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1. Why Consider SR?

 Ubiquitous Iin Financial Analysis

« Funds and Fund Managers worldwide are
continuously ranked according to their Sharpe
Ratios. This ordering means little without
statistical inference: how certain are we that
one sample’s SR really is larger than that of
another? Comparisons via ranking are implicit
pairwise hypothesis tests:

Ho: SRy <SRy v. Hpa SRy >Ry
 Important theoretical foundations: CAPM & MPT
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2. Two Common Definitions
i. Using StdDev of EXCESS returns

N T
é\Qe = Fe where ﬂszﬁa

A T
0-e & :(% _th)1
T =#time periods, i(&t ) )2
R« = periodsrisk freerate, 5 :V = )

T-1

See Jobson & Korkie (1981), Memmel (2003), Sharpe (1994)

R = period's return
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2. Two Common Definitions

Using StdDev of returns

N

— las _Iaf

R

N\

g

S

- =#time periods,

R = period's return

R, = period'srisk freerete,
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See Christie (2005), Lo (2002)




- DataMinelt®

©J.D. Opdyke

2. Two Common Definitions

J5M 2006

 As an empirical matter, if the risk-
free rate is not actually constant, it
will be nearly so, making O, > O,
so for all practical purposes,
definition ii) is appropriate.
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3. Asymptotic Distribution of él\?

Under iid Normality
« Jobson & Korkie (1981) under iid normality:

JT(R-=R)-N| 0 1+
>

e Lo (2002) presented same result, but misread
by many as iid generally, not NORMAL iid
(normality implied in a footnote). See Getmansky
et al. (2004), Hennard & Aparicio (2003), Lee
(2003), McLeod & van Vurren (2004), and Pinto &
Curto (2005).
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3. Asymptotic Distribution of él\?
Under iid Normality

« Lo (2002) uses variance of estimated
variance for a normal distribution
when using delta method to get
variance of SR. \ar (Jz) - 20

N

« More generally, Var (02) = U, -0
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4. Asymptotic Distribution of él\?
Generally

« Using the more general result leads to
~ a R | ]
ﬁ(S?—SR)~N 0, 1+ | Ko | R
4 | o o’
« Mertens (2002) presents this, but he does

not generalize beyond iid returns, as is
done by Christie (2005).
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4. Asymptotic Distribution of SR
Generally

« Christie (2005) uses a GMM approach to obtain:

(7)o | Tt SO BRI (5o 28 o0) 5%

 This is quite unwieldy, but valid under very
general conditions, requiring only stationary
and ergodic returns. It thus allows for time-
varying conditional volatilities, serial
correlation, and even non-iid returns.

« However, this is identical to Mertens (2002)!
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Equivalence of Asymptotic Distributions of Christie (2005) and Mertens (2002)
Under only the requirements of stationarity and ergodicity, Christie (2005) derives (C21),

o) e SO RN 0 (8RR (8- R) Ao, e

c21
S 4 s? s? s (c21)

a
which can be simplified as below®>:
éR? - ZRR +RZU

R gR-R)(R-m)ZJ SRxEQ(R R)WEA
4 &° H 8 s3 4 g8 S § e s? g

since EgR?g=s > +n¥,

_ SR ém, qR- R)(R- 2R +nr)U SZ+n- 2nR, + R
= 4 &'—4'3 SQE\., 53 U SQ2+ Sz f
a & H
€ 2nR*+ nt R, +2MRR, - nf
S PRV o &R - 2R+ NR - RZ mR RU v
4 & U @ S g
since EgRﬁg:n\“as m+n#,
:l+£2éml +3 S?\grrg+3m; 24t - 2m(s * +nf ) +m® - (32+nf)Rf+2mzRf-nfng
3 7
U 8 S H
_ em o o 6m+3ns 2+ - 2 2 2m°’+ms-32Rf-mzRf+nfng
4 &4 H g S? ;
2 4 N A 2 _ 2 o2 N
L SRem i o em 3o 2ns” R U
“ 7l 8 s? <
e a
L Reém 0 o m M RO
=1+ &4+3H-SQ>?§_3+ . H
2 <
:]_+iem1 3U SRn} S?Z
&* H
- em1 u m,
=1+ - R—
4 83 1H s?
So Var (VTSR Qﬂ;-lé- SRﬂ which is Merten's (2002) result, and that derived in Appendix A.
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13 As previously mentioned, even if the variance of the risk-free rateis not literally zero, as is often the case, as a practical empirical
matter it can be treated as zero, and its arithmetic mean used as the presumed constant rate (so above, let R, = =R;).

Covariances of the risk-free rate with fund returns, too, can be treated as zero as an empirical matter. Mathematically, these
assumptions are necessary for the above simplification.
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4. Asymptotic Distribution of SR
Generally
Consider

2
R | _
L1 -RE
4 | ot o’
. Note that only SR, skewness, and kurtosis of the
returns determine the distribution of SR.

) \/'F(él\?—SR)jN 0, 1+

« So asymptotically, no moments beyond the fourth
affect the distribution of SR . This is shown by
distribution in Graph 1. Consistent with the
empirical evidence, it shows that assuming

normality could be a poor basis for inference.
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4. Asymptotic Distribution of él\?

Generally

However, with this more mathematically
tractible derivation we can see now that, in
addition to stationarity and ergodicity,
converging third and fourth moments are
required for the convergence of the
asymptotic distribution of SR.

An apparently non-trivial number of financial
instruments have diverging fourth moments,
so this Is important to note.
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5. Small Sample Bias of SR

« Because SRis convex, its estimator will be
biased due to Jensen’s inequality:

E| R(2.0) |2 R(E[A] E[d]) = R(u.0)

« Christie (2005) obtains_a 2"d order Taylor
series expansion of SR about Jd, and then a
1st order expansion of g about O'Zto obtain
the distribution of O. However like Lo (2002),
he uses Var( 0'2) 20' valid only under
normality!
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5. Small Sample Bias of SR

. Christie (2005) obtains:

[ R(1.6) | = R4 @(u%}

which not surprisingly, resembles the asymptotic
distribution under normal returns.

VN 4
. Using the more appropriate Var(a'z) = /J4 -0,

4 o A
[ R(21.6) | = R(p0)| 1+ 411 [ﬂ44 ]

which not surprisingly, resembles the asymptotic

distribution generally.
Page 16 of 47
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5. Small Sample Bias of SR

+  So for small sample estimates of IR,

divide SR by

/

\

1+

1 [/:\14/5-4]\

4 T )

to obtain an approximately unbiased

estimate.

Simulations show this works very well
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6. Asymptotic Distribution of Riff

SRa & SRb are asymptotically unbiased normally
distributed variables, so by CLT, their linear
combination is asymptotically unbiased & normal.

Statistic = (é\Qb —é\?a) —(SRO —SRa), Ho: SR =R,
va [R-R) (R -R) | ~vr [ -R) -
Var(SlA?dm):Var(SlA?b)+Var(SlA?a) —2Cov(SIA?b,§I\?a)
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6. Asymptotic Distribution of Riff

Jobson & Korkie (1981) solved for normal iid returns;
improved upon by Memmel (2003).

But we now know returns are not normal.

Vinod & Morey (2000) used the bootstrap and the
double bootstrap, but this is computationally
intensive, and bootstrap-based variance estimates
are notoriously poor under asymmetric heavy tails,
and even symmetric heavy tails (see Rocke & Downs,
1981, Gosh et al., 1984, and Salibian-Barrera, 1998),
so caution is warranted with this approach.
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6. Asymptotic Distribution of Riff

 Previous work on distribution of a single é\?
used the delta method (Jobson & Korkie,

1981; Lo, 2002; and Memmel, 2003), so why
not use it to derive the two-sample statistic?

 If a function is continuous and continuously
differentiable (loosely speaking), then the
delta method obtains its variance if the
random variables it uses are asymptotically
normal.
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6. Asymptotic Distribution of Riff

So by delta, Var (é\?diff ) = (af jQ(af j ., where

ou ou
— 2 2
SR=g=f(,u,0), U—(ﬂa,ﬂbﬂa,ffb),and
0'5 Ja,b /JSa /ula,2b
Oap Ug Hib, 2a Hap

. . _Variance/covariance
Mz Hip2a (ﬂ4a‘0a) COV(Ua’Ub) matrix of u

Fra2b  Hap COV(Ug’Ug) (ﬂ4b_ag)
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6. Asymptotic Distribution of Riff

delta method yields: Var, =1+ S} {'u“a - } SRa Haa
g,

a

1+SR3{:U4:> _ } SRblusb

4 | g,

S?aS% :uZa,Zb :ulb 2a 1 :ula,Zb
-2 + 1! - —__

4 g, ab

where Hzaz2p = E[(a— E(a))2 (b —E(b))z} = 2nd centra_l _
moment of joint

and  thazn = E[(a— E(a))(b -E(b)ﬂ distribution
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6. Asymptotic Distribution of Riff

e  When returns are normal iid,
4 _ _ —
140 =3, 11/ 0 =0, 14, =0
— 2 2 2
and [, o = (1+2,0a,b)0a0b’ SO Var i

reduces to Jobson & Korkie (1981), as shown
below.

. Note also that when Pab = 0: Lhaop = Ugag
and (4, =0, so the entire covariance term
disappears, as it should.
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Variance of the Difference Between Two Shar pe Ratios
If R, and R, are the respective Sharpe ratios for the returns (Ry; and Ry) of funds “a” and “b,” then use the “delta
method” * (see Greene, 1993, and Stuart & Ord, 1994) to obtain the asymptotic variance of (é\?a - é\?b)— (R- R):

Assuming s 2 = 0, which is always essentially, if not literally true, SR:m_—Rf: f(ms 2),solet u =(ng, m),sg,sbz]
s

and G =(ﬁ5ﬁ1)§§§bz) , then ~/T (G- u) ~ N (0,W) where W isthe variance-covariance matrix of u:

2si Sas m, Moz O

gsa,b Sg My 2a My, -
W=

g n, Mp.2a (mla -S :) COV(S;S g)

€Mazo My COV(S;SbZ) (mlb'stf)

where s ,, =Cov(a,b), m, = Ega - ma)sg :Cov(rrg,sg) ,

H

My, = Egb - n5)3g:C0v(m,,s§) (see Mertens, 2002), m,,p, = Eg(a -my)(b - %)ZS:Cov(m,,s §] ,

andmy,, = Eg(b -my)(a - ma)zg :Cov(m),si] (see Espejo & Singh, 1999). Now,

R - F Ao afe ff 21 1 (m-R) (m-R)O
J?“g%'g%}(gﬁ'g%HNN“““““*\“““‘gﬁzwgﬁz’ﬁa'§2"53" =7 " =7 -
Varg; =1- Ssas,b i ”ba(;rsh; Rf]_’_maz;(nB;Rf)_ Sab +1+nit12a(r:a- Rf)_ n@b(”b; Rf)_ ﬁ&a(ma; Rf)+ ”ibza(r;b' Rf)
a>b a b SaSy Easb ZSb 2sa $asb

+(rma-s;‘)(rm-Rf)2 (m- Re)(m - R )Cov[s2.58)  mazn (mi- Re) mo (my- Ri) (ma-Rf)(rrb-Rf)COV(S§,SS)+(rThb-SQ)(nb-Rf)2
43 - 45358 .85 oy 4ss} s

”ha(”&' Rf)_ m'sb(mb' Rf)+”1u2a(”£- Rf)+n1a,2b(”b' Rf)+(”la‘sg)(”h‘ Rf)2+(”lb‘sﬁ)(n"b‘ Rf)z_ (”L‘ Rf)(“%‘ Rf)COV(Szvsg)

Y X S5 % o5 =
oo Ml R Mg Mha o Maz , S Ama-s)l o gme-se)l e Cvlsdisd)

SR A A S T BT T
Since :Var(sg) :Cov(ss,si):mla- sa :Ega— E[a])4g— sa :Eg(a— E[a])z(a- E[a])zg- sis?,

14 The delta method is a widely used technique that provides an asymptotic approximation of the variance of a particular function (see
Greene, 1993, pp.297-298, and Stuart & Ord, 1994, p.350). It is valid as long as the random variables used in the function are
asymptotically normal, and the function is (loosely speaking) continuous and continuously differentiable. The former assumption is
truein this case, since the sample mean and the sample variance are asymptotically normal. The latter assumption clearly isviolated if
the variance of returnsis zero. Thiswill never actually occur in practice using real data samples, but if the variance approaches zero,
making the Sharpe ratio highly nonlinear, delta method estimates will become unstable, as correctly noted by Vinod & Morey (2000).
However, this scenario, too, arguably will affect few, if any casesin practice, as the variances of the returns of most, if not al funds or
stocks that would be of enough interest to be subjected to Sharpe ratio comparisons are quite far from zero; if they were not, there
would be nothing to compare!  Still, it isimportant to note the limitations of analytical methods relied upon in any study, in case their
domain of application changes. Jobson & Korkie (1981), Lo (2002), Memmel (2003), and Mertens (2002) dl use the delta method in
their studies of Sharpe ratios, thus supporting its practical use here.
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then Cov(s2s?2)=E€a- E[a])’(b- E[b])’Y-s%2 = -s %5 2, where my, 5, isthejoint second central
a'”b g ¢} a°b rTba,Zb a b )

moment of the joint distribution of a and b. The same result can be obtained using Stuart & Ord’s (1994) (pp.457-458)
result of Cov(sf,sf) =Kopq 2/N+ 22 15 /(N 1), where K 51, isthe second joint cumulant of the joint distribution of

aandb, andky, ,, isthefirst joint cumulant, equal to thefirst joint central moment, mj .y, , which isthe covariance.

Dropping the n coefficients due to the use of the estimators s'2,$ 2 for s 2,s 2 yields

Cov(s 2s s) =Kopazp + 2K = Koa o + 205 1= Koa o+ 25 2, . Recognizing that the joint cumulant also can be

expressed in terms of central moments, K pa 25 = Mha 2o = Mao” Mb2b - 2Miat = Mhazy - S &S 1 - 25 4y, (see Stuart &
Ord, 1994, p.107, and Smith, 1995), we have:

2.2\ _ 2 _ 2 2 2 _
COV(Sa’Sb)_kZa,Zb +2K 1316 = Mo 2p -sZs)- 2S.p 25 5 =My -S

2 & 2

My 2 Magn . R €my, U SR ém, 1€, -5 5Sp Y

Vot :Z-SRa:k:-sqb%+S%sbs:+g%sasz+ 4 Es_f'lE+TSs_f'l“' zrab_SRaSRbES aszs;1 ;
a b a a°b a b S

2 é u 2 é u é é w
=2 R R IR, M B Theth e TR 1p- 260, ¢ £ 1

3 3 2 2 =
Sa Sp SSa ST 4 eS,

2 & U
Varyy =1+ e g gy R, Ty
4 & 4 v 3
8Sa H Sa
2 é u
1+ 72 8 g R, T
4 gsy g Sp
é é U1 1 u
_2§fab+SRaf:‘)b :mzza,zs_1l,J_ESRa”]hze21_E ”]aztz)L,J
g gsaSp @ SpSa SaSh

Note that when r ;5 =0, My, 5y :sgsg, My2p =0, and my,, =0, so theentire covariance term of Varyy disappears,
asit should.

Minimum variance unbiased estimators of M,y , My24, & My, o, are the respective h-statistics hy, o, Mpog &
hpa oo, Where by, = €250,5 5~ N%,8 o 2515, +1°S W@n(n 1)(n- 2), and by, =

= & &%, +1%, %0+ As0s$ 08 1~ 2(20- Y- 2(n?- 2 +3) 5,5 5 + a0 - (20~ 3) 2820 - 2P 20+8) 3.1 40 2n+3)sy, U/

n
/ gn- 3)(n-2)(n-1)ny, where s, , arethesimple power sumsof s, = é a‘b’ (see Rose & Smith, 2002, pp.259-260).
i=1
This derivationisvalid under iid returns, but becausethe one-sample estimator (6), derived using the same (delta)
method (ala Mertens, 2002), was shown in Appendix B to be valid under the more general conditions afforded by its

(identical) GMM derivation (ala Christie, 2005), we suspect those more general conditions of stationarity and ergodicity
are the only requirements for the two-sampl e estimator of (13) aswell. Proving thisisthe topic of continuing research.
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Equivalence of Vargs with Memmel (2003) and Jobson & Korkie (1981)

Under iid normality, Memmel’ s (2003) correction of Jobson and Korkie's (1981) variance of the two-sample statistic
for the difference between two Sharperatiosis:

Var =TV =2- 2r ,,+ = (SRa+SRb 2R, Ryr 2, )

Under normality, TV isidentical to Vargy , as shown below:

ém, U 2 6m, 0 é émppy U0
Varit —1+ﬁe% 1y- SRa tR—— rTtha %eﬂf'lﬂ' SRb—3 R,—— maZb -28rp t Sqaf?b e 2&22"1@9
8sa 0 sa SpSa 6sp 0O Sh SaSp g 8saSy  0f

Under iid normality, m/s®=0, m, =0, m,/s *=3, & my, ,, = (1+2rab) s 25 2 (see Stuart & Ord, 1994, p.105), so

2 é 1+2r2 )s2s2-52s2W

Varg :1+%[3_ 1]_04.0_,_1_,_&[3_ ]]-0+O-2§r b_I_S?aS?bg( a,b) a®b ~ Za buu:
' 4 4 e sist? au

8|

2 2 4
:2+%+%_ zgra,b +
e

SRaSPbez b;

=2- 2 4 +%gsr«>§ +SRY - 2SR SR,r 2, A=TV , which is Memmel’s (2003) result.
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6. Asymptotic Distribution of Riff

 Limitations of delta: Estimates become
unstable when function is hlghly nonlinear.
This would occur for R if o° approaches
zero. Also, R obviously is not contlnuous
or continuously differentiable at g° = 0.

« However, this is not a problem for practical
usage, since there would be nothing to
compare if o’ was close to zero! The
problem in practice is not too little variance,
but rather, too much (see Christie, 2005).
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7. Simulation Study

« Asymptotics are fine, but how does
Var, perform under realistic data conditions
— returns that are:

i. Leptokurtotic (i.e. “heavy tailed”)
ii. Asymmetric
ili. Strongly (positively) correlated with each other

iv. Based on finite sample sizes
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7. Simulation Study

« Use Komunjer’s (2006) Asymmetric Power
Distribution (APD) for simulation study
testing empirical level and power.

« APD has skewness (a) and kurtosis (A)
parameters and nests the normal, Laplace,
asymmetric (2-piece) normal, and asymmetric
Laplace. These all have been used
extensively in the empirical finance literature.
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0.8 1 0.8
0.6 0.6
0.2 0.2
T T T T T T T T T T T T T T T T
5 4 3 2 1 0 1 2 3 4 5 5 4 3 2 1 0 1 2 3 4 5
[——APD,a=09—a=07==a=05]| ——APD,a=09—a=0.7e=ma=05
?=2.00 (Normal at a= 0.5) ?2=1.75

——APD,a=0.9 ——a=0.7 «===3 = 0.5 ——APD, a=0.9——a = 0.7 =3 = 0.5

?=1.50 ?=1.25

[—APD,a=09—a=07==a=05]

?=1.00 (Laplace at a=0.5)

Figure 2: Asymmetric Power Distribution by a by ? (all densities standardized so that Variance = 1.0)
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Simulation Distributions: APD of Komunjer (2006)

Komunjer (2006) gives the density of the asymmetric power distribution (APD) below:

d2) ¢ dy
——&Xpa —— Ul ifugo,
G+y1) € a | i 2a' (1-a)
f(u)= 47 & 4 g where0<a<1,?>0 and %y © ————
2l _expe- —2_|u' G ifu>0, a' +(1-a)
L) g (ra)

The a parameter controls skewness, with symmetry at a = 0.5, and ? controls kurtosis, such that whena=0.5, 7=87?
the uniform distribution, ? = 1.0 ? the Laplace distribution (with variance = 2.0), and ? = 2.0 ? the normal distribution
(with variance = 0.5). When a ? 0.5, ? = 1.0 ? the Asymmetric Laplace distribution of Kozubowski & Podgorski
(1999), and ?=2.0 ? the two-piece normal distribution (see Johnson, Kotz & Balakrishnan, 1994, vol. 1 p.173 and val.
2 p.190). Thus does APD allow simultaneous control over skewness and kurtosis, nesting the normal and Laplace
densities, and asymmetric versions of each, aswell asany “in between” combination of asymmetry and kurtosis.

L ocation and scale are accommodated viathe simple transformation: X © q +fU

APD moments are given by:

E(U') _ G((1+I’)/| ) (1- a)l+r +(_ 1)fa1+r

(seeTablelll below). Sofor example,

Gy ) d7
E(U):%(l— 2a)d;  and Var(U) _SF)elwl)e- 3;(]3;2)2; el )i - 2] d;7

To standardize the APD for the simulations presented in this study, U is modified by u’ = u/ sqrt[Var(u)] (because, for
example, whena=0.5and ?=1.0, Var(U) = 2.0, andwhen a= 0.5 and ? = 2.0, Var(U) = 0.5).

Tablelll: Skewness?;and Kurtosis?, of APD by Values of aand ?

Special-case Nested Distribution a ? Skewness ?; Kurtosis ?,
Asymmetric Laplace 0.1/0.9 1.00 +2.2311 6.6485
0.1/0.9 125 +1.9870 5.0165
0.1/0.9 150 +1.8415 4.1686
0.1/0.9 175 +1.7457 3.6595
Two-piece normal 0.1/0.9 2.00 +1.6784 3.3243
Asymmetric Laplace 0.3/0.7 1.00 +2.1867 7.4726
0.3/0.7 125 +1.9474 5.6383
0.3/0.7 150 +1.8048 4.6853
0.3/0.7 175 +1.7109 41131
Two-piece normal 0.3/0.7 2.00 +1.6450 3.7363
Laplace (variance = 2.0) 0.5 1.00 0.0000 6.0000
GPD 0.5 125 0.0000 45272
GPD 0.5 150 0.0000 3.7620
GPD 0.5 175 0.0000 3.3026
Normal (variance = 0.5) 0.5 2.00 0.0000 3.0000
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7. Simulation Study

N = 10,000 simulations run for over 5,200
combinations of:

Sample size (T =15, 30, 50, 100, 300)
/J/ 0' configurations; sizes of SR
Skewness (range used = n,; = £2.23)

Kurtosis (range used = n, = £7.47)

Correlation between the two series of
returns (Pap = 0.00, 0.25, 0.50, 0.75)
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7. Simulation Study - Results

Many results, but key results include:

« Under concurrent skewness and leptokurtosis at
least as extreme as typical returns (used a =0.7 &
A = 1.35 for skewness & kurtosis of n; =-1.88 & n, =
5.19, respectively; see Haas et al., 2005; Cajigas &
Urga, 2005; Cappiello et al., 2003; and Vinod, 2005)

« Under positive correlation at least as extreme as
typical returns (IMPORTANT! NOT carefully
examined in literature on a 2-sample é\q tests)
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7. Simulation Study - Results

e As shown in Graph 4, excellent
convergence to nominal level a under
“real world” skewness and
leptokurtosis of APD simulated returns,
even for large values of SR, = 3R..
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7. Simulation Study - Results

 Under “realistic” skewed and
leptokurtotic APD-simulated returns,
note the dramatic increases in power
under strong, positive correlation,
which is typical for Sharpe ratio
comparisons in practice.
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Figure 5a: Power — SR,=0.0, SR,=0.1
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Figure 5b: Power — SR,=0.0, SR,=0.2

1.00

/E]

0.75

0.50

Rejection Rate

k

0.25

0.00

f( o

T T T T T
50 100 150 200 250
#T Periods

[~#—2=0.00 5-0.25 8050 075

Figure 5¢c. Power — SR,=0.0, SR,=0.5
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Figure 5d: Power — SR,=0.2, SR,=0.4
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Figure 5e: Power — SR,=1.0, SR,=1.5
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Figure 5f: Power — SR;=3.0, SR,=3.5
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8. Using Actual Returns - Mutual Funds

 Christie (2005) finds that, when based on
actual returns data, statistically significant
differences between Sharpe ratios remain
elusive due to large variances.

. However, V@l finds statistically
significant differences between the Sharpe
ratios of several randomly selected large
growth mutual funds right off the bat!
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8. Using Actual Returns - Mutual Funds

 For the period 09/01 through 08/06, take the
monthly returns of:
— Fidelity’s Contrafund (FCNTX)
— Janus Growth & Income (JAGIX)
— Vanguard Growth Index (VIGRX)
— 90-day Treasury Bill rate (divided by 12).

 Only Fidelity approaches statistically
significant positive excess returns, as
indicated by SR > O (one-sided p-values of
0.074, 0.320, and 0.477, respectively).
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8. Using Actual Returns - Mutual Funds

However, the strong, positive correlations
between them give Valy« greater
precision, and thus, greater power to
detect differences between their Sharpe

Ratios.

Ho: SRFidelity £ SRJanus, p = 0.047
Ho: SRFidelity £ S= Vanguard, p = 0.030
Ho: SRJanus = SRkVanguard, p =0.195
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8. Using Actual Returns - Mutual Funds

o~ Pearson’s
Null Hypothesis, Ho: R gsf?pt't Opdyke (2006)
R h one-sided p-value
SRFidelity < 0 0.20 0.074
SRJanus <0 0.06 0.320
SRVanguard £ 0 0.01 0.477
RFidelity < SRJanus 0.14 | 0.86 0.047
SRFidelity < SRVanguard 0.19 | 0.77 0.030
SRJanus < SRVanguard 0.05| 0.90 0.195
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9. Conclusions
Major contributions of this study:

* It generalized the only useable version of the
asymptotic distribution of <R to very realistic
conditions, requiring only stationary and ergodic
returns with converging 3 & 4" moments.

« ltderived an easily used 2-sample statistic for
( R, — R. ) that nests the normal iid derivation of
Jobson & Korkie (1981) and has excellent level
control under real-world data conditions (i.e.
asymmetric, leptokurtotic, and highly correlated
returns based on finite samples).
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9. Conclusions

Power of the 2-sample statistic is generally
modest, but it increases dramatically under
strong, positively correlated returns: since
most Sharpe Ratio comparisons are apples-to-
apples, this is the rule rather than the
exception!

Therefore, as it would be used in practice, the
statistic appears to have GOOD power, as
demonstrated by a comparison of actual
mutual fund returns.
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