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1. Why Consider       ?
• Ubiquitous in Financial Analysis
• Funds and Fund Managers worldwide are 

continuously ranked according to their Sharpe 
Ratios.  This ordering means little without 
statistical inference: how certain are we that 
one sample�s       really is larger than that of 
another?  Comparisons via ranking are implicit 
pairwise hypothesis tests:

• Important theoretical foundations: CAPM & MPT
0 :   v.  :  b a A b aH SR SR H SR SR≤ >

!SR

!SR
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i. Using StdDev of EXCESS returns

2. Two Common Definitions
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ii. Using StdDev of returns

2. Two Common Definitions
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• As an empirical matter, if the risk-
free rate is not actually constant, it 
will be nearly so, making                   , 
so for all practical purposes, 
definition ii) is appropriate.

2. Two Common Definitions

ˆ ˆs ftσ σ"
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• Jobson & Korkie (1981) under iid normality:

• Lo (2002) presented same result, but misread 
by many as iid generally, not NORMAL iid
(normality implied in a footnote).  See Getmansky
et al. (2004), Hennard & Aparicio (2003), Lee 
(2003), McLeod & van Vurren (2004), and Pinto & 
Curto (2005).

3. Asymptotic Distribution of 
Under iid Normality

!SR
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• Lo (2002) uses variance of estimated 
variance for a normal distribution
when using delta method to get 
variance of     .                     

• More generally, 

3. Asymptotic Distribution of 
Under iid Normality

!SR

!( )2 42σσ =Var

!( )2 4
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• Using the more general result leads to

• Mertens (2002) presents this, but he does 
not generalize beyond iid returns, as is 
done by Christie (2005).

4. Asymptotic Distribution of 
Generally

!SR
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• Christie (2005) uses a GMM approach to obtain:

• This is quite unwieldy, but valid under very 
general conditions, requiring only stationary 
and ergodic returns.  It thus allows for time-
varying conditional volatilities, serial 
correlation, and even non-iid returns.

• However, this is identical to Mertens (2002)!

4. Asymptotic Distribution of 
Generally

!SR
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Equivalence of Asymptotic Distributions of Christie (2005) and Mertens (2002) 
 

Under only the requirements of stationarity and ergodicity, Christie (2005) derives (C21), 
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which is Merten’s (2002) result, and that derived in Appendix A. 

 

                                                 
13 As previously  mentioned, even if the variance of the risk-free rate is not literally zero, as is often the case, as a practical empirical 
matter it can be treated as zero, and its arithmetic mean used as the presumed constant rate (so above, let ˆft f fR Rµ= = ).  
Covariances of the risk-free rate with fund returns, too, can be treated as zero as an empirical matter.  Mathematically, these 
assumptions are necessary for the above simplification. 
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•

• Note that only SR, skewness, and kurtosis of the 
returns determine the distribution of       .

• So asymptotically, no moments beyond the fourth 
affect the distribution of        .  This is shown by 
distribution in Graph 1.  Consistent with the 
empirical evidence, it shows that assuming 
normality could be a poor basis for inference.  

4. Asymptotic Distribution of 
Generally
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• However, with this more mathematically 
tractible derivation we can see now that, in 
addition to stationarity and ergodicity, 
converging third and fourth moments are 
required for the convergence of the 
asymptotic distribution of      .

• An apparently non-trivial number of financial 
instruments have diverging fourth moments, 
so this is important to note.

4. Asymptotic Distribution of 
Generally

!SR
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• Because        is convex, its estimator will be 
biased due to Jensen�s inequality:

• Christie (2005) obtains a 2nd order Taylor 
series expansion of        about     , and then a 
1st order expansion of      about      to obtain 
the distribution of    .  However, like Lo (2002), 
he uses Var(     ) =       ,  valid only under 
normality!

5. Small Sample Bias of !SR
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• Christie (2005) obtains:

which not surprisingly, resembles the asymptotic 
distribution under normal returns. 

• Using the more appropriate Var(      ) =                  ,

which not surprisingly, resembles the asymptotic 
distribution generally.

5. Small Sample Bias of !SR
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• So for small sample estimates of        , 
divide       by 

to obtain an approximately unbiased 
estimate.

• Simulations show this works very well

5. Small Sample Bias of !SR

4
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• are asymptotically unbiased normally
distributed variables, so by CLT, their linear 
combination is asymptotically unbiased & normal.

• Statistic =                                               , Ho: ,

6. Asymptotic Distribution of

! !( ) ( ) ! !( ) − − − = − =
 b a b ab aVar SR SR SR SR Var SR SR

!( ) !( ) !( ) ! !( )2 ,= + −diff b a b aVar SR Var SR Var SR Cov SR SR

! ! &  a bSR SR

! !( ) ( )− − −b a b aSR SR SR SR

!diffSR

=b aSR SR
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• Jobson & Korkie (1981) solved for normal iid returns; 
improved upon by Memmel (2003).

• But we now know returns are not normal.

• Vinod & Morey (2000) used the bootstrap and the 
double bootstrap, but this is computationally 
intensive, and bootstrap-based variance estimates 
are notoriously poor under asymmetric heavy tails, 
and even symmetric heavy tails (see Rocke & Downs, 
1981, Gosh et al., 1984, and Salibian-Barrera, 1998), 
so caution is warranted with this approach.

6. Asymptotic Distribution of !diffSR
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• Previous work on distribution of a single        
used the delta method (Jobson & Korkie, 
1981; Lo, 2002; and Memmel, 2003), so why 
not use it to derive the two-sample statistic?

• If a function is continuous and continuously 
differentiable (loosely speaking), then the 
delta method obtains its variance if the 
random variables it uses are asymptotically 
normal.

!SR

6. Asymptotic Distribution of !diffSR
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delta method yields:
2
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• When returns are normal iid, 

and

reduces to Jobson & Korkie (1981), as shown 
below.

• Note also that when                                          
and                , so the entire covariance term 
disappears, as it should.

4 3
4 3 1,23,  0,  0µ σ µ σ µ= = =

( )2 2 2
2 ,2 ,1 2 ,  so µ ρ σ σ= +a b a b a b diffVar

2 2
, 2 ,20,  a b a b a bρ µ σ σ= =

6. Asymptotic Distribution of !diffSR

1,2 0µ =
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Variance of the Difference Between Two Sharpe Ratios  

If aSR and bSR are the respective Sharpe ratios for the returns (Rat and Rbt) of funds “a” and “b,” then use the “delta 

method”14 (see Greene, 1993, and Stuart & Ord, 1994) to obtain the asymptotic variance of ¶ ¶( ) ( )− − −a b a bSR SR SR SR : 
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Since ( ) ( ) [ ]( ) [ ]( ) [ ]( )4 2 22 2 2 4 4 2 2
4,σ σ σ µ σ σ σ σ   = = = − = − − = − − −      a a a a a a a aVar Cov E a E a E a E a a E a ,                 

                                                 
14 The delta method is a widely used technique that provides an asymptotic approximation of the variance of a particular function (see 
Greene, 1993, pp.297-298, and Stuart & Ord, 1994, p.350).  It is valid as long as the random variables used in the function are 
asymptotically normal, and the function is (loosely speaking) continuous and continuously differentiable.  The former assumption is 
true in this case, since the sample mean and the sample variance are asymptotically normal.  The latter assumption clearly is violated if 
the variance of returns is zero.  This will never actually occur in practice using real data samples, but if the variance approaches  zero, 
making the Sharpe ratio highly nonlinear, delta method estimates will become unstable, as correctly noted by Vinod & Morey (2000).  
However, this scenario, too, arguably will affect few, if any cases in practice, as the variances of the returns of most, if not all funds or 
stocks that would be of enough interest to be subjected to Sharpe ratio comparisons are quite far from zero; if they were not, there 
would be nothing to compare!  Still, it is important to note the limitations of analytical methods relied upon in any study, in case their 
domain of application changes.  Jobson & Korkie (1981), Lo (2002), Memmel (2003), and Mertens (2002) all use the delta method in 
their studies of Sharpe ratios, thus supporting its practical use here. 
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So analogous to the variance of the distribution of a single ¶SR , (6), the variance of the difference between two ¶SRs  is  
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Note that when 2 2
, 2 ,20, ρ µ σ σ= =a b a b a b , 1 , 2 0a bµ = , and 1 , 2 0b aµ = , so the entire covariance term of diffVar  disappears, 

as it should. 

Minimum variance unbiased estimators of 1 , 2a bµ , 1 , 2b aµ , & 2 ,2µ a b  are the respective h-statistics 1 ,2a bh , 1 ,2b ah , & 

2 ,2a bh , where  ( ) ( )2 2
1,2 0,1 1,0 0,2 1,0 0,1 1,1 1,22 2 1 2h s s ns s s s n s n n n   = − − + − −    , and 2,2h =  

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2
0,1 1 , 0 0,21,0 0,11 ,01 ,1 1,1 1,01,2 0,1 2,0 0,2 2,0 0,12,1 2,23 4 2 2 3 2 2 3 2 3 2 2 3 2 3 = − + + − − − − + + − − − − + + − +

 
s s ns s ns s s n s n n s s s s n s s n n s s n n n s

( ) ( )( ) 3 2 1 − − − n n n n ,  where ,x ys  are the simple power sums of ,
1=

= ∑
n

yx
x y i i

i

s a b  (see Rose & Smith, 2002, pp.259-260). 

This derivation is valid under iid returns, but because the one-sample estimator (6), derived using the same (delta) 
method (a la Mertens, 2002), was shown in Appendix B to be valid under the more general conditions afforded by its 
(identical) GMM derivation (a la Christie, 2005), we suspect those more general conditions of stationarity and ergodicity 
are the only requirements for the two-sample estimator of (13) as well.  Proving this is the topic of continuing research. 
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Equivalence of  Vardiff  with Memmel (2003) and Jobson & Korkie (1981)  
 

Under iid normality, Memmel’s (2003) correction of Jobson and Korkie’s (1981) variance of the two-sample s tatistic 
for the difference between two Sharpe ratios is: 

( )2 2 2
, ,

1
2 2 2

2
ρ ρ= = − + + −a b a b a b a bVar TV SR SR SR SR  

Under normality, TV is identical to diffVar , as shown below: 

2 2
1 , 2 1 , 2 2 ,24 3 4 3

,4 3 2 4 3 2 2 21 1 1 1 2 1
4 4 4

b a a b a ba a a b b b a b
diff a a b b a b

a a b a b b a b a b

SR SR SR SR
Var SR SR SR SR

µ µ µµ µ µ µ
ρ

σ σ σ σ σ σ σ σ σ σ

      
= + − − + + + − − + − + −      

            
 

Under iid normality, 3
3 0µ σ = , 1,2 0µ = , 4

4 3µ σ = ,  & ( )2 2 2
2 ,2 ,1 2µ ρ σ σ= +a b a b a b  (see Stuart & Ord, 1994, p.105), so 

[ ] [ ]
( )2 2 2 2 22 2 ,

, 2 2

1 2
1 3 1 0 0 1 3 1 0 0 2

4 4 4
a b a b a ba b a b

diff a b
a b

SR SR SR SRVar
ρ σ σ σ σ

ρ
σ σ

  + −  = + − − + + + − − + − + =  
    

 

           
2 2

2
, ,2 2 2

2 2 4
ρ ρ

  = + + − +   
a b a b

a b a b
SR SR SR SR

 

           2 2 2
, ,

1
2 2 2

2a b a b a b a bSR SR SR SR TVρ ρ = − + + − =  , which is Memmel’s (2003) result.  
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• Limitations of delta:  Estimates become 
unstable when function is highly nonlinear.  
This would occur for        if       approaches 
zero.  Also,        obviously is not continuous 
or continuously differentiable at 

• However, this is not a problem for practical 
usage, since there would be nothing to 
compare if       was close to zero!  The 
problem in practice is not too little variance, 
but rather, too much (see Christie, 2005). 

2σ

2σ

2 0.σ =
!SR

!SR

6. Asymptotic Distribution of !diffSR
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• Asymptotics are fine, but how does
perform under realistic data conditions 

� returns that are:
i. Leptokurtotic (i.e. �heavy tailed�)

ii. Asymmetric

iii. Strongly (positively) correlated with each other

iv. Based on finite sample sizes

7. Simulation Study

diffVar
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• Use Komunjer�s (2006) Asymmetric Power 
Distribution (APD) for simulation study 
testing empirical level and power.

• APD has skewness (α) and kurtosis (λ) 
parameters and nests the normal, Laplace, 
asymmetric (2-piece) normal, and asymmetric 
Laplace.  These all have been used 
extensively in the empirical finance literature.

7. Simulation Study
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Figure 2: Asymmetric Power Distribution by a by ? (all densities standardized so that Variance = 1.0) 
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Simulation Distributions: APD of Komunjer (2006)  
 

Komunjer (2006) gives the density of the asymmetric power distribution (APD) below:  

( )
( )

( ) ( )

1
, ,

1
, ,

exp           if 0,
1 1

 
exp     if 0,

1 1 1

λ
λα λ α λ

λ

λ
λα λ α λ

λ

δ δ
λ α

δ δ
λ α

 
− ≤ Γ +  

=
 
− > 

Γ + −  

u u

f u
u u

 where 0 < a < 1, ? > 0, and 
( )
( ),

2 1
 

1

λλ

α λ λλ

α α
δ

α α

−
≡

+ −
 

The a parameter controls skewness, with symmetry at a = 0.5, and ? controls kurtosis, such that when a = 0.5, ? = 8 ?  
the uniform distribution, ? = 1.0 ?  the Laplace distribution (with variance = 2.0), and ? = 2.0 ?  the normal distribution 
(with variance = 0.5).  When a ? 0.5, ? = 1.0 ?  the Asymmetric Laplace distribution of Kozubowski & Podgorski 
(1999), and ? = 2.0 ?  the two-piece normal distribution (see Johnson, Kotz & Balakrishnan, 1994, vol. 1 p.173 and vol. 
2 p.190).  Thus does APD allow simultaneous control over skewness and kurtosis, nesting the normal and Laplace 
densities, and asymmetric versions of each, as well as any “in between” combination of asymmetry and kurtosis .   

Location and scale are accommodated via the simple transformation:  θ φ≡ +X U  

APD moments are given by: 

( ) ( )( )
( )

( ) ( )1 1

,

1 1 1
1 λ

α λ

λ α α
λ δ

+ +Γ + − + −
=

Γ

r r r
r

r

r
E U (see Table III below).  So for example, 

( ) ( )
( ) ( ) 1

,

2
1 2

1
λ

α λ

λ
α δ

λ
−Γ

= −
Γ

E U      and   ( )
( ) ( ) ( ) [ ]

( )

2 22
2
,2

3 1 1 3 3 2 1 2

1
λ

α λ

λ λ α α λ α
δ

λ
−

 Γ Γ − + − Γ −   =
Γ  

Var U  

To standardize the APD for the simulations presented in this study, U is modified by  u’ =  u / sqrt[Var(u)] (because, for 
example, when a = 0.5 and ? = 1.0, Var(U)  = 2.0, and when a = 0.5 and ? = 2.0, Var(U)  = 0.5). 

 
Table III:  Skewness ? 3 and Kurtosis ? 4 of APD by Values of a and ?  

 

Special-case Nested Distribution a ? Skewness ? 3  Kurtosis  ? 4 
Asymmetric Laplace 0.1 / 0.9 1.00 ± 2.2311 6.6485 
 0.1 / 0.9 1.25 ± 1.9870 5.0165 
 0.1 / 0.9 1.50 ± 1.8415 4.1686 
 0.1 / 0.9 1.75 ± 1.7457 3.6595 
Two-piece normal 0.1 / 0.9 2.00 ± 1.6784 3.3243 
Asymmetric Laplace 0.3 / 0.7 1.00 ± 2.1867 7.4726 
 0.3 / 0.7 1.25 ± 1.9474 5.6383 
 0.3 / 0.7 1.50 ± 1.8048 4.6853 
 0.3 / 0.7 1.75 ± 1.7109 4.1131 
Two-piece normal 0.3 / 0.7 2.00 ± 1.6450 3.7363 
Laplace (variance = 2.0) 0.5 1.00 0.0000 6.0000 
GPD 0.5 1.25 0.0000 4.5272 
GPD 0.5 1.50 0.0000 3.7620 
GPD 0.5 1.75 0.0000 3.3026 
Normal (variance = 0.5) 0.5 2.00 0.0000 3.0000 
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N = 10,000 simulations run for over 5,200 
combinations of:

• Sample size (T = 15, 30, 50, 100, 300)
• configurations; sizes of 
• Skewness (range used = η3 = ±2.23)
• Kurtosis (range used = η4 = ±7.47)
• Correlation between the two series of 

returns (           0.00, 0.25, 0.50, 0.75)

7. Simulation Study

2/µ σ !SR

,ρ =a b
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Many results, but key results include:
• Under concurrent skewness and leptokurtosis at 

least as extreme as typical returns (used α = 0.7 & 
λ = 1.35 for skewness & kurtosis of η3 = -1.88 & η4 = 
5.19, respectively; see Haas et al., 2005; Cajigas & 
Urga, 2005; Cappiello et al., 2003; and Vinod, 2005)

• Under positive correlation at least as extreme as 
typical returns (IMPORTANT!  NOT carefully 
examined in literature on a 2-sample        tests)

7. Simulation Study - Results

!SR
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• As shown in Graph 4, excellent 
convergence to nominal level α under 
�real world� skewness and 
leptokurtosis of APD simulated returns, 
even for large values of                    .

7. Simulation Study - Results

a bSR SR=



DataDataDataDataDataDataDataDataMMMMMMMMIIIIIIIIneneneneneneneneItItItItItItItIt SM

©J.D. Opdyke

Page 36 of 47

0.00

0.05

0.10

0.15

0 50 100 150 200 250 300

T  Periods

R
ej

ec
tio

n 
R

at
e

0.0
0.2
1.0
3.0

GRAPH 4
Level of 2-sample Estimator 

Under �Real World� APD Returns by ρ by SR by T
SRa = SRb = 

0.00

0.05

0.10

0.15

0 50 100 150 200 250 300

T  Periods

R
ej

ec
tio

n 
R

at
e

0.0
0.2
1.0
3.0

0.00

0.05

0.10

0.15

0 50 100 150 200 250 300

T  Periods

R
ej

ec
tio

n 
R

at
e

0.0
0.2
1.0
3.0

0.00

0.05

0.10

0.15

0 50 100 150 200 250 300

T  Periods

R
ej

ec
tio

n 
R

at
e

0.0
0.2
1.0
3.0

ρ = 0.75

ρ = 0.25

ρ = 0.50

ρ = 0.00

SRa = SRb = 

SRa = SRb = SRa = SRb = 



DataDataDataDataDataDataDataDataMMMMMMMMIIIIIIIIneneneneneneneneItItItItItItItIt SM

©J.D. Opdyke

Page 37 of 47

• Under �realistic� skewed and 
leptokurtotic APD-simulated returns, 
note the dramatic increases in power 
under strong, positive correlation, 
which is typical for Sharpe ratio 
comparisons in practice.

7. Simulation Study - Results



                       © J.D. Opdyke 

 

DDaattaaMMIInneeIItt 
 
Figure 5a:  Power – SRa=0.0, SRb=0.1 Figure 5b:  Power – SRa=0.0, SRb=0.2 
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Figure 5c:  Power – SRa=0.0, SRb=0.5 Figure 5d:  Power – SRa=0.2, SRb=0.4 
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Figure 5e:  Power – SRa=1.0, SRb=1.5 Figure 5f:  Power – SRa=3.0, SRb=3.5 

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200 250 300

# T Periods

R
ej

ec
tio

n
 R

at
e

? = 0.00 0.25 0.50 0.75  

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200 250 300

# T Periods

R
ej

ec
ti

o
n

 R
at

e

? = 0.00 0.25 0.50 0.75  
 

Page 38 of 47 



DataDataDataDataDataDataDataDataMMMMMMMMIIIIIIIIneneneneneneneneItItItItItItItIt SM

©J.D. Opdyke

Page 39 of 47

• Christie (2005) finds that, when based on 
actual returns data, statistically significant 
differences between Sharpe ratios remain 
elusive due to large variances.

• However,              finds statistically 
significant differences between the Sharpe 
ratios of several randomly selected large 
growth mutual funds right off the bat!

8. Using Actual Returns - Mutual Funds

diffVar
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• For the period 09/01 through 08/06, take the 
monthly returns of:
– Fidelity�s Contrafund (FCNTX)
– Janus Growth & Income (JAGIX)
– Vanguard Growth Index (VIGRX)
– 90-day Treasury Bill rate (divided by 12).

• Only Fidelity approaches statistically 
significant positive excess returns, as 
indicated by             (one-sided p-values of 
0.074, 0.320, and 0.477, respectively).

8. Using Actual Returns - Mutual Funds

0>SR
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• However, the strong, positive correlations 
between them give             greater 
precision, and thus, greater power to 
detect differences between their Sharpe 
Ratios.

• Ho:     -Fidelity ≤ -Janus,        p = 0.047
Ho:     -Fidelity ≤ - Vanguard, p = 0.030
Ho:     -Janus ≤ -Vanguard,  p = 0.195

8. Using Actual Returns - Mutual Funds

diffVar

SR SR
SR SR

SRSR
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8. Using Actual Returns - Mutual Funds

SR

!SR
!

diffSR
,

SR
SR
SR
SR
SR

SR
SR
SR



DataDataDataDataDataDataDataDataMMMMMMMMIIIIIIIIneneneneneneneneItItItItItItItIt SM

©J.D. Opdyke

Page 43 of 47

Major contributions of this study:

• It generalized the only useable version of the 
asymptotic distribution of       to very realistic 
conditions, requiring only stationary and ergodic
returns with converging 3rd & 4th moments.

• It derived an easily used 2-sample statistic for
(                ) that nests the normal iid derivation of 
Jobson & Korkie (1981) and has excellent level 
control under real-world data conditions (i.e. 
asymmetric, leptokurtotic, and highly correlated 
returns based on finite samples).

9. Conclusions

!SR

! !
b aSR SR−
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• Power of the 2-sample statistic is generally 
modest, but it increases dramatically under 
strong, positively correlated returns: since 
most Sharpe Ratio comparisons are apples-to-
apples, this is the rule rather than the 
exception!

• Therefore, as it would be used in practice, the 
statistic appears to have GOOD power, as 
demonstrated by a comparison of actual 
mutual fund returns.

9. Conclusions
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