
is needed, at least for Pearson’s matrix (see Bongiorno et al., 2023).  As mentioned in Section 3 above, I 
recommend for conditional (forecast) estimation the Average Oracle (AO) of Bongiorno et al. (2023) (see 
also Bongiorno & Challet, 2023a, for an extensive empirical study against competitors).  Further testing 
may show that AO can be applied to all positive definite dependence measures as well, not just 
Pearson’s, although this currently is the topic of continuing research.  In the next section, I show how all 
of the previously derived characteristics of NAbC remain valid for the scenario-restricted case, that is, 
when selected cells of the all-pairwise matrix are ‘frozen’ as dictated by specific scenarios, while the rest 
are allowed to vary.   

 

 
method (e.g. bootstraps, permutation tests, etc.) care must be taken to ensure that the consequences of such results are 
noted, understood, and properly accounted for. 
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5. NAbC: Granular, Fully Flexible Scenarios, Reverse Scenarios, and Stress Testing 

 

5.a. Review of Existing Methods 

“… however, a unified and generally accepted correlation risk management framework does not yet exist” 
(Packham & Woebbeking, 2023, p.1). 

The size, breadth, and surprise of the effects of correlation breakdowns are well documented in the 
literature (see Kim & Finger, 1998; Loretan & English, 2000; Li et al., 2024; BIS, 2011a, 2011b; Nawroth et 
al., 2014; Ng et al., 2014; Yu et al., 2014; Chmeilowski, 2014; Epozdemir, 2021; Feng & Zeng, 2022; and 
Parlatore and Philippon, 2024), if underappreciated during periods of relative market calm: “Furthermore, 
joint distributions estimated over periods without panics will misestimate the degree of correlation 
between asset returns during panics.” (FRB Chairman, Alan Greenspan,1999).  And yet despite its 
importance, the ability to model, predict, and mitigate correlation breakdowns effectively across very 
different scenarios, in a fully flexible way, has remained elusive.   

To start with, although many approaches do otherwise, it is not enough to stress only the inputs to a 
correlation/dependence matrix – the matrix itself must be stressed and evaluated under stressed 
conditions of a particular (extreme) scenario:   “… in order to calculate stressed VaR accurately it is also 
necessary to stress the correlation matrix … most correlations tend to increase during market crises, 
asymptotically approaching 1.0 during periods of complete meltdown, such as occurred in 1987, 1998 
and 2008. …Certain methods that could be meaningful [include e]mploying fat-tailed distributions for the 
risk factors and replacing the standard correlation matrix with a stressed one… .” (BIS, 2011a).  Secondly, 
if a method perturbs eigen decompositions and/or polar angles to obtain correlation/dependence 
measure distributions, this cannot be done on an ad hoc basis, using mathematically convenient 
distributions, like the Gaussian, to perturb eigen values, or arbitrary bounded functions, like inverse 
tangent, to perturb angles (see Galeeva, 2007).  Spectral and spherical distributions follow specific and 
often known distributions under various conditions, and such approaches need methodological support, 
whether theoretical or empirical or both, to justify their use when taking what is otherwise a smart 
approach to generating scenario-specific correlation/dependence matrices.  Additionally, such methods 
must remain cognizant of all the characteristics of the conditions they are attempting to generate.  Hardin 
et al. (2013), for example, utilize a normalized vector of independent gaussian random variables to 
perturb the observed correlation matrix, but correctly note that “The amount of noise that can be added 
to the original matrix is determined by its smallest eigenvalue. … We provide the user with … a general 
algorithm to apply to any correlation matrix for which the smallest eigenvalue can be reasonably 
estimated.” (emphasis added).  Unfortunately, as mentioned above, this eliminates what are arguably the 
most widely observed correlation matrices in finance – those based on a ‘spiked’ covariance matrix (see 
Johnstone, 2001) where one or a few eigenvalues dominate and the majority of eigenvalues are close to 
zero, which often indicates they cannot be reliably estimated.  Robustness as dependence matrices 
approach singularity/NPD is an important quality of any method, but it remains especially critical in the 
analysis of financial portfolios. 
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Several other approaches avoid these limitations (see Packham and Woebbeking, 2021, Chmielowski, 
2014, and Parlatore and Phillippon, 2024) but they have other arguable limitations.  For example, 
Packham and Woebbeking, 2021, enforce positive definiteness ex post, which as described above 
distorts the desired distributions of dependence measures.  And none of these provide granular, cell-
level control to restrict perturbation on any combination of cells, while still obtaining a valid distribution 
of the remaining cells of the correlation/dependence matrix being used.  Yet this is exactly what is needed 
for realistic scenario analytics and stress testing, let alone precise attribution analyses and ‘what if’ 
analysis capabilities.  Correlation/dependence matrices under a tech market bubble (2000) vs those 
under a housing bubble (2008) vs those under Covid (2020) will change very different individual cells of 
the all-pairwise matrix, and very different combinations of cells, in very different ways, often in terms of 
both direction and magnitude, while leaving many cells strongly affected under one upheaval completely 
unaffected under another (see Feng & Zeng, 2022).  But some combinations of cells might change 
similarly in all of these scenarios, and distributional analyses must be able to accommodate every 
possible combination of changes, in terms of both magnitude and direction.  In other words, while 
correlation ‘breakdowns’ will occur under all of these extreme conditions, the granular nature of all-
pairwise matrices ensures that the fundamentally different (and sometimes similar) nature of these 
breakdowns will be captured and reflected empirically in all related analyses.  Although some 
approaches settle for stretching across a few different covariance/correlation matrices, with fixed values, 
representing several different scenarios (see Parlatore and Phillippon, 2024), this arguably still is too rigid 
and discrete and limited for realistic analyses of the dynamic distributions of these matrices, and cannot 
remain truly robust across qualitatively different, and often as yet unobserved (future) breakdowns.  
Neither does this approach allow for flexible, all-else-equal, targeted ‘what if’ analyses, or granular 
attribution analyses.  If we are to achieve the same level of flexibility in quantitatively modeling 
dependence matrices that has been attained for the other parameters in the risk and investment models 
of our portfolios, practitioners and applied researchers must be able to flexibly and realistically model 
dependence matrices at the most granular level – that of the individual correlation cells – without 
restriction. 

Despite the research on correlation breakdowns listed above, I am aware of only two other limited 
attempts at this granular level of modeling specific groups of cells in the dependence matrix (see Saxena 
et al., 2023, and Veleva, 2017), and both are restricted in notable ways.64  Fortunately, NAbC allows for 
specifying ANY combination of cells, within the framework of the all-pairwise matrix, to be ‘frozen’ at their 
current values while allowing all the rest to vary, providing full flexibility within this framework. 

 

 
64 Saxena et al. (2023) explores the possibility of restricting individual covariance/correlation terms to zero, although they are 
not always able to enforce this restriction while maintaining positive definiteness.  Velena (2017) restricts the values of the 
correlation matrix being simulated to specified ranges, but only for all off-diagonal cells; in some cases, one algorithm allows 
for cell-level values to be specified, but without guarantees of positive definiteness. 
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5.b. A New Method for Fully Flexible Scenarios 

Several results allow for this full flexibility.  First, 1. independence of the angles distributions allows us to 
vary individual cells without changing the structure of the multivariate distribution of the entire matrix.  
Second, 2. the distributions of individual correlation cells, as well as the distribution of the entire 
correlation matrix, both remain invariant to the ordering of the rows and columns of the matrix (see 
Pourahmadi & Wang, 2015, and Lewandowski et al., 2009).  Third, 3. based on 1. and 2., we can exploit 
the simple mechanics of matrix multiplication so that only selected cells of the matrix are affected, and 
the rest frozen, as required for a given scenario. 

To explain 3., I focus only on the lower triangle of the correlation matrices below in Graphs 15-17, since 
the upper triangle is just its reflection due to symmetry.  Note again that using NAbC, we only perturb 
angles.  We never perturb the correlation values directly.  We must always convert correlations to angles, 
perturb the angle values using the fitted kernels, and then translate back to correlation values.  In doing 

so, when multiplying the Cholesky factor by its transpose, TR BB= , changing a given angle cell in matrix 
B will affect other cells, but only those cells to the right of it in the same row, and those below the 
diagonal of the corresponding column, as shown graphically for several examples in Graph 15 below.65 

GRAPH 15: Correlation Cells Affected by Changing a Specific Angle Cell 

 
 

This means that we can simply reorder the matrix so that the targeted cells we want to vary all end up in 
the rightmost triangle of the lower triangle of the matrix, according to the fill order in Graph 16 below. 

GRAPH 16: ‘Fill Order’ for Resorting the Correlation Matrix to Change Only Specific Cells 

 

If we only change in matrix B the angle values of cells 1, 2, and 3 above, no other cells in the correlation 

matrix R will be affected, simply by virtue of the mechanics of matrix multiplication from TR BB= .  Below I 
show another example.  Reorder the correlation matrix so that rows 1-6 are now 6-1 and columns 1-6 are 
now 6-1, so that the original (green) cells 1,2 and 1,3 and 2,3 and 4,3 are now in the rightmost triangle of  

 
65 Note that not all of these (orange) correlation cells will necessarily change if values of zero are involved, but none OTHER 
than these (orange) correlation cells CAN change when only the red angle cell changes. 

1 1 1 1 1 1

1 1 1 1 1 1
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GRAPH 17: Example of Matrix Resorting Using the ‘Fill Order’ to Change Only Specific Correlation 
Cells 

 

 
the lower triangular matrix, in the fill order shown above. 

Changes to the corresponding cells in the angles matrix B (the orange cells) will only change these same 

cells, after TR BB= , in the resulting correlation matrix, R, leaving the rest unaffected.  Note that the green 
cells to be targeted for change do not even have to be contiguous, nor do they have to completely ‘fill’ the 
rightmost (orange) triangle (note that cells 5 and 6 in the right matrix are not targeted): they only must fill 
the rightmost triangle according to the order of the center matrix above.  Note also that the “rightmost 
triangle” rule is nested/hierarchical: if I wanted to perform ‘what if’ analyses on only one of those cells 
(e.g. cell “1,2”) without changing the other three, I order the original correlation matrix to place that cell 
as the ‘first’ in the lower triangle of the B matrix, as shown.  Then, subsequent changes to it will not affect 
the other (orange) cells, let alone any other non-orange cells.  In contrast, changes to cell “4,3” will affect 
the values of the other orange cells (but not the non-orange cells).  Readers are encouraged to test this in 
the interactive spreadsheet (url link provided above). 

So we can exploit these four simultaneous conditions – 1. independence of the angles distributions; 2. 
distribution invariance of the correlation/dependence matrix, and its individual cells, to row and column 
order; 3. the mechanics of matrix multiplication; and 4. the granular, cell-level geometry of NAbC – to 
obtain great flexibility in defining scenarios wherein some cells vary and some do not.  To my knowledge, 
no other approach allows this degree of flexibility, which is what is required for defining 
correlation/dependence matrices for use in realistic, plausible, and sometimes extreme stress market 
scenarios.  This also greatly simplifies attribution analyses, isolating and making transparent the 
identification of effects due to specific pairwise associations, which is something spectral and more 
aggregated analyses cannot do in this setting. 

To be clear, the above allows for the specification of ANY scenario within the structure of the pairwise 
matrix.  Note, however, that some scenarios can include combinations of cells which are forced to 
include (in the lower right triangle) one or a few cells not affected by the scenario.  This is unavoidable 
due to the structure of the pairwise matrix: for example, in the matrix above, there are only p! (i.e.5!=120) 
ways to sort the rows and columns, but there are [p(p1-)/2]! (i.e.15!= 1,307,674,368,000) ways to sort the 
15 cells freely.  The matrix obviously cannot accommodate freely sorting the individual cells in this way 

Determine Targeted Change Cells 
Reorder Rows/Cols to Fill Rightmost Triangle 

with Targets According to Fill Order 

Changes in These Angles Cells 

ONLY change the Same Cells in 

the Correlation Matrix 
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because it breaks the structure of the matrix.  Some scenarios, therefore, could conceivably be required 
to include for perturbation some few additional cells in the lower rightmost triangle that are not relevant 
to the scenario and otherwise should be held constant.  Fortunately, in practice, especially with large 
matrices, this appears to be a relatively rare occurrence, and when it happens, the effects are identifiable 
so that materiality can be assessed via ‘what if’ analyses on the specific cells.  But dealing with these 
potential cases appears to be well worth the price of the unmatched flexibility that using NAbC and the 
all-pairwise matrix provides,66 not to mention the other advantages it maintains over more complex, 
strictly multivariate dependence measures.  For usage with actual market data, the latter typically are 
more difficult to estimate with the same levels of precision and statistical power, let alone to manipulate 
for purposes of intervention or mitigation.  In contrast, pairwise associations are directly identifiable, 
typically more easily and accurately estimated,67 and intervention ‘what if’ tests are more targeted and 
transparent. 

To conclude this section, I deal with one final implementation issue.  When the matrix is scenario-
restricted, and we only perturb a subset of the matrix while keeping the remaining cells fixed, what values 
do we use for the angles of those ‘frozen’ cells?  This is where the mean angles matrix, used to account 
for asymmetry when calculating the two-sided p-values in the previous section, comes into play.  When 
the matrix angles are sampled using the fitted kernel densities, a sample is drawn from the entire matrix, 
and if it is scenario restricted, the sampled values for those cells that are ‘frozen’ are simply overwritten 
with their means.  So after N=10,000 samples are drawn, all 10,000 values of the ‘frozen’ cells unaffected 

by the scenario will have the same mean value for that specific cell, and when translated via TR BB= back 
into correlation matrices, all the correlation values for those cells will be the mean correlation values of 
the respective cells.  In other words, their values will not change, and will remain ‘frozen,’ based on a 
reasonably robust estimator of their true value (note that these ‘frozen’ values are not based on a single 
estimated matrix, but rather, they each are the means of N=10,000 matrices, which is similar to the 
approach Bongiorno et al. (2023) use for their average oracle estimator, as well as the estimator used in 
Sun and Huang (2025)).  The order of magnitude of empirical accuracy of these values is inversely related 
to the number of samples drawn, N.  In the example in Section 6 below, we observe accuracy to the 
fourth decimal place for these frozen cells when using N=25,000 simulations, as expected.  Alternately, 

 
66 Most of the related scenario literature perturbs scenario-based cells and simply ignores their (often notable) effects on the 
rest of the matrix (which should remain ‘frozen,’ but isn’t), not to mention the effects of the rest of the matrix on the scenario-
related cells.  These papers euphemistically refer to the former as ‘peripheral’ correlations (see Ng et al. (2014) and Yu et al. 
(2014)).  NAbC is the only method that fully controls the values and thus, the indirect effects of these so-called ‘peripheral’ 
correlations. 
 
67 They also can be estimated rigorously, and with targeted precision and flexibility, with well-established methods such as 
vine copulas (see Czado and Nagler, 2022)).  Ironically, however, when used for inference or sampling for this problem 
specifically, vine copulas and similar methods become extremely unwieldy and much more complex and less transparent 
than NAbC, not to mention ungeneralizable beyond Pearson’s (see the vine and extended onion algorithms of Lewandowski et 
al., 2009, and the similar chordal sparsity method of Kurowicka, 2014). 
 



JD Opdyke, Chief Analytics Officer                 Page 69 of 91                                Correlation and Beyond 
 

the values could be treated as truly known constants from the beginning, but it is more conservative (and 
realistic) to use estimates based on the mean of all the samples.68 

I end this section by reemphasizing that this matrix sorting method for providing fully flexible scenarios, 
within the framework of the all-pairwise matrix, applies not only to Pearson’s, but also to all positive 
definite dependence measures, under the fully general data conditions for financial portfolios described 
above.  One complete, empirical example of all of NAbC’s inferential capabilities, covering all (but one) of 
its original objectives described in the Introduction and Background, is shown below. 

 

6. NAbC Example: Kendall’s Tau p-values & Confidence Intervals, Unrestricted & Scenario- 
               restricted, One- and Two-sample Tests 

 

Now, with NAbC’s characteristics established and its broad range of application described above, I can 
present a complete empirical example of its implementation here.69  This example will check seven of the 
eight original objectives boxes listed in the Introduction and Background above (objective 1. is ignored in 
this example, and the data generating mechanism used is simply multivariate standard normal, solely for 
the purpose of facilitating for the reader the replication of these results).  The dependence measure 
chosen is Kendall’s Tau, under two cases: unrestricted, and scenario-restricted.  NAbC provides both p-
values and confidence intervals, at both the cell level and matrix level, with N=25,000 simulations and 
the number of observations n = 160, representing about eight months of daily market returns.  The values 

of the matrix [A] are based on a Pearson’s matrix from A’ below, translated to A via ( ) ( )2 arcsin r = , 

which is valid under elliptical data (see McNeil et al., 2005),70 and approximately valid under some 
broader classes of distributions (see Hansen & Luo (2024) and Hamed (2011) for examples). 

[A’] =  

 
68 Note that when NAbC is being used as a two sample test in the scenario-restricted setting, we are only testing, by design, 
the scenario-relevant cells.  So the mean values of each matrix are inserted into the ‘frozen’ cells of each matrix just as in the 
one-sample test, but then those cells are ignored thereafter, i.e. when calculating cell-level p-values, as well as the (restricted) 
matrix-level p-values, just as in the one-sample test.  This ensures that the two-sample test is conducted only for the 
scenario-relevant cells, even as we properly perturb each entire matrix (and insert means ex post) when generating the 
samples. 
 
69 See Opdyke (2022, 2023, and 2024a) for extensive additional examples under wide ranging data conditions. 
 
70 See Koike et al. (2024) for a sophisticated paper defining the broader-than-expected conditions under which Pearson’s 
retains the invariance property under marginal transformations. 
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UNRESTRICTED CASE: Given a specified or well-estimated dependence matrix [A], and its specified or 
well-estimated data generating mechanism:

 

Q1. Confidence Intervals: What are the two dependence matrices that correspond to the lower– and 
upper–bounds of the 95% confidence interval for [A]?  What are, simultaneously, the individual 95% 
confidence intervals for each cell of [A]? 

Q2. Quantile Function: What is the unique dependence matrix associated with [B], a matrix of 
cumulative distribution function values associated with the distribution of [A]?  

Q3. p-values: Under the null hypothesis that observed dependence matrix [C] was sampled from the 
data generating mechanism of [A], what is the p-value associated with [C]?  And simultaneously, 
what are the individual p-values associated with each cell of [C]? 

Q4. Two-sample p-values: Under the null hypothesis that observed dependence matrix [A] and 
observed dependence matrix [C] each were sampled from the same population, and therefore have 
the same values, what is the matrix-level p-value?  And simultaneously, what are the individual p-
values associated with each cell of the matrix? 

SCENARIO-RESTRICTED CASE: Under a specific scenario only selected pairwise dependence cells of [A] 
will vary (green), while the rest (red) are held constant, unaffected by the scenario (e.g. COVID).  This is 
matrix [D].

 

Q5. Confidence Intervals: What are the two dependence matrices that correspond to the lower– and 
upper–bounds of the 95% confidence interval for [D] (holding constant the non-selected red cells)?  
What are, simultaneously, the individual 95% confidence intervals for the green cells of [D]? 

Q6. Quantile Function: What is the unique dependence matrix associated with [E], a matrix of 
cumulative distribution function values associated with the distribution of [D]’s green cells? 

Q7. p-values: Under the null hypothesis that observed dependence matrix [F] was sampled from the 
(scenario-restricted) data generating mechanism of [D], what is the p-value associated with [F] (with 
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red cells held constant)?  And simultaneously, what are the individual p-values associated with 
each (green) cell of [F]? 

Q8. Two-sample p-values: Under the null hypothesis that observed dependence matrix [D] and 
observed dependence matrix [F] each were sampled from the same population, and therefore have 
the same values (for their unrestricted green cells), what is the matrix-level p-value (for the 
unrestricted portion of the matrix)?  And simultaneously, what are the individual p-values 
associated with each (green) cell of the matrix? 

Answers to these questions require inference at both the cell and matrix levels, simultaneously and with 
cross-level consistency, as well as requiring the matrix-level quantile function, all under both the 
unrestricted and scenario-restricted cases.  Only NAbC can simultaneously answer Q1.-Q8. above, as 
shown in Tables B1 and B2 below. 

For Q1 and Q5, the two top matrices correspond to the first (matrix-level) question, and the bottom two 
matrices correspond to the second (cell-level) question.  Note the wider intervals on a cell-by-cell basis 
for the matrix-level confidence intervals compared to the cell-level confidence intervals, as expected.  
Also note, for Q3 and Q7, the smaller p-values for the individual cells compared to the respective matrix-
level p-values, which are larger, as expected, as they are analogous to the family-wise error rate (FWER) 
of a joint hypothesis covering all cells of the matrix.  Note also that the green cells of Q6 differ from the 
corresponding cells in Q2: even though the (green) angles distributions themselves remain unaffected by 
scenario restrictions, the ultimate correlation values of those cells ARE affected due to the matrix 

multiplication of the Cholesky factor, TR BB= .  Comparing the two-sample test of Q4 to the one-sample 
test of Q3, we find, as expected, the increased variability from two samples increases all the cell-level p- 
values as well as the matrix-level p-value.  Only when we double the sample size (as well as the number 
of simulations to more accurately account for smaller p-values) do we obtain similarly small p-values of 
the same order of magnitude.  Similar patterns hold for the one-sample vs two-sample test results under 
the scenario-restricted cases (Q7 and Q8, respectively).  Finally, note that the empirical values of the red 
cells in Q5-Q6 differ slightly from those in [D] and [F].  This is due to NAbC’s conservative use of the mean 
of the estimated angles (correlation) matrices, rather than presuming we know the absolute ‘true’ values 
of these cells (although this is justified in some specific cases). 

In terms of actual runtimes, note that NAbC is somewhat computationally intensive, but not prohibitively 
so.  Implementing NAbC on synthetic data representing real-world data conditions (e.g. margins with 
different and varying degrees of asymmetry, non-stationarity, serial correlation, and heavy-tailedness) for 
non-small portfolios of dimension 100x100, on a commodity laptop purchased in 2019 with 32GB  of 
RAM but no multi-threading, NAbC generates a full set of results, based on N samples = 10,000, in about 
2.4 hours.  However, in a multithreaded environment, let alone one with more memory, NAbC could be 
applied on similarly non-small matrices in minutes.  For the specific case of the gaussian identity matrix, 
applying inverse probability transform sampling as described above, on a 100x100 matrix with N = 10,000 
samples, NAbC takes less than 25 minutes to run on the same laptop.  Notably, Rubsamen (2023) 
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benchmarked NAbC’s sampling under the gaussian identity matrix against that of Makalic & Schmidt 
(2018) and obtained up to a 30% reduction in runtime under NAbC.  But of course, NAbC’s analytic (non-
sampling) solution under these conditions is instantaneous (see url for excel workbook above).  So while 
NAbC is not a result that currently can be used “real-time” for, say, high frequency trading (except for 
when the fully analytic solution is valid), its runtimes remain reasonable given its very generalized 
application and widely available modern computing resources. 

 

7. NAbC: Beyond ‘Distance’ to Generalized Entropy 

 

In a relevant and validating digression, it is intriguing and important to note that the (two-sided) cell-level 
p-values NAbC provides (see Q3 and Q7 in Table B above) actually can be used to construct a competitor 
to commonly used distance metrics, such as norms, and it has a number of advantages over them in this 
setting.  Some commonly used norms for measuring correlation ‘distances’ include the Taxi, 
Frobenius/Euclidean, and Chebyshev norms (collectively, the Minkowski norm), shown below in (40). 

         where x is a distance from a presumed or baseline correlation value, 
(40)                 d=number of observations, and m=1, 2, and correspond to the 
                 Taxi, Frobenius/Euclidean, and Chebyshev norms, respectively. 

All of these norms measure absolute distance from a presumed or baseline correlation/dependence 
value.  But the range of all relevant and widely used dependence measures is bounded, either from –1 to 
1 or 0 to 1, and both the relative impact and meaning of a given distance at the boundaries are not the 
same as those in the middle of the range.  In other words, a shift of 0.02 from an original or presumed 
correlation/dependence value of, say, 0.97, means something very different than the same shift from 
0.37.  NAbC’s p-values attribute probabilistic MEANING to these two different cases, while a norm would 
treat them identically, even though they very likely indicate what are very different events of very different 
relative magnitudes with potentially very different consequences. 

Therefore, a natural, PROBABILISTIC distance measure, based directly on NAbC’s cell-level p-values, is 
the natural log of the product of the p-values, dubbed ‘LNP’ in (41) below: 

(41)   ( )
1 1

"LNP" ln - = ln -  where 1 2
q q

i i

i i

p value p value q p p
= =

 
= = − 

 
   and - ip value is 2-sided. 

Using a Pearson’s correlation matrix under the (Gaussian) identity matrix, LNP shows a very strong 
correspondence with the entropy of the correlation matrix, defined by Felippe et al. (2021 and 2023) as 
(42) below: 
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1
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p

j j

j

Ent R p  
=

= = −  
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scaled by its dimension, R/p.  Importantly, this result (42), like NAbC, is valid for ANY positive definite 
measure of dependence, not just Pearson’s.  Graph 18 below compares LNP of Kendall’s Tau matrix to the 
entropy of Kendall’s Tau matrix in 10,000 simulations (with n=126 for half a year of daily returns) under the 
Gaussian identity matrix, and the Pearson’s correlation between them (0.98) is virtually identical to the 
same comparison based on Pearson’s matrix rather than Kendall’s matrix (just under 0.99). 71 

It is important to note, however, that entropy here is limited to being calculated relative to the case of 
independence, which for many dependence measures corresponds only with the identity matrix.72  In 
contrast, LNP can be calculated, and retains its meaning, in all cases, based on ANY values of the 
dependence matrix, not just the case of independence.  Yet the correspondence of LNP to entropy under 
this specific case speaks to LNP’s natural interpretation as a meaningful measure of deviation or 
distance or disorder (depending on your interpretation), and one that also is more flexible and granular 
than entropy as it is measured cell-by-cell, p(p-1)/2 times, as opposed to only p times for p eigenvalues.  
As such, LNP might be considered a type of ‘generalized entropy’ relative to any baseline of the 
dependence measure, as specified by the researcher, including as a special case perfect 

 

Graph 18: Identity Matrix Simulations for Kendall’s Tau – LNP vs. Correlation Matrix Entropy 

  

 
71 In addition, the Pearson’s correlation between LNP and the entropy of Felippe et al. (2021 and 2023), under these conditions 
of the Gaussian identity matrix, was the same – 0.98 – for both Spearman’s and Chatterjee’s (symmetric version). 
 
72 Recall, of course, that a zero value for Pearson’s or Kendall’s or Spearman’s does not imply independence, but 
independence does imply a zero value for these measures (the exception being Pearson’s under Gaussian data, for which a 
zero value does indicate independence). 
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(in)dependence.  Such entropy-related measures certainly are relevant in this setting as entropy has been 
used increasingly in the literature to measure, monitor, and analyze financial markets (see Meucci, 
2010b, Almog and Shmueli, 2019, Chakraborti et al., 2020, and Vorobets, 2024, 2025, for several 
examples).  So the use of LNP here warrants further investigation as a matrix-level measure that, unlike 
widely used distance measures such as norms, has a solid and meaningful probabilistic foundation.  Its 
calculation applies not only beyond the independence case generally, but also to ALL positive definite 
measures of dependence, regardless of their values.  LNP’s range of application is as wide as that of 
NAbC’s matrix-level p-value, and the two are readily calculated side-by-side as they are both based on 
NAbC’s cell-level (two-sided) p-values for the entire matrix.  These are intriguing results with possibly far-
reaching implications. 

 

8. NAbC: Future Research and Additional Applications 

 

There are a number of areas where additional research can further validate and potentially increase the 
utility and breadth of NAbC’s application.   

Analytic Angles Distributions: I provide above the derivation of NAbC’s fully analytic solution under the 
Gaussian identity matrix, but this is a narrow (albeit foundational) case.  Although NAbC’s general 
solution remains ‘runtime reasonable’ given its generality and objectives, expanding the range of 
conditions for an analytic solution for the angles distributions would dramatically speed NAbC’s 
implementation.  Deriving an “all cases” analytic solution currently appears to be a nontrivial problem, 
but even providing this under additional specific cases would be very useful and directly useable in 
NAbC’s application. 

Competing Distributional Methods: Implementing and comparing NAbC’s results to those of competing, 
if less flexible methods, like Hansen & Archakov (2021) and the Bayesian approaches of Lan et al. (2020) 
and Ghosh et al. (2021), likely would be useful and insightful exercises, especially if the focus is on power 
studies and tests of robustness under common dependence structures in finance (e.g. spiked covariance 
matrices and otherwise near-singular matrices, as well as complex marginal returns distributions).  The 
same goes for the two-sample case, where NAbC compares two sample matrices against the null 
hypothesis of no difference between them: comparing NAbC’s results against those from some of the 
purportedly more generalizable competitors, like Ding et al. (2023), Bulut (2025), and Lam et al. (2025) 
(after covariances are converted to matrices of Pearson’s correlations), and Wang et al. (2025), similarly 
would add to our knowledgebase. 

Statistical Process Control: A full implementation of NAbC within statistical process control (SPC) 
monitoring frameworks would be useful to compare against potential competitors like those of Adegoke 
et al. (2022), ), Quessy et al. (2013), Lemyre and Quessy (2024), Ajadi et al. (2021), Bours & Steland 
(2020), Wang et al. (2019), Choi and Shin (2021and those reviewed in Ebadi et al. (2021).  While a major 
focus should be on power-related metrics like average run length, special scrutiny should be placed on 
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robustness and the (nonparametric) generalizability of NAbC vs these competitors, since these 
characteristics arguably are areas of weakness in the SPC literature, and where NAbC might make its 
most meaningful contributions. 

Causal Models: Recovering DAGs, and Empirical Robustification:  Causal models are not new (see 
Wright, 1921), and as we have seen above, neither are directional measures of association, which in 
recent times go back over a dozen years (see Zheng et al., 2012) but have direct foundations in papers 
from the nineteenth century (see Yule, 1897, as well as Allena and McAleerb, 2018, for a thorough 
analysis of Yule, 1897).  Their recent use in causal frameworks already has made notable inroads (see 
Pascual-Marqui et al., 2024; Blömbaum et al., 2019; and MacKinnon & Lamp, 2022), and serves to 
validate NAbC’s potential contribution in this area.   

Causal model frameworks often are defined, in part or in whole, by directed acyclic graphs (DAGs), and 
the recovery of the ‘ground truth’ DAG, assuming it is rightly specified,73 is one of causal modeling’s 
fundamental tasks.74  NAbC obviously is not designed to provide “all else equal” estimates of the 
magnitudes of treatment effects that regression approaches within causal frameworks can provide (see 
MacKinnon & Lamp, 2022).  But it should be able to enhance covariate classification efforts for accurate 
DAG recovery.  For example, when using a directional dependence measure, say, Chatterjee’s improved 
correlation (see Xia et al., 2024), we can apply NAbC twice, once with the treatment variable (X) and 
dependent variable (Y) and relevant covariates (V1, V2, V3) in one order in the matrix (e.g. with column 
and row ordering of X, V1, V2, V3, Y), and once in the reverse order in the matrix (Y, V3, V2, V1, X).  The two 
resulting matrices will together capture all potential associations, in both directions, of all the variables.  
And all the cells of the two estimated dependence matrices will fully map to the relevant causal 
categories that make up a DAG (e.g. the confounders, colliders, mediators, independent variables, 
causes of X, consequences of X, causes of Y, and consequences of Y).   

What NAbC could provide here is two things.  First, NAbC would provide p-values associated with each of 
these DAG categories, for each variable, to assist in their classification.  These p-values would properly 
take into account the entire dependence matrix, with its inherent and immutable constraints, when 
estimating all the pairwise relationships simultaneously.  Secondly, many asymmetric dependence 
measures are not readily useable within regression frameworks, even when such frameworks are 
appropriately directional (see MacKinnon & Lamp, 2022; however, see Pascual-Marqui et al., 2024, for an 
intriguing and innovative exception).  For example, I am not aware of any regression, directional or 

 
73 “The correct causal model is an exacting qualification, requiring a program of research with precise definition of causal 
effects, specification of assumptions, and sensitivity analysis for how violating assumptions affects results.  Statistical 
analysis is useful for demonstrating associations between variables that are consistent or inconsistent with a causal model.” 
(MacKinnon & Lamp, 2022). 
 
74 Note that Czado (2025) demonstrates that vine copulas, described above as being a very flexible and effective method for 
estimating dependence structure under real-world conditions (if not for inference regarding all-pairwise matrices), also can be 
remarkably effective in the causal discovery setting.  See also the innovative causal modeling approaches of Rodriguez 
Dominguez & Yadav (2024), and Rodriguez Dominguez (2023, 2025). 
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otherwise, that allows for the use of Zhang’s (2024a) combined Spearman’s+Chatterjee’s measure, or the 
asymmetric tail dependence measure of Deidda et al, (2023) when estimating (directional) covariate 
effects.75  Yet these directional dependence measures may have more power under certain data 
conditions for identifying, and thus classifying, these relationships, and thus, when used by NAbC 
alongside existing causal frameworks, could enhance their power for accurate DAG recovery.  To 
reemphasize, this is not a proposal to use NAbC as a standalone causal model, but rather, as a possible 
way that it could increase the power of an existing causal model framework in obtaining accurate DAG 
recovery.  Of course, this begs the bigger question of whether DAGs can be used reliably within “self-
referencing open systems like capital markets” to begin with (Polakow et al., 2023).  Importantly, many 
express strong caution, based on recent and rigorous research, regarding its application in this setting 
(see de Lara, 2023; Gong et al., 2024).76  I propose only that NAbC can play an effective role here if the 
answer to this question turns out to be “yes” or “under some conditions.” 

Aside from DAGs, NAbC also can be directly useful to test and robustify the implementation of other 
causal frameworks.  Consider the innovative work of Rodriguez Dominguez (2023, 2025), for example, in 
which each portfolio is associated with a common causal manifold, enabling future asset trajectories to 
be projected into its tangent space (and thus, it adroitly circumvents the time-dimension challenges that 
trip up many DAG-based approaches). Underlying an important part of this sophisticated approach, 
notably, is the trusty, association-based covariance matrix.  What NAbC can provide here is the 95% 
confidence intervals on this matrix, under challenging, real-world financial returns data, without 
distortionary transformations or unrealistic assumptions, and push these upper- and lower-bound 
matrices through the framework to assess the (potentially highly nonlinear) effects of this estimation on 
the back end.  The same potential for robustification can be applied when implementing the causal 
model of Cai et al. (2023), as they utilize the Cholesky factorization of the covariance matrix as the 
foundation of their algorithm, which efficiently achieves state-of-the-art performance for DAG recovery.  
Additionally, above I have cited Pascual-Marqui et al. (2024), who combine Chatterjee’s and Szekely’s 
measures to effectively perform directional, causal regressions.  This is, in fact, a pattern: some of the 

 
75 However, note that Andu et al. (2021) take a very interesting approach using adaptive elastic net regression wherein 
Szekely’s (2007) distance correlation is used to weight parameter estimates in the L1 penalty term of the regression.  What’s 
more, Pascual-Marqui et al. (2024) combine their multivariate distance-based Chatterjee correlation with the regression 
approach of Blömbaum et al. (2019) to extend and robustify association-based results to causal results, thus supporting the 
utility of using such measures in the causal modeling setting. 
 
76 From Polakow et al. (2023): “The clarion call for causal reduction in the study of capital markets is intensifying.  However, in 
self-referencing and open systems such as capital markets, the idea of unidirectional causation (if applicable) may be limiting 
at best, and unstable or fallacious at worst.”  From Gong et al. (2024): “… potential outcomes (PO) and structural causal 
models (SCMs) stand as the predominant frameworks.  However, these frameworks face notable challenges in practically 
modeling counterfactuals … we identify an inherent model capacity limitation, termed as the ‘degenerative counterfactual 
problem’, emerging from the consistency rule that is the cornerstone of both frameworks.”  And from De Lara (2024): “Most of 
the literature on causality considers the structural framework of Pearl and the potential-outcomes framework of Neyman and 
Rubin to be formally equivalent, and therefore interchangeably uses the do-notation and the potential-outcome subscript 
notation to write counterfactual outcomes.  In this paper, we … prove that structural counterfactual outcomes and potential 
outcomes do not coincide in general – not even in law.”  See Opdyke (2024b) for a more complete review of this literature. 
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best applied causal frameworks appear to be those that in no small part intelligently utilize the 
association-based dependence measures treated in this monograph,77 and to which NAbC can be 
applied.  So it would appear that NAbC’s generality and breadth of application effectively extends to 
complementing and potentially enhancing the effectiveness of causal frameworks as well. 

 

9. Conclusions 

 

NAbC defines the finite sample distributions of an extremely broad class of dependence measures – all 
those with all-pairwise matrices that are positive definite – under challenging, real-world financial data 
conditions.  This enables robust inference and ceteris paribus analyses in many cases where none before 
were possible.  Motivation for NAbC’s development has been the need for a method that satisfies all eight 
of the objectives listed below, because to date, no extant method has addressed all of these “real-world 
necessary” requirements simultaneously.  Yet anything less than this, when modeling dependence 
structure in our risk and investment portfolios, fails to rise to the same level of analytical rigor as has 
been applied to the other parameters of these models.  That is indefensible given, as is recognized in the 
literature, that the effects of dependence structure can be larger than many, if not all of the other 
parameters combined, especially when accurate models are needed most: that is, during (and just prior 
to) correlation breakdowns.  I list again the eight objectives below for the reader’s convenience:  

1. NAbC remains valid under challenging, real-world data conditions, with marginal asset distributions 
characterized by notably different and varying degrees of serial correlation, non-stationarity, heavy-
tailedness, and asymmetry. 

2. NAbC can be applied to ANY positive definite dependence measure. 

3. NAbC remains “estimator agnostic,” that is, valid regardless of the sample-based estimator used to 
estimate any of the above-mentioned dependence measures. 

4. NAbC provides valid confidence intervals and p-values at both the matrix level and the pairwise cell 
level, with analytic consistency between these two levels (i.e. the confidence intervals for all the cells 
define that of the entire matrix, and the same is true for the p-values; this effectively facilitates, and in 
many cases makes possible, granular and targeted attribution analyses). 

5. NAbC provides valid confidence intervals and p-values not only for one-sample tests against matrices 
of fixed, assumed ‘true’ values, but also for two-sample tests comparing two matrices, so that we can 
assess inferentially whether dependence structures truly are different, for example, across different 
sectors or segments of our businesses. 

6. NAbC provides a one-to-one quantile function, translating a matrix of all the cells’ cumulative 
distribution function (cdf) values to a (unique) correlation/dependence measure matrix, and back again, 

 
77 Note the selection of causal drivers in Rodriguez Dominguez (2023, 2025) follows the Reichenbach Common Cause 
Principle (Reichenbach, 1956)), a foundational idea in probabilistic causality which emphasizes the identification of common 
causes through observed correlations. 
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enabling precision in reverse scenarios and stress testing, as well as informed and targeted ‘what if’ 
analyses. 

7. All the above results remain valid even when selected cells in the matrix are ‘frozen’ for a given 
scenario or stress test – that is, unaffected by the scenario – thus enabling flexible, granular, and realistic 
scenarios. 

8. NAbC remains valid not just asymptotically, i.e. for sample sizes presumed to be infinitely large, but 
rather, for the specific sample sizes we have in reality (for full-rank matrices with n>p), enabling 
inferentially reliable application in actual, real-world, non-textbook settings. 

For the narrow but fundamental case of Pearson’s correlation under the Gaussian identity matrix, I derive 
NAbC’s fully analytic solution, with p-values and confidence intervals at both the cell and matrix levels 
(along with a measure of generalized entropy), provided in an interactive spreadsheet. 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-
Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-
24.xlsx 

But way beyond Pearson’s, the fully general NAbC solution presented herein satisfies all of the eight 
objectives listed above, simultaneously.  The list of critically important, applied research that NAbC now 
facilitates, if not makes possible, is not only expansive, but also feasible with an ease of use and 
interpretability, broad range of application, scalability, and robustness not found in other more limited 
(spectral) methods with relatively narrow ranges of application.  NAbC’s utility even extends to causal 
modeling frameworks, further expanding its already comprehensive scope. 

With NAbC, we now have a powerful, applied research tool enabling the treatment of an extremely broad 
class of ubiquitous dependence measures with the same level of analytical rigor as the other major 
parameters in our financial portfolio models.  We can use NAbC in frameworks that identify, 
probabilistically measure and monitor, and even anticipate critically important events, such as 
correlation breakdowns, and mitigate and manage their effects.  Correlation breakdowns are widely 
documented, arguably endemic characteristics of major financial markets, and their destructive 
potential on our attempts to estimate and forecast market behavior is difficult to overstate.  Modeling 
efforts in this area simply cannot be effective without knowledge of, and the ability to implement and 
utilize, the true sampling distributions of the relevant dependence measures under real world conditions.  
In providing exactly these distributions, in a useable, transparent, and straightforward way, NAbC should 
prove to be a very useful means by which we can better understand, predict, and manage financial 
portfolios in our multivariate world. 

 

 

 

 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
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