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ABSTRACT: 
  
In operational risk measurement, severity distribution parameter estimation is the main driver of 
the aggregate loss distribution, yet it  remains a non-trivial challenge for many 
reasons.  Maximum likelihood estimation (MLE) does not adequately meet this challenge 
because of its well-documented non-robustness to modest violations of idealized textbook model 
assumptions (e.g. independent and identically distributed (i.i.d.) data, which OpRisk loss event 
data clearly violate).  Even under i.i.d. data, the expected value of capital estimates based on 
MLE is biased upwards due to Jensen’s inequality.  This overstatement of the true risk profile 
increases as the heaviness of the severity distribution tail increases, so dealing with data 
collection thresholds by using truncated distributions, which have thicker tails, increases MLE’s 
bias considerably.  In addition, truncation typically induces dependence between a distribution’s 
parameters (if not there already), and this exacerbates the non-robustness of MLE.  This paper 
derives influence functions for MLE under a number of severity distributions, truncated and not, 
to analytically demonstrate its non-robustness.  Simulations and empirical influence functions are 
then used to empirically compare its statistical properties (robustness, efficiency, and 
unbiasedness) to those of robust alternatives such as OBRE and a common minimum distance 
estimator (CvM).  SLA (single- loss approximation) translates these parameter estimates into 
(VaR) estimates of regulatory capital requirements.  These results show that OBRE estimators 
are very promising alternatives to MLE for use with actual OpRisk loss event data, whether 
truncated or not, when the ultimate goal is to obtain accurate (non-biased) capital estimates. 
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Operational Risk
Basel II/III

Advanced Measurement Approach
Risk Measurement & Capital Quantification

Loss Distribution Approach
Frequency Distribution
Severity Distribution* (arguably the main driver of the

aggregate loss distribution)

1. The OpRisk Setting and the Specific Objective

* Dependence between the frequency and serverity distributions under some circumstances is addressed later in the presentation.

** Technically, the term �efficient� can refer to an estimator that achieves the Cramér-Rao lower bound.  Hereafter in this presentation, the terms 
�efficient� and �efficiency� are used in a relative sense, as in having a lower mean squared error relative to that of another estimator.  See 
Appendix I.

Specific Objective: 
Develop a method to estimate the parameters of the severity 
distribution based on the following criteria � unbiasedness, 
(relative) efficiency,** and robustness � with an emphasis on how 
these affect (right) tail-fit for capital estimation. 
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Maximum Likelihood Estimation (MLE):
�MLE does not inappropriately downweight extreme observations as do most/all robust statistics.  

And focus on extreme observations is the entire point of the OpRisk statistical modeling exercise!  Why 
should we even partially ignore the (right) tail when that is where and how capital requirements are 
determined?!  That�s essentially ignoring data � the most important data � just because its hard to 
model!�

Robust Statistics:
�All statistical models are merely idealized approximations of reality, and OpRisk data clearly 

violate the fragile, textbook model assumptions required by MLE (e.g. iid data).  And even under iid data, 
the expected value of high quantile estimates based on MLE parameter estimates is biased upwards for 
(right-skewed) heavy-tailed distributions (i.e. OpRisk severity distributions) due to Jensen�s inequality 
(and this, of course, inflates OpRisk capital estimates).  Robust Statistics explicitly and sytemmatically
acknowledge and deal with non-iid data, sometimes using weights to avoid bias and/or inefficiency
caused by unanticipated or unnoticed heterogeneity.  And an ancillary benefit is mitigation of the bias in 
capital estimates due to Jensen�s inequality.  Consequently, under real-world, finite-sample, non-iid
OpRisk loss data, Robust Statistics typically exhibit less bias, equal and sometimes even greater 
efficiency, and far more robustness than does MLE.  These characteristics translate into a more reliable, 
stable estimation approach, regardless of the framework used by robust statistics (i.e. multivariate 
regression or otherwise) to obtain high quantile estimates of the severity distribution.

2. MLE vs. Robust Statistics: Point-Counterpoint

�to be revisited
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• Due to the nature of estimating the far right tail of the OpRisk loss event 
distribution, and the relative paucity of data, some type of parametric 
statistical estimation is required.

• OpRisk data poses many serious challenges for such a statistical 
estimation, as described on slides 7-8.

• The validity of MLE, the �classical� approach, relies on assumptions 
clearly violated by the data.

• Are these violations are material in their effects on MLE? Are high 
quantile estimates based on MLE parameter estimates too volatile, biased, 
and/or non-robust for use in OpRisk severity distribution parameter 
estimation?  To answer this, analytic results are derived (simulations are 
merely confirmatory) borrowing from the toolkit of robust statistics, which 
are examined as possible alternatives to MLE should the objections 
against it have merit.

2. MLE vs. Robust Statistics: Point-Counterpoint
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Some Specific Questions to be Answered:
• Does MLE become unusable under relatively modest deviations from i.i.d., 

especially for the heavy-tailed distributions used in this setting, or are these claims 
overblown?

• Is the bias of the expected value of MLE-based capital estimates large?
• Do analytical derivations of the MLE Influence Functions for severity distribution 

parameters support or contradict such claims?  Are they consistent with 
simulation results?  How does (possible) parameter dependence affect these 
results?  

• Do these results hold under truncation?  How much does truncation and the size of 
the collection threshold affect both MLE and Robust Statistics parameter 
estimates?

• Are widely used, well established Robust Statistics viable for severity distribution 
parameter estimation?  Are they too inefficient relative to MLE for practical use?  
Do any implementation constraints (e.g. algorithmic/convergence issues) trip them 
up?

2. MLE vs. Robust Statistics: Point-Counterpoint
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1. Relatively few actual data points on loss events
2. Extremely few actual data points on low frequency, high severity losses
3. The heavy-tailed nature of most relevant severity distributions
4. Heterogeneity, even within well-defined units of measure
5. The (left) truncated nature of most loss event data (since smaller losses below a threshold 

typically are ignored)
6. The changing nature, from quarter to quarter, of some of the data already in hand (e.g. 

financial restatements, dispute resolutions, etc.)
7. The real potential for a large quarter of new data to non-trivially change the severity 

distribution
8. The real potential for notable heterogeneity in the form of true, robustly defined statistical 

outliers (not just extreme events)
9. The ultimate need to estimate an extremely high quantile of the severity distribution

3. OpRisk Empirical Challenges
The following characteristics of most Operational Risk loss event data make estimating severity 
distribution parameters very challenging, and are the source of the MLE vs. Alternatives debate:

• Moreover, the combined effect of 1-9 increases estimation difficulty far more than the sum of the 
individual challenges (for a nice descriptive summary, see Cpe et al., 2009).

• Bottom line: OpRisk loss data is most certainly not independent and identically distributed 
(�i.i.d.�), which is a presumption of MLE; and even if it was iid, the expected value of high 
quantile estimates based on MLE estimates is biased due to Jensen�s inequality.  For the 
relevant heavy-tailed severity distributions, this bias is notable, as shown on pp.64-68 below.
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A. Unusably large variances on the parameter estimates
B. Extreme sensitivity in parameter values to data changes (i.e. financial restatements, 

dispute resolutions, etc.) and/or new and different quarters of loss data.  This would 
translate into a lack of stability and reliability in capital estimates from quarter to quarter.

C. Unreasonable sensitivity of parameter estimates to very large losses
D. Unreasonable sensitivity of parameter estimates to very small losses (this counter-

intuitive result is documented analytically below)
E. Due to any of A-D, unusably large variance on estimated severity distribution (high) 

quantiles
F. Due to any of A-E, unusably large variance on capital estimates
G. A theoretical loss distribution that does not sync well with the empirical loss distribution: 

the quantiles of each simply do not match well.  This would not bode well for future 
estimations from quarter to quarter even if key tail quantiles in the current estimation are 
reasonably close.

H. Bias in MLE-based capital estimates

3. OpRisk Empirical Challenges
The practical consequences of 1-9 above for OpRisk modeling can include:

• So in the OpRisk setting, when estimating severity distribution parameters (using finite 
samples), the statistical criteria of unbiasedness, efficiency, and robustness are critical and 
directly determine the degree to which capital estimates from quarter to quarter are stable, 
reliable, precise, and robust.

• A quantitative definition of statistical �robustness� (more precisely, �B-robustness�) is provided 
in the next several slides, after a brief definition of maximum likelihood estimation (MLE).
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4. Maximum Likelihood Estimation (MLE)

• Maximum Likelihood Estimation (MLE) is considered a �classical� approach to 
parameter estimation.

• MLE parameter estimates are the values that maximize the likelihood, under the 
assumed model, of observing the data sample at hand.

• When the assumed model is in fact the true generator of the data, and those data are 
independent and identically distributed (�i.i.d.�), MLE estimates are asymptotically
unbiased (�consistent�), asymptotically normally distributed, and asymptotically
efficient (i.e. they achieve the Cramér-Rao lower bound � see Appendix I).

• MLE values are obtained in practice by maximizing the log-likelihood function.

• As an example, derivations of MLE estimates of the parameters of the LogNormal
distribution are shown below.

• NOTE: While MLE parameter estimates are asymptotically unbiased, the expected value 
of high quantiles (capital estimates) based on them actually IS biased due to Jensen�s 
inequality.  This is a well established analytical result (for right-skewed severity 
distributions) confirmed by the capital simulations shown on pp.64-68.  The magnitude 
of this bias is notable and larger the thicker is the tail of the severity distribution.
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4. Maximum Likelihood Estimation (MLE)

For example, assuming an i.i.d. sample of n observations                       from the 
LogNormal distribution

• The likelihood function =

• The log-likelihood function = 

• Then  

• So simply maximize the objective function 
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4. Maximum Likelihood Estimation (MLE)
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4. Maximum Likelihood Estimation (MLE)
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4. Maximum Likelihood Estimation (MLE)

• When the log-likelihood cannot be simplified to obtain closed-form algebraic 
solutions, numerical methods often can be used to obtain its maximum.  For 
example, for the parameters of the Generalized Pareto Distribution (GDP), 
Grimshaw (1993) used a reparameterization to develop a numerical algorithm that 
obtains MLE estimates.  Similarly, for the LogGamma distribution, Bowman & 
Shenton (1983, 1988) provide numerical methods to obtain MLE parameter 
estimates.  For heavy-tailed severity distributions used in this setting (and 
generally), the use of numerical methods to obtain MLE estimates of distributional 
parameters is the rule rather than the exception (so MLE proponents cannot use 
this as an objection to other methods of estimation).
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5a. Robust Statistics: Background and the IF

• The theory behind Robust Statistics is well developed and has been in use for nearly 
half a century (see Huber, 1964).  Textbooks have institutionalized this sub-field of 
statistics for the past 30 years (see Huber, 1981, and Hampel et al., 1986).

• Robust Statistics is a general approach to estimation that recognizes all statistical 
models are merely idealized approximations of reality.  Consequently, one of its main 
objectives is bounding the influence on the estimates of a small to moderate number of 
data points in the sample that deviate from the assumed statistical model.  

• Why?  So that in practice, when actual data samples generated by real-world processes 
do not exactly follow mathematically convenient textbook assumptions (e.g. all data 
points are not perfectly �i.i.d.�), estimates generated by robust statistics do not 
�breakdown� and provide meaningless, or at least notably biased and inaccurate, 
values: their values remain �robust� to such violations.  

• Based on the empirical challenges of modeling OpRisk loss data (which is most 
certainly not �i.i.d.�) satisfying this robustness objective would appear to be central to 
the OpRisk severity distribution parameter estimation effort: robust statistics may be 
tailor-made for this problem!  

• The tradeoff for obtaining robustness, however, is a loss of efficiency � a larger mean 
squared error (MSE � see Appendix I) � when the idealized model assumptions are true: 
if model assumptions are violated, robust statistics can be MORE efficient than MLE.
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5a. Robust Statistics: Background and the IF

• Perhaps the most useful analytical tool for assessing whether, and the degree to which, 
a statistic is �robust� in the sense that it bounds or limits the influence of arbitrary 
deviations* from the assumed model is the Influence Function (IF), defined below:

where

• is the distribution that is the assumed source of the data sample

• is a statistical functional, that is, a statistic defined by the distribution that is the 
(assumed) source of the data sample.  For example, the statistical functional for the 
mean is

• is a particular point of evaluation, and the points being evaulated are those that 
deviate from the assumed    .

• is the probability measure that puts mass 1 at the point .
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The Influence Function (IF)

* The terms �arbitrary deviation� and �contamination� or �statistical contamination� are used synonymously to mean data points that come from 
a distribution other than that assumed by the statistical model. They are not necessarily related to issues of data quality per se.
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• is simply the distribution that includes some proportion of the data,    , that is an 
arbitrary deviation away from the assumed distribution,    . So the Influence Function is 
simply the difference between the value of the statistical functional INCLUDING this 
arbitrary deviation in the data, vs. EXCLUDING the arbitrary deviation (the difference is 
then scaled by    ).

• So the IF is defined by three things: an estimator       , an assumed distribution/model     , 
and a deviation from this distribution,     (     obviously can represent more than one data 
point as     is a proportion of the data sample, but it is easier conceptually to view     as a 
single data point whereby                 : this is, in fact, the Empirical Influence Function 
(EIF) � see Appendix III). 

• Simply put, the IF shows how, in the limit (asymptotically as   , so as               ), an 
estimator�s value changes as a function of    , the value of arbitrary deviations away 
from the assumed statistical model,     .  In other words, the IF is the functional 
derivative of the estimator with respect to the distribution.
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5a. Robust Statistics: Background and the IF
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• IF is a special case of the Gâteaux derivative, but its existence requires even weaker 
conditions (see Hampel et al., 1986, and Huber, 1977), so its use is valid under a very 
wide range of application (including the relevant OpRisk severity distributions).  

5a. Robust Statistics: Background and the IF
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• If IF is bounded as     becomes arbitrarily large/small, the estimator is said to be �B-
robust�*; if IF is not bounded and the estimator�s values become arbitrarily large as 
deviations from the model become arbitrarily large/small, the estimator is NOT B-robust.

• The Gross Error Sensitivity (GES) measures the worst case (approximate) influence that 
an arbitrary deviation can have on the value of an estimator.  If GES is finite, an 
estimator is B-robust; if it is infinite, it is not B-robust.

• A useful example demonstrating the concept of B-robustness is the comparison of the 
IFs of two common location estimators: the mean and the median.  The former is 
unbounded with an infinite GES, and thus is not B-robust, while the latter is bounded, 
with a finite GES, and thus is B-robust. 

* �B� comes from �bias,� because if IF is bounded, the bias of the estimator is bounded.

( ) ( )* , sup ; ,GES T F IF x T F
x

γ= =

B-Robustness as Bounded IF

5a. Robust Statistics: Background and the IF

x
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IF mean

IF median

Graph 1: Influence Functions of the Mean and the Median
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• Because the IF of the mean is unbounded, a single arbitrarily large data point can render 
the mean meaninglessly large, but that is not true of the median.

• The IF of the mean is derived mathematically below (see Hampel et al., 1986, pp.108-109  
for a similar derivation for the median, also presented in Appendix II for convenience).

5a. Robust Statistics: Background and the IF
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Derivation of IF of the Mean: 
Assuming            , the standard normal distribution:F = Φ

( ){ } ( )
0

1
lim

xT F T F

ε

ε εδ
ε→

 − + −
 =
  

( ){ } ( ) ( )
0

1
lim

xud u ud u

ε

ε εδ
ε→

 − Φ + − Φ
 =
  

∫ ∫

( ) ( ) ( ) ( )
0

1
lim

xud u ud u ud u

ε

ε ε δ
ε→

 − Φ + − Φ
 =
  

∫ ∫ ∫

0
lim

x
ε

ε
ε→

 =    ( ) 0ud uΦ =∫ ( ); ,IF x T F x=

F ≠ Φ ( ) 0,udF u ≠∫ ( )
0

| , lim
xIF x T F x

ε

εµ ε µ
ε→

− + = = −  

, because so

Or if and then

( ) ( ) ( )
0

| , lim
T F T F

IF x T F ε

ε ε→

 −
=  

  

( ) ( ) ( )T F udF u uf u du= =∫ ∫
The statistical functional of the mean is defined by

, so�

5a. Robust Statistics: Background and the IF
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Many important robustness measures are based directly on the IF: brief definitions are 
presented below, with complete definitions listed in Appendix III.

� Gross Error Sensitivity (GES):  Measures the worst case (approximate) influence that a small 
amount of contamination of a fixed size can have on the value of the estimator.  If finite, the IF is 
bounded, and the estimator is �B‐robust.�

� Rejection Point:  The point beyond which IF = zero and data points have no effect on the estimate. 

� Empirical Influence Function:  The non‐asymptotic, finite‐sample influence function.
� Sensitivity Curves: The scaled, non‐asymptotic, finite‐sample influence function (the difference 

between two empirical functionals, one based on a sample with contamination, one without, 
multiplied by n.)

� Asymptotic Variance and ARE: The variance of the estimator, and the ratio of the variances of two 
estimators.

� Change‐in‐Variance Sensitivity:  For M‐estimators, the derivative of the asymptotic variance when 
contaminated, divided by the asymptotic variance.  Assesses how sensitive is the estimator to 
changes in its asymptotic variance due to contamination at F.  If finite, then estimator is �V‐
robust,� which is stronger than B‐robustness.

� Local Shift Sensitivity: Assesses how sensitive the estimator is to small changes in the values of 
the observations; what is the worst effect on an estimator caused by shifting an observation 
slightly from point x to point y? 

� Breakdown Point:  A measure of global robustness, not local robustness like IF.  The percentage of 
data points that can be contaminated with the estimator still providing useful information, that is, 
not �breaking down.�

5a. Robust Statistics: Background and the IF



© J.D. Opdyke
22

• As may now be apparent, the robust statistics approach, and the analytical toolkit on 
which it relies, can be used to assess the performance of a very wide range of 
estimators, regardless of how they are classified; it is not limited to a small group of 
estimators.  Hence, it has very wide ranging application and general utility.

• And a major objective of a robust statistics approach, as described above, is to bound 
the influence function of an estimator so that the estimator remains robust to deviations 
from the assumed statistical model (distribution). This approach would appear to be 
tailor-made to tackle many of the empirical challenges resident in OpRisk loss data.

• And as noted above, even under textbook iid data conditions, the expected value of 
capital estimates (high quantile estimates) based on MLE parameter estimates will be 
biased upwards (due to Jensen�s inequality), sometimes dramatically (see pp. 64-68).  
Mitigation of this bias is an ancillary benefit of at least one of the robust statistics 
studied herein.

5a. Robust Statistics: Background and the IF
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• The goal of this section is to derive the IFs of the MLE estimators of the parameters of 
the relevant severity distributions.  For this presentation-format of this paper, these 
distributions include: LogNormal, Truncated LogNormal, LogGamma, and Truncated 
LogGamma.  I have made similar derivations for additional severity distributions, but 
include only the above for the sake of brevity.  Additional distributions are included in 
the journal-format version of this paper.

• The point is to demonstrate analytically the non-robustness of MLE for the relevant 
estimations in the OpRisk setting, and hence the utility of IF as a heuristic and applied 
tool for assessing estimator performance.  For example, deriving the IF for the mean 
(the MLE estimator of the specified model) gave an analytical result above of

We know this is not B-robust because as      becomes arbitrarily 
large, so too does the IF: it is not bounded.  Graphs comparing the IFs of these MLE 
estimators to the corresponding IFs of robust estimators will be shown in Section 7 
(technically, the EIFs are compared, but the EIFs converge asymptotically to the IFs, and 
for the sample sizes used (n=250), the MLE IFs and MLE EIFs are virtually identical).

• In addition to determining whether any of the MLE estimators are B-robust, the IFs
demonstrate the ranges of contamination (   ) under which the estimators are the most 
volatile, show the relationships between a distribution�s parameters, and how those 
relationships may change under different conditions (such as truncation).

5b. IF Derived: MLE Estimators of Severity Parameters

( )| ,IF x T xµ µ= − x

x
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• New Results and Points of Note:

– Derivations of the IFs, MLE or otherwise, must account for dependence between 
the parameters of the severity distribution: this is something that sometimes has 
been overlooked in the relevant OpRisk severity modeling literature.

– IFs for the MLE estimators for the (left) truncated* distributions have not been 
reported in the literature: they are new results.

– OBRE previously has not been applied to truncated data (with one exception that 
does not use the standard implementation algorithm): so these, too, are new 
results.

– Truncation Induces Dependence/Extreme Sensitivity: Truncation induces 
dependence between the parameters of the severity distribution, if not there 
already (in which case truncation appears to augment it).  This is shown in the 
formulae and graphs of the IFs, and appears to be the source of the extreme 
�sensitivity� of MLE estimators of truncated distributions reported in the 
literature, based on simulations.  This is the first paper to present the analytic 
results under truncation.

5b. IF Derived: MLE Estimators of Severity Parameters

* Unless otherwise noted, all truncation herein refers to left truncation, that is, truncation of the lower (left) tail, because data collection thresholds 
for losses ignore losses below a specified threshold.  Under reasonable assumptions, truncation does induce dependence between the frequency 
and severity distributions, but this is ignored (as is often convention in this setting) for the purposes of this presentation.
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• MLEs belong to the class of �M-estimators,� so called because they generalize 
�M�aximum likelihood estimation.  Broad classes of estimators have the same form of IF 
(see Hampel et al. ,1986), so all M-estimators conveniently share the same form of IF. 

• M-estimators are consistent and asymptotically normal.

• M-estimators are defined as any estimator                         that satisfies

or                   where                                        

if the derivative of        exists, and           is defined on .

So for MLE:

5b. IF Derived: MLE Estimators of Severity Parameters
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• And for M-estimators, IF is defined as (assuming a nonzero denominator):

where a and b define the domain of the density (in this setting,
typically a = 0 and b =       ).

So we can write

For the (left) truncated densities,                             where H is the truncation threshold.

And so the above becomes:

5b. IF Derived: MLE Estimators of Severity Parameters
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IF of MLEs for (left) truncated densities:

And so the IF is

5b. IF Derived: MLE Estimators of Severity Parameters
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IF of MLEs for (left) truncated densities:

Note that a and b are now H and (typically)      , respectively.

As noted previously, we must account for (possible) dependence between the parameter 
estimates, and so we must use the matrix form of the IF defined below (see Stefanski & 
Boos (2002) and D.J. Dupuis (1998)):

Where       is either      or     ,            is simply the Fisher Information (if the data follow the 
assumed model), and        is now vectorized.  Parameter dependence exists when the off-
diagonal terms are not zero.

5b. IF Derived: MLE Estimators of Severity Parameters
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Note that the off-diagonal cross-terms are the second-order partial derivatives: 

and

With the above defintion, all that needs be done to derive IF for each severity distribution 
is the calculation of the first and second order derivatives of each density, as well as, for 
the (left) truncated cases, the first and second order derivatives of the cumulative 
distribution functions: that is, derive

This is done in Appendix IV for the four severity distributions examined herein.  

This �plug-n-play� approach makes derivation and use of the IFs corresponding to each 
severity distribution�s parameters considerably more convenient.

5b. IF Derived: MLE Estimators of Severity Parameters
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Below, I �plug-n-play� to obtain            for the four severity distributions. Note that for the 
LogNormal, (left) truncation induces parameter dependence, and for the LogGamma, it 
augments dependence that was there even before truncation.  For the truncated cases and 
the LogGamma, after the cells of            are obtained, IF is calculated numerically.

From Appendix IV, inserting the derivations of 

for the LogNormal yields

5b. IF Derived: MLE Estimators of Severity Parameters
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Inserting Appendix IV derivations of for the LogNormal yields�

5b. IF Derived: MLE Estimators of Severity Parameters
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From Appendix IV, inserting the derivations of

for the (left) Truncated LogNormal yields

5b. IF Derived: MLE Estimators of Severity Parameters
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From Appendix IV, inserting the derivations of 

for the LogGamma yields

5b. IF Derived: MLE Estimators of Severity Parameters
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Inserting Appendix IV derivations of for the LogGamma yields�

5b. IF Derived: MLE Estimators of Severity Parameters
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From Appendix IV, inserting the derivations of

for the (left) Truncated LogGamma yields

5b. IF Derived: MLE Estimators of Severity Parameters
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5c. Robust Estimators: OBRE and CvM

OBRE Defined:
The Optimally Bias-Robust Estimator (OBRE) is provided for a given sample of data as 
the value      of      that solves (1):

( ),

1
; 0

n
A a
c i

i
xϕ θ

=

=∑ ( ) ( ) ( ) ( ) ( ), ; ; ;A a
c cx A s x a W xϕ θ θ θ θ θ = ⋅ − ⋅ 

( )
( ) ( ) ( )

; min 1;
;

c
cW x

A s x a
θ

θ θ θ

 
 =  

 ⋅ −   

θ̂ θ

where
and

and A and a respectively are a 
dim(θ) x dim(θ) matrix and a 
dim(θ)-dimensional vector 
determined by the equations:

( ) ( ), ,; ; TA a A a
c cE x x Iϕ θ ϕ θ ⋅ = 

( ), ; 0A a
cE xϕ θ  = 

is simply the score function,   , so OBRE is 
defined in terms of a weighted standardized scores function, where                            
are the weights.  c is a tuning parameter,                                , regulating
from very robust to MLE, respectively.

( );s x θ ( ) ( ) ( ); ; ;s x f x f xθ θ θ θ = ∂ ∂ 
( );cW x θ

( )dim cθ ≤ ≤ ∞

((2) � ensures bounded IF)

((3) � ensures Fisher consistency)

(1) (1.a)

(1.b)
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5c. Robust Estimators: OBRE and CvM

OBRE Defined:
• The weights make OBRE robust, but it maintains efficiency as close as possible to 

MLE (subject to its constraints) because it is based on the scores function.  Hence, its 
name: �Optimal� B-Robust Estimator.  The constraints � bounded IF and Fisher 
consistency � are implemented with A and a, respectively, which can be viewed as 
Lagrange multipliers.  And c regulates the robustness-efficiency tradeoff: a lower c
gives a more robust estimator, and            is MLE.  Bottom line: by minimizing the 
trace of the asymptotic covariance matrix, OBRE is maximally efficient for a given 
level of robustness, which is controlled by the analyst with c.  Many choose c to 
achieve 95% efficiency relative to MLE, but this actual value for c depends on the 
model being implemented.

• Several versions of the OBRE exist with minor variations on exactly how they bound 
the IF.  The OBRE defined above is the so-called �standardized� OBRE �which has 
proved to be numerically more stable� (see Alaiz and Victori-Feser, 1996).  The 
�standardized� OBRE is used in this study.

c = ∞



© J.D. Opdyke
38

5c. Robust Estimators: OBRE and CvM

OBRE Computed:
To compute OBRE, (1) must be solved under conditions (2) and (3), for a given tuning 
parameter value c, via Newton-Raphson (see D.J. Dupuis, 1998):

STEP 1:  Decide on a precision threshold, η, an initial value for θ, and initial values a = 0 
and                              where is the Fisher Information.

STEP 2: Solve for a and A in the following equations:

and 

where

which gives the �current values� of θ, a, and A used to solve the given equations.

STEP 3:  Now compute         and 

STEP 4:  If                                      then                    and return to STEP 2, otherwise stop.
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5c. Robust Estimators: OBRE and CvM

OBRE Computed:
• The idea of the above algorithm is to first compute A and a for a given θ by solving (2) 

and (3).  This is followed by a Newton-Raphson step given these two new matrics, and 
these steps are iterated until convergence is achieved.  

• The above algorithm follows D.J. Dupuis (1998), who cautions on two points of 
implementation in an earlier paper by Alaiz and Victoria-Feser (1996):

– Alaiz and Victoria-Feser (1996) state that integration can be avoided in the 
calculation of a in STEP 2 and        in STEP 3, but Dupuis (1998) cautions that the 
former calculation of a requires integration, rather than a weighted average from 
plugging in the empirical density, or else (1.a) will be satisfied by all estimates.

– Also, perhaps mainly as a point of clarification, Dupuis (1998) clearly specifies
in STEP 4 rather than just               as in 

Alaiz and Victoria-Feser (1996).

• The initial values for A and a in STEP 1 correspond to the MLE.

1M

( )max  1,2j
j

j

j
θ

η
θ
∆

> =
θ η∆ >
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5c. Robust Estimators: OBRE and CvM

OBRE Computed:
• The algorithm converges if initial values for θ are reasonably close to the ultimate 

solution.  Initial values can be MLE, or a more robust estimate from another estimator, 
or even an OBRE estimate obtained with c = large and initial values as MLE, which 
would then be used as a starting point to obtain a second and final OBRE estimate with 
c = smaller.  In this study, MLE estimates were used as initial values, and no 
convergence problems were encountered, even when the loss dataset contained 6% 
arbitrary deviations from the assumed model.

• Note that the weights generated and used by OBRE,           , can be extremely useful for 
another important objective of robust statistics � outlier detection.  Within the OpRisk
setting, this can be especially useful for determining appropriate �units of measure� 
(uom), the grouping of loss events by some combinations of business unit and event 
type, each uom with the same (or close) loss distribution.  As discussed below, the 
extreme quantiles that need to be estimated for regulatory capital and economic capital 
purposes are extremely sensitive to even slight changes in the variability of the 
parameter estimates.  This, along with the a) unavoidable tradeoff between statistical 
power (sample size) and homogeneity; b) loss-type definitional issues; and c) 
remaining heterogeneity within units of measure even under ideal conditions, all make 
defining units of measure an extremely challenging and crucial task; good statistical 
methods can and should be utilized to successfully execute on this challenge.

cW
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5c. Robust Estimators: OBRE and CvM

The Cramér von Mises estimator is a �minimum distance� estimator (MDE), yielding the 
parameter value of the assumed distribution that minimizes its distance from the empirical 
distribution.  Given the CvM statistic                 in its common form,

where           is the empirical distribution and          is the assumed distribution, the 

minimum CvM estimator (MCVME) is that value       of        , for the given sample, that 
minimizes :

( )2W θ

( ) ( ) ( ) 22

1

1 n

n i i
i

W F x F x
n θθ

=

 = ⋅ − ∑

nF Fθ

( )2W θ
θ̂ θ

CvM Defined:

( ) ( ) ( ){ }2ˆ arg minMCVME nn F x F x dF xθ θ
θ
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5c. Robust Estimators: OBRE and CvM

The computational formula typically used to calculate the MCVME is:

where              is the ordered (s)�th value of x.

• MCVME is an M-class estimator, and as such it is consistent and asymptotically normal.

• MDE�s are very similar conceptually, and typically differ in how they weight the data 
points. For example, Anderson-Darling, another MDE, weights the tail more than does 
CvM.  CvM is very widely used, perhaps the most widely used MDE, hence its inclusion.

• Before presenting results comparing MLE to OBRE and CvM, I talk briefly about (left) 
truncation, and reemphasize its analytic and empirical importance in this setting.
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1 2 1
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CvM Computed:
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• Note first that given the size of the economic and regulatory capital estimates generated 
from severity distribution modeling (into the hundreds of millions and even billions of 
dollars), the size of the thresholds appear tiny,
and the % of the non-truncated distributions that
fall below the thresholds do not appear shockingly
large, either (assuming, of course, that the loss
distribution below the threshold is the same as that
above it, which is solely a heuristic assumption here).

• However, the effects of (left) truncation on MLE 
severity distribution parameter estimates can be 
dramatic, even for low thresholds.

• Not only are the effects dramatic, but arguably very
unexpected.  The entire shape AND DIRECTION of 
some of the IFs change as does the threshold, over
relatively small changes in the threshold value.

• Note that this is not merely a sensitivity to simulation
assumptions, but rather, an analytical result.

24.4%24.6%$15,000

33.1%34.9%$25,000

29.2%30.2%$20,000

18.5%17.6%$10,000

10.7%8.6%$5,000

8.8%6.5%$4,000

6.7%4.4%$3,000

4.5%2.4%$2,000

2.0%0.7%$1,000

LogGamma
(a=35.5, b=3.25)

% Below

LogNormal
(µ=11, σ=2) 

% Below
Collection 
Threshold
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• Note the NEGATIVE covariance between parameters induced by (left) truncation.  Many 
would call this unexpected, if not counter-intuitive: the location parameter, µ, 
DECREASES under larger and larger arbitrary deviations.

EIF of Truncated LogNormal (µ = 11, σ = 2) MLE Parameter Estimates: 
by Size of Thresholdµ σ

EI
F

EI
F

x = arbitrary deviation (M)

x = arbitrary deviation (M)
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• Note the NEGATIVE covariance between parameters induced by (left) truncation.  Many 
would call this unexpected, if not counter-intuitive: the location parameter, µ, 
DECREASES under larger and larger arbitrary deviations.
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6. Truncation Matters, the Threshold Matters

Log Scale

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• Note the log-linear                                              under no truncation is analogous to the
obtained earlier under the normal distribution.

( ) ( ); , ; lnIF x MLE xµ µ σ µ= −
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

• Note that for the LogGamma, (left) truncation augments the already POSITIVE 
covariance between parameters.

EIF of Truncated LogGamma (a = 35.5, b = 3.25) MLE Parameter Estimates: 
by Size of Thresholda b
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

IF of Truncated LogGamma (a = 35.5, b = 3.25) MLE Parameter Estimates: 
by Size of Thresholda b

IF

x = arbitrary deviation (M)
x = arbitrary deviation (M)

• Note that for the LogGamma, (left) truncation augments the already POSITIVE 
covariance between parameters.

IF
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6. Truncation Matters, the Threshold Matters

• The effects of a collection threshold on parameter estimation can be unexpected, even 
counterintuitive, both in the magnitude of the effect, and its direction.

IF of Truncated LogGamma (a = 35.5, b = 3.25) MLE Parameter Estimates: 
by Size of Threshold
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• Note that for the LogGamma, (left) truncation augments the already POSITIVE 
covariance between parameters.

ln(x)
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6. Truncation Matters, the Threshold Matters

• These arguably unexpected, and even counterintuitive results, both in 
the magnitude of the effect of (left) truncation and sometimes its 
direction, not to mention the potential for dramatic change in the 
relationship between parameters of the same distribution, would 
appear to explain the extreme sensitivity of MLE estimators under 
truncation reported in the literature, which has perplexed some 
researchers.
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7a. Results:  Disproportionate Impact of Left Tail

EIF of LogNormal (n=250, µ = 11, σ = 2) Parameter Estimates: 
OBRE v. MLE

• NOTE:  Arbitrary deviations from the assumed model do not have to be 
large in absolute value to have a large impact on MLE estimates. The IF 
is a useful tool for spotting such counter-intuitive and important effects 
that are potentially devastating to the estimation process.
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7a. Results:  Disproportionate Impact of Left Tail

EIF of LogGamma (n=250, a = 35.5, b = 3.25) Parameter Estimates: 
OBRE v. MLE
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• NOTE:  Arbitrary deviations from the assumed model do not have to be 
large in absolute value to have a large impact on MLE estimates. The IF 
is a useful tool for spotting such counter-intuitive and important effects 
that are potentially devastating to the estimation process.
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EIF of LogGamma (n=250, a = 35.5, b = 3.25) Parameter Estimates: 
OBRE v. MLE
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• NOTE:  Arbitrary deviations from the assumed model do not have to be 
large in absolute value to have a large impact on MLE estimates. The IF 
is a useful tool for spotting such counter-intuitive and important effects 
that are potentially devastating to the estimation process.
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7a. Results:  LogNormal Distribution (n=250)

µ=11
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EIF�s: CvM vs. MLE by Deviation
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7a. Results:  Truncated LogNormal (n=250, H=$5,000)
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EIF�s: CvM vs. MLE by Deviation

Millions

Millions

EIF�s: OBRE v. MLE by Deviation

-10

-8

-6

-4

-2

0

2

4

6

8

$5 $1,005 $2,005 $3,005 $4,005 $5,005 $6,005 $7,005 $8,005

MLE
OBRE (c=1.41)
OBRE (c=2.00)
OBRE (c=2.83)

-10

-5

0

5

10

15

$5 $1,005 $2,005 $3,005 $4,005 $5,005 $6,005 $7,005 $8,005 $9,005

CvM
MLE

-6

-4

-2

0

2

4

6

8

10

12

14

$5 $1,005 $2,005 $3,005 $4,005 $5,005 $6,005 $7,005 $8,005 $9,005

MLE
CvM

-6

-4

-2

0

2

4

6

8

10

12

14

$5 $1,005 $2,005 $3,005 $4,005 $5,005 $6,005 $7,005 $8,005

MLE
OBRE (c=1.41)
OBRE (c=2.00)
OBRE (c=2.83)

x = arbitrary deviation (Th)

x = arbitrary deviation (Th)

x = arbitrary deviation (Th)

x = arbitrary deviation (Th)

EI
F

EI
F

EI
F

EI
F



© J.D. Opdyke
56

-20

-10

0

10

20

$0 $1 $2 $3 $4 $5 $6 $7 $8

MLE
CvM

-300

-200

-100

0

100

200

$0 $1 $2 $3 $4 $5 $6 $7 $8

MLE

CvM

-20

-15

-10

-5

0

5

$0 $2 $4 $6 $8 $10 $12 $14 $16

MLE
OBRE (c=2.59)

OBRE (c=4.39)

-250

-150

-50

50

$0 $2 $4 $6 $8 $10 $12 $14 $16

MLE
OBRE (c=2.59)

OBRE (c=4.39)

7a. Results:  LogGamma Distribution (n=250)

a=35.5

b=3.25

EIF�s: CvM vs. MLE by DeviationEIF�s: OBRE v. MLE by Deviation

x = arbitrary deviation (M)

x = arbitrary deviation (M)

EI
F

EI
F

EI
F

EI
F

x = arbitrary deviation (M)

x = arbitrary deviation (M)



© J.D. Opdyke
57

-30

-20

-10

0

10

20

30

$0 $2 $4 $6 $8 $10 $12 $14 $16

MLE
CvM

-300

-200

-100

0

100

200

300

$0 $2 $4 $6 $8 $10 $12 $14 $16

MLE
CvM

-30

-20

-10

0

10

$0 $2 $4 $6 $8 $10 $12 $14 $16

MLE
OBRE (c=2.59)

OBRE (c=4.39)

-300

-200

-100

0

100

$0 $2 $4 $6 $8 $10 $12 $14 $16

MLE
OBRE (c=2.59)

OBRE (c=4.39)

7a. Results:  Truncated LogGamma (n=250, H=$5,000)

a=35.5

b=3.25

EIF�s: CvM vs. MLE by DeviationEIF�s: OBRE v. MLE by Deviation

x = arbitrary deviation (M)

x = arbitrary deviation (M)

EI
F

EI
F

EI
F

EI
F

x = arbitrary deviation (M)

x = arbitrary deviation (M)



© J.D. Opdyke
58

-250

-150

-50

50

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

OBRE (c=2.59)

OBRE (c=2.59) Weights

-250

-150

-50

50

$0 $2 $4 $6 $8 $10 $12 $14 $16

OBRE (c=2.59)

7a. Results:  OBRE Weights

LogGamma (n=250, a=35.5, b=3.25) 
OBRE EIF of a vs. OBRE Weights by Arbitrary Deviation

x = arbitrary deviation (M)

1.0

• OBRE Weights, one for each data point, range from one to zero, 
approaching the latter as values deviate from the assumed distribution.

0.5

0.0

1.0

0.5

0.0
Log Scale

EI
F

EI
F

OBRE (c=2.59) Weights

log10(x)



© J.D. Opdyke
59

7a. Results:  OBRE Weights

• OBRE Weights contain very valuable information: they 
are indicators of the degree to which a particular data 
point (within the context of the data sample at hand!) 
deviates from the assumed statistical model.

• As such they can be used for outlier detection, unit-of-
measure construction, and possibly in the parameter 
estimation process itself.

• For the latter, they are arguably superior to �trimming� 
(observation deletion) based on sample quantiles, 
maximum/minimum k observations, absolute deviations, 
or other relatively arbitrary and inflexible metrics.
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7b. Results:  SLA Simulations
The simulations generate MLE parameter estimates vs. OBRE and CvM parameter 
estimates.  Each is used to generate a distribution of capital estimates based on SLA.

• SLA (Single-Loss Approximation): Parameter estimates are used in Böcker & 
Klϋppelberg�s (2005) SLA formula to obtain capital
estimates, and the distributions of these capital
estimates are compared.

• Sample Size: n = 250 was chosen as a reasonable 
size for many units-of-measure.  Depending on the 
bank, some will have larger n, some smaller, but if 
the results were not useful for this n = 250, then 
sample size would have been a real issue with these
methods going forward, so that is why n = 250 was 
selected.

• Severity Distributions: the LogNormal and the 
LogGamma.  Both are commonly used in this setting, 
but they are very distinct distributions, with the latter 
being more heavy-tailed (see table).  Results obtained 
from other distributions will be included in journal-
format version of this paper.

$179,422 $230,724 75.0000%

$614,477 $776,928 90.0000%

$760,642,911 $279,358,818 99.9988%

$355,104,952 $159,698,811 99.9960%

$92,087,922 $57,266,640 99.9700%

$38,778,432 $28,932,168 99.9000%

$6,162,960 $6,278,840 99.0000%

$1,333,228 $1,606,723 95.0000%

$50,045 $59,874 50.0000%

LogGamma
(a=35.5, b=3.25)

LogNormal
(µ=11, σ=2) X%Tile

( )1 11 1C Fα
α λ µ
λ

− − ≈ − + − 
 0.999;  and 25 arbitrarily.α λ= =
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7b. Results:  SLA Simulations

• Truncation:  The Truncated LogNormal and Truncated LogGamma, with a collection 
threshold of $5k, are included.

• Parameter values:  These were choosen (both LogNormal and Truncated LogNormal, µ = 
11, σ = 2, and both LogGamma and Truncated LogGamma a = 35.5, b = 3.25) so as to 
reflect a) fairly large differences between the Lognormal and the LogGamma; b) general 
empirical realities based on OpRisk work I�ve done (but not proprietary results); c) yet, 
some �stretching� vis-à-vis fairly large (but still realistic) parameter values (the base 
distributions have means of about $442k and $467k, respectively).  Obviously, for any 
given setting, all estimation methods should be tested extensively for parameter value 
ranges relevant to the specific estimation effort.

• Arbitrary Deviations:  Mixture distributions are used to test the robustness of the 
estimators to deviations from iid data.  Three scenarios are studied: 6% Left tail 
contamination, 6% Right tail contamination, and 3% Left tail + 3% Right tail 
contamination.  For the LogNormal, the left and right tail contamination is drawn from 
LogNormal(µ = 9.5, σ = 2) and LogNormal(µ = 11.576, σ = 2), respectively, and for the 
LogGamma, the left and right tail contamination is drawn from LogGamma(a = 31.8, b = 
3.25) and LogGamma(a = 37, b = 3.25), respectively.  Each of these has a mean that 
deviates just under $350,000 from the respective base distributions.
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7b. Results:  SLA Simulations

• OBRE value of c: For OBRE, different values for c, the tuning parameter, were used with 
the given parameter values, and those which provided the most obviously appropriate 
tradeoff between accuracy and precision of the corresponding SLA capital estimates 
were used.  Algorithms that may be useful to obtain these values are discussed below.

• OBRE Starting Values:  MLE estimates were used as starting point for the OBRE 
algorithm, and for this study, no convergence problems were encountered.  That said, 
values of η, c, n, and the distribution parameters all are very interrelated, and like any 
convergence algorithm, must be carefully monitored.  For example, values of 
were sufficient for LogNormal parameter estimation, but for LogGamma estimation,           

and even                        were sometimes required due to its longer tail and 
the need for greater precision.  Such variation is typical of convergence algorithms, so 
their responsible use requires an awareness of these issues.  While starting values are 
sometimes noted in the literature as being important for the convergence of OBRE 
algorithms, this emphasis may be due to the relatively small sample sizes (as low as n = 
40) being used in some of those studies (see Horbenko, Ruckdeschel, & Bae, 2011). 

• CvM Starting values:  A wide range of parameter values were provided for the Gaussian 
quadrature optimization algorithm.  No convergence issues were encountered with the 
LogNormal and Truncated LogNormal distributions, but that was not the case in fully a 
third of the LogGamma and Truncated LogGamma distributions where second-order 
optimality conditions were violated.

0.01η =

0.005η = 0.0001η =
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• First, before addressing the issue of developing inferential algorithms, one might ask 
whether by using robust statistics, we can even �back into� SLA results that are more 
accurate, all else equal, compared to MLE.  That is, do there even exist, and can we find, 
values of the tuning parameter that will provide SLA estimates with less bias than MLE 
while not appreciably increasing variance? Given the difficulty of high quantile
estimation in general, let alone in the OpRisk setting, this certainly is not a given, and it 
is the focus of the next several slides.

• The SLA#s in Table 1(a-d) were obtained by �backing into� optimal values of the tuning 
parameter knowing the true SLA value ex ante.  Informal robustness tests were then 
conducted ex post to provide an initial assessment as to the feasibility of developing a 
process for statistical inference.  One such possible process is sketched in the pages 
following Tables 1(a-d).

• NOTE:  In Tables 1(a-d), note the large bias in the expected value of MLE-based capital 
estimates, under iid data with no contamination, due to Jensen�s inequality.  This bias 
grows with the heaviness of the tail of the severity distribution.

7b. Results:  SLA Simulations
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7b. Results:  SLA Simulations

Truncated LogGamma

$68,666,193$73,131,423$71,691,291$63,221,137OBRE Closer v. MLE

$409,562,640$374,657,472$392,310,056$388,391,019True SLA at 99.996%tile

$45,206,643$46,172,221$46,872,690$43,389,280OBRE Closer v. MLE

$387,304,656$353,009,568$370,407,112$366,309,627True SLA at 99.996%tile

LogGamma
$18,370,891$15,538,087$15,740,849$20,759,747OBRE Closer v. MLE

$190,682,320$175,278,136$183,180,240$180,486,144True SLA at 99.996%tile

Truncated LogNormal
$2,773,099$7,360,382$7,748,825$6,832,168OBRE Closer v. MLE

$180,654,136$165,323,008$173,118,560$170,317,921True SLA at 99.996%tile

LogNormal
6% Right Tail6% Left Tail3% Each Tail0% Deviation

Table 1: Summary of SLA Estimates �Backed Into� with 
Optimal Tuning Parameter and Weight Usage for OBRE
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$73,332,644$70,325,414$76,325,792$79,571,542RMSEOBRE*

$66,662,079$66,129,189$68,157,312$79,516,780RMSEMLE

$88,837,541$85,334,514$93,890,094$102,185,795RMSECvM

86.0%82.0%84.0%80.0%% within +/- 50%OBRE*

87.0%80.0%83.0%80.0%% within +/- 50%MLE

77.0%75.0%70.0%74.0%% within +/- 50%CvM

-1.7%5.1%2.3%0.4%Mean %Difference from TrueOBRE*

3.2%9.5%6.8%4.4%Mean %Difference from TrueMLE

4.8%10.4%8.4%8.7%Mean %Difference from TrueCvM

$2,773,099$7,360,382$7,748,825$6,832,168OBRE Closer v. MLE

$177,620,687$173,710,961$177,115,375$170,989,770MeanOBRE*

$186,460,684$181,071,343$184,864,199$177,821,938MeanMLE

$189,357,264$182,490,921$187,672,888$185,211,363MeanCvM

$180,654,136$165,323,008$173,118,560$170,317,921True SLA at 99.996%tile

Right TailLeft TailBoth Tails (3% Each)LogNormal

6% Deviation6% Deviation6% Deviation0% DeviationTABLE 1a:

7b. Results:  SLA Simulations

*NOTE: c = 2^(11/8) ≈ 2.59
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$129,840,945$116,252,565$110,730,346$133,209,674RMSEOBRE*

$118,952,011$111,794,444$109,436,060$140,551,905RMSEMLE

$176,135,956$151,366,218$148,248,416$318,935,475RMSECvM

76.0%71.0%70.0%72.0%% within +/- 50%OBRE*

74.0%72.0%73.0%71.0%% within +/- 50%MLE

64.0%60.0%64.0%59.0%% within +/- 50%CvM

3.1%7.3%4.8%0.1%Mean %Difference from TrueOBRE*

12.7%16.1%13.4%11.6%Mean %Difference from TrueMLE

16.6%21.6%17.7%14.0%Mean %Difference from TrueCvM

$18,370,891$15,538,087$15,740,849$20,759,747OBRE Closer v. MLE

$196,549,866$188,022,611$191,912,540$180,711,814MeanOBRE*

$214,920,757$203,560,697$207,653,389$201,471,561MeanMLE

$222,407,560$213,128,501$215,660,029$205,843,384MeanCvM

$190,682,320$175,278,136$183,180,240$180,486,144True SLA at 99.996%tile

Right TailLeft TailBoth Tails (3% Each)Truncated LogNormal

6% Deviation6% Deviation6% Deviation0% DeviationTABLE 1b:

7b. Results:  SLA Simulations

*NOTE: c = 2^(9/8) ≈ 2.18
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$252,990,317$252,743,932$258,303,584$222,205,047RMSEOBRE*

$244,208,780$233,682,773$243,734,467$271,095,454RMSEMLE

$332,386,275$310,337,566$332,027,462$331,448,466RMSECvM

76.0%72.0%71.0%59.0%% within +/- 50%OBRE*

78.0%70.0%75.0%63.0%% within +/- 50%MLE

63.0%59.0%62.0%54.0%% within +/- 50%CvM

-0.6%6.0%3.6%-1.5%Mean %Difference from TrueOBRE*

12.2%19.0%16.2%13.3%Mean %Difference from TrueMLE

20.1%27.3%24.3%19.2%Mean %Difference from TrueCvM

$45,206,643$46,172,221$46,872,690$43,389,280OBRE Closer v. MLE

$385,136,237$374,030,382$383,677,976$360,982,956MeanOBRE*

$434,679,718$420,202,603$430,550,666$415,025,578MeanMLE

$465,199,876$449,553,624$460,516,168$436,699,482MeanCvM

$387,304,656$353,009,568$370,407,112$366,309,627True SLA at 99.996%tile

Right TailLeft TailBoth Tails (3% Each)LogGamma

6% Deviation6% Deviation6% Deviation0% DeviationTABLE 1c:

7b. Results:  SLA Simulations

*NOTE: c = 2^(19/8) ≈ 5.187
W ≥ 0.85
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$272,922,481$237,181,395$237,477,157$273,966,583RMSEOBRE*

$311,345,233$270,317,853$237,737,636$360,712,711RMSEMLE

$440,805,965$341,259,642$393,702,817$584,908,158RMSECvM

67.0%66.0%60.0%56.0%% within +/- 50%OBRE*

76.0%66.0%67.0%63.0%% within +/- 50%MLE

62.0%54.0%51.0%50.0%% within +/- 50%CvM

0.3%4.1%1.6%4.8%Mean %Difference from TrueOBRE*

17.1%23.6%19.9%21.1%Mean %Difference from TrueMLE

28.1%36.0%32.3%35.1%Mean %Difference from TrueCvM

$68,666,193$73,131,423$71,691,291$63,221,137OBRE Closer v. MLE

$410,894,022$389,956,403$398,700,677$407,008,482MeanOBRE*

$479,560,215$463,087,826$470,391,969$470,229,619MeanMLE

$524,493,597$509,418,297$519,079,398$524,605,463MeanCvM

$409,562,640$374,657,472$392,310,056$388,391,019True SLA at 99.996%tile

Right TailLeft TailBoth Tails (3% Each)Truncated LogGamma

6% Deviation6% Deviation6% Deviation0% DeviationTABLE 1d:

7b. Results:  SLA Simulations

*NOTE: c = 2^(19/8) ≈ 5.187
W ≥ 0.85
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Steps to obtain OBRE Tuning Parameter:

1. For a given sample, obtain MLE parameter estimates for the appropriate distribution

2. Using those parameter estimates, simulate some number of samples (say, B=500) 
from that distribution and obtain B MLE parameter estimates and B corresponding 
SLA capital esimates (the mean of these SLA estimates will most likely overshoot 
the �true� SLA).

3. For a given tuning parameter value c, calculate B OBRE parameter estimates and B 
corresponding SLA capital estimates based on the B samples.

4. Repeat 3. for different values of c (say, 2^(8/8), 2^(9/8), 2^(10/8), 2^(11/8), 2^(12/8), 
depending on the distribution) and choose the value of c that most closely 
approximates the �true� SLE (based on 2.) without dramatically increasing the RMSE 
of the OBRE-based SLA (the RMSE calculated based on the B samples).

• The above is viable only if the value of c ultimately chosen is robust to initial parameter 
misspecification.  Preliminary tests indicate that it is.  

7b. Results:  SLA Simulations
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• For the LogNormal and Truncated LogNormal, the values of c chosen for Table 1 were 
subsequently tested on data samples generated from distributions with both parameters 
a full standard deviation away from the original parameters � in the same direction! (for 
independent parameters, Pr<0.03)  For the LogGamma and Truncated LogGamma, 
values a half a standard deviation, in the same direction, were used (Pr<0.10).  For the 
LogNormal, this created distributions with means -$115K / +$160K smaller/larger, and 
for the LogGamma, means -$191K / +$318K smaller/ larger, respectively.  In all four 
cases, the original value of c was chosen as the best c.

• This robustness to parameter misspecification may be related to the heaviness of the 
tail of the distribution, with less robustness under heavier tails.  And preliminary tests 
using parameter misspecifications that were even larger indicated this, while also 
yielding �borderline� results under which different values of c COULD have been chosen 
as �better.�  So if this approach is shown to be practically useable, it would have to be 
well tested on a given set of data / distributions / ranges of parameter values.

• To test this approach, a simulation study that repeats Steps 1.- 4. on a large number of 
samples needs to be carried out.  This would be computationally expensive, unless 
shortcuts can be derived.  Time has not permitted this to date, but it is a required next 
step to demonstrate viability and useability across a sufficiently wide range of 
conditions.

7b. Results:  SLA Simulations
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• Finding the �best� value of c directly yielded the SLA#s in Table 1 for the LogNormal
and Truncated LogNormal distributions.  Unfortunately, this was not the case for the 
LogGamma and Truncated LogGamma distributions: even after finding the best value of 
c, the high quantile estimates based on OBRE parameter estimates still notably overshot 
the �true� high quantile (although not quite as much as did MLE�s estimates).  So 
something else is needed.

• The information-laden OBRE weights are a natural place to turn to attempt to estimate 
SLA capital estimates with greater precision.

• One possibility is to first obtain OBRE weights on the data points, and then reestimate
OBRE excluding observations with weights below a certain value, i.e. excluding those 
observations that deviate dramatically from the assumed distribution. Recall that weight 
values will change from sample to sample, because they are based on deviations from 
the presumed distribution (which is different for each sample), not on an arbitrary 
absolute value, or an arbitrary trimming requirement.  Some samples will exclude no 
observations based on the criteria, and others will exclude several.

• To obtain the SLA #s for LogGamma and Truncated LogGamma in Table 1, a process 
similar to that used with the tuning parameter was followed: the optimal weight-
exclusion value was found, and then tested for robustness to initial parameter 
misspecification ex post.  A procedure for statistical inference might look something 
like the below:

7b. Results:  SLA Simulations
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5. Based on the OBRE parameter estimates obtained in Step 4., generate some number 
of new samples (D=500) and for each sample, generate OBRE weights.  Then 
exclude observations with weights below a certain value, and estimate OBRE 
parameter estimates for all D samples.  For example, W<0.5 may correspond to 
about 0.3% of all observations, on average; W<0.7 may correspond to about 0.6% of 
all observations, on average; and W<0.9 may correspond to about 0.9% of all 
observations, on average (but this will, and should, vary from sample to sample).

6. Repeat Step 5. for different values of W (e.g. W<0.6, W<0.7, W<0.8, W<0.9).  Select 
the value of W that is closest to the �true� SLA.

7. Use the value of W obtained in 6., along with the value of c obtained in Step 4., to 
estimate OBRE on the original sample.

If after Step 4. the OBRE-based SLA estimate is still unacceptably high relative to the 
�true� SLA from the sampling exercise, proceed to Step 5.:

7b. Results:  SLA Simulations
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• Of course, testing such a process requires a computationally demanding simulation, 
unless computational shortcuts are derived.

• The informal robustness tests on the �W� values demonstrated less robustness that did 
the tests on the tuning parameter: for the LogGamma and Truncated LogGamma, 
deviations from the simulated OBRE parameter estimates (from Step 5.) one quarter of a 
standard deviation from the �true� (simulation) parameter values (in the same direction) 
yielded the same values of W, but larger deviations quickly yielded very different values 
of W, which yielded very different capital estimates.  It would appear that if an inferential 
procedure can be developed that utilizes OBRE weight values, it will probably need to 
have far more statistical power than that related to choosing the value of the tuning 
parameter.

7b. Results:  SLA Simulations
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• BOTTOM LINE: 
The main point of this exercise was to establish that, at least mechanically, the tuning 
parameter and the weight values COULD be used to obtain more accurate (less biased) 
SLA estimates without notably increasing the already large variance on the MLE 
distribution of SLA estimates.  This has been done, and the non-trivial magnitude of the 
values �left on the table� have been established in Table 1.  But of course the next and 
more important step is to develop and test a complete procedure for statistical 
inference.  

• The proposed Steps 1. � 4. may be quite sufficient for more medium- to somewhat heavy 
tailed distributions like the LogNormal and Truncated LogNormal, but Steps 5.-7., or 
something more complex, may be required for distributions with very heavy tails, like 
the LogGamma.

7b. Results:  SLA Simulations
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Maximum Likelihood Estimation (MLE):
�MLE does not inappropriately downweight extreme observations as do most/all robust statistics.  

And focus on extreme observations is the entire point of the OpRisk statistical modeling exercise!  Why 
should we even partially ignore the (right) tail when that is where and how capital requirements are 
determined?!  That�s essentially ignoring data � the most important data � just because its hard to 
model!�

Robust Statistics:
�All statistical models are merely idealized approximations of reality, and OpRisk data clearly 

violate the fragile, textbook model assumptions required by MLE (e.g. iid data).  And even under iid data, 
the expected value of high quantile estimates based on MLE parameter estimates is biased upwards for 
(right-skewed) heavy-tailed distributions (i.e. OpRisk severity distributions) due to Jensen�s inequality 
(and this, of course, inflates OpRisk capital estimates).  Robust Statistics explicitly and sytemmatically
acknowledge and deal with non-iid data, sometimes using weights to avoid bias and/or inefficiency
caused by unanticipated or unnoticed heterogeneity.  And an ancillary benefit is mitigation of the bias in 
capital estimates due to Jensen�s inequality.  Consequently, under real-world, finite-sample, non-iid
OpRisk loss data, Robust Statistics typically exhibit less bias, equal and sometimes even greater 
efficiency, and far more robustness than does MLE.  These characteristics translate into a more reliable, 
stable estimation approach, regardless of the framework used by robust statistics (i.e. multivariate 
regression or otherwise) to obtain high quantile estimates of the severity distribution.

2. MLE vs. Robust Statistics: Point-Counterpoint
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Some Specific Questions to be Answered:
• Does MLE become unusable under relatively modest deviations from i.i.d., 

especially for the heavy-tailed distributions used in this setting  YES, or are these 
claims overblown?   NO

• Is the bias of the expected value of MLE-based capital estimates large?  YES
• Do analytical derivations of the MLE Influence Functions for severity distribution 

parameters support or contradict such claims?   NO, THEY SUPPORT THEM Are 
they consistent with simulation results?  YES How does (possible) parameter 
dependence affect these results?  NOTABLY

• Do these results hold under truncation?  YES How much does truncation and the 
size of the collection threshold affect both MLE and Robust Statistics parameter 
estimates?  RESPECTIVELY: VERY BADLY, NOT MUCH/ROBUST 

• Are widely used, well established Robust Statistics viable for severity distribution 
parameter estimation? FOR SLA, OBRE IS Are they too inefficient relative to MLE 
for practical use?  NO, SOMETIMES MORE EFFICIENT Do any implementation 
constraints (e.g. algorithmic/convergence issues) trip them up? NOT OBRE, BUT 
CvM ON VERY HEAVY TAILED DISTRIBUTIONS.

8. Point-Counterpoint Revisted: Who Wins?

(ESP. FOR VERY 
HEAVY TAILS)

(ESP. FOR VERY HEAVY TAILS)
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�Estimation of operational risk is badly influenced by the quality of data, as not all external data is 
relevant, some losses (i.e. �outliers�) may not be captured by the ideal model, and induce bias, and some 
data may not be reported at all.  This can result in systematic over- or under-estimation of operational 
risk. � robust estimation of the regulatory capital for the operational risk hence provides a useful 
technique to avoid bias when working with data influenced by outliers and possible deviations from the 
ideal models.� (Horbenko, Ruckdeschel, & Bae, 2010)

��recent empirical findings suggest that classical methods will frequently fit neither the bulk of the 
operational loss data nor the outliers well�  Classical estimators that assign equal importance to all 
available data are highly sensitive to outliers and in the presence of just a few extreme losses can 
produce arbitrarily large estimates of mean, variance and other vital statistics.  �On the contrary, 
robust methods take into account the underlying structure of the data and �separate� the bulk of the 
data from outlying events, [in � sic] this way avoiding upward bias in the vital statistics and forecasts.� 
(Chernobai & Rachev, 2006)

�Since we can assume that deviation from the model assumptions almost always occurs in finance and 
insurance data, it is useful to complement the analysis with procedures that are still reliable and 
reasonably efficient under small deviations from the assumed parametric model and highlight which 
observations (e.g. outliers) or deviating substructures have most influence on the statistical quantity 
under observation.  Robust statistics achieves this by a set of different statistical frameworks that 
generalize classical statistical procedures such as maximum likelihood or OLS.� (Embrechts & 
Dell�Aquila, 2006)

8. Point-Counterpoint Revisted: Confirmation
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9. Findings Summary & Next Steps
1) Counter-Intuitive Disproportionate Impact of Small (Left Tailed) Losses/Deviations: 

Small aribtrary deviations away from the presumed model (that is, deviations in the left tail) 
can have very large, disproportionate biasing effects on MLE estimates.  This is an 
analytically derived result of the IFs of the LogNormal, Truncated LogNormal, LogGamma, 
and Truncated LogGamma (and other distributions), not an artifact of sensitivity to 
simulation assumptions.  It is important for its magnitude, and the fact that it is overlooked.

2) The Threshold Matters � a lot!  Truncation Induces or Augments Parameter 
Dependence, Sometimes in Very Counterintuitive Ways, with Dramatic Effects: 
This is an analytically derived result of the IFs of the LogNormal, Truncated LogNormal, 
LogGamma, and Truncated LogGamma (and other distributions), not an artifact of 
sensitivity to simulation assumptions.  This is an important finding as it would appear to 
explain the extreme sensitivity, and sometimes counterintuitive behavior, of MLE estimates 
to truncation that is often cited in the literature (based on simulations alone).

3) All Analytically Derived IFs Virtually Exactly Match EIFs

4) OBRE v. CvM:  
The flexibility provided by OBRE’s tuning parameter appears to be quite necessary in this 
setting, that is, for SLA-based capital estimation.  This gives it a strong advantage over
CvM, which did not perform well here.  The latter also encountered convergence issues in 
this study, while the former did not.
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5) OBRE is Robust to Arbitrary Deviations from the Presumed Model: As expected, 
OBRE-based SLA estimates are more robust than their MLE counterparts to deviations 
from the presumed severity distribution (even without the “optimal” tuning parameter 
values).  This was true across distributions and types of deviations.

6) MLE Overshoots High Quantiles:  
As expected, and as is well documented in the literature, even under ideal iid conditions 
MLE distribution parameter estimates overshoot, on average, when used to estimate very 
high quantiles (due to Jensen’s inequality).  The heavier the tail, the larger the bias.

7) Robust Statistics Overshoot, Too! (for very heavy tails) :  
Unfortunately, for the very heavy tailed distributions (e.g. LogGamma, not LogNormal), 
even robust estimates of distribution parameters overshoot, on average, when used to 
estimate very high quantiles.  Judicious use of OBRE weights in an innovative statistical 
inference procedure may be able to adequately address this.

8) A Lot Left on the Table:  
Due to 6), a less biased finite sample quantile estimator than one based on MLE estimates, 
all else equal, would not only provide more accurate capital estimates, but also estimates 
that uniformly and non-trivially lessen banks’ capital requirements.  It appears that the 
heavier the tail of the severity distribution, the greater the absolute (and possibly relative) 
value of these “savings.”

9. Findings Summary & Next Steps
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9) Meaninful Variance Reduction (Only) from Additional Information / Methodology:
The severity distribution quantiles requiring estimation are so large, and the extant data so 
(relatively) scarce, that even using the absolute “best” estimator will not provide sufficient 
variance reduction to obtain capital estimates that are not “all over the map.”  Additional 
information / methodology is required to obtain meaningful variance reduction in the capital 
estimate distribution, and one excellent potential source / method is that of estimating these 
distribution parameters with regression.  On internal losses, rich covariate information 
exists, and the inferential technology exists not only to estimate these parameters with 
multivariate inference, but better still, with OBRE-based multivariate inference.  The 
ultimate solution here may be an OBRE regression (there are many examples in the 
applied literature), which would be at once robust, as well as more efficient in its use of 
currently unused information to achieve much needed variance reduction.  Such an 
approach could, and probably should, also guide the creation/definition of units of measure, 
as well as directly address the issue of how to appropriately deal with time-varying 
thresholds (e.g. using the appropriate index as a covariate with real (not nominal) loss 
data).

9. Findings Summary & Next Steps
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10. Conclusions
• Keep an Open Mind:  

The application of Robust Statistics to OpRisk severity distribution parameter estimation is 
relatively new (at least to obtain capital estimates).  Because this challenging problem is far 
from being definitively “solved” by the industry, and it is not a theoretical problem, applied 
researchers need to keep open minds to different approaches.  Many of the methods 
currently gaining some acceptance would have been considered by most practitioners to be 
unacceptably “heroic” just a half decade ago.

• We can do better than MLE:
The point of using robust statistics in this setting is not to underweight certain data points per 
se, but rather, to use weights, directly or indirectly, to avoid the well-documented non-
robustness of MLE to what we are sure are many violations of presumed model assumptions 
(e.g. iid data).  Striking the right balance between over- and underweighting obviously is key, 
and something which judicious and creative use of the OBRE tuning parameter, along with 
OBRE weights, may be able to achieve.  The dollar amounts “left on the table” due to MLE’s
overshooting bias (as per Jensen’s inequality) of the high quantile required for capital 
estimation, not to mention that due to non-iid loss data, make this pursuit well worth it.

• Many of the challenges of OpRisk loss event data appear to be tailor-made for a robust 
statistics approach, and the results presented herein appear promising for its application in 
this setting. 
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11. Appendix I

Mean Squared Error: This is the average of the squared devations of sample‐based 
estimate values from the true population value of the parameter being estimated, 
as shown below: 

If an estimator is unbiased, bias = 0 and MSE = Variance.  �Efficiency� can be 
defined in slightly different ways, but it is always inversely related to MSE.

The Cramér‐Rao Lower Bound: is the inverse of the information matrix � the 
negative of the expected value of the second‐order derivative of the log‐
likelihood.  Because this is the lower bound for the variance of any unbiased 
estimator, efficiency is usually defined in reference to it, if not in reference to 
another estimator (in which case it is usually called relative efficiency).

( ) ( ) ( )
2 2
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1 ˆ
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θ θ θ θ
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 = − = + ∑
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For the median, we must use additional results from Hampel et al. (1986) related to L‐estimators (of location), which 
are of the form                                                 , where                           is the ordered sample and the are coefficients.

�L� of �L‐estimators� comes from �linear� combinations of order statistics.  A natural sequence of location estimators 
is obtained if the weights        are generated by              , where  

Under regularity conditions, these estimators are asymptotically normal and the corresponding functional is

, which is Fisher consistent with influence function

where the denominator is nonzero 
because it equals

Now the median corresponds to 

So its influence function is

and for standard normal, median=0,                        , so
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Many important robustness measures are based directly on the IF:

Gross Error Sensitivity (GES) is the supremum being taken over all x where IF 
exists:

This measures the worst case (approximate) influence that a small amount of 
contamination of a fixed size can have on the value of the estimator.  If GES is 
finite, that is, if IF is bounded, the estimator is B‐robust (�B� comes from �bias,�
because GES can be regarded as an upper bound on the (standardized) asymptotic 
bias of the estimator).  Robustifying an estimator typically makes it less efficient, 
so the conflict between robustness and efficiency is often best solved with Op 
timal B‐robust estimators (OBRE) � estimates which cannot be improved with 
respect to both GES and asymptotic variance (shown below).  So GES is very 
useful, alongside IF, for comparing two estimators.  If, for example, a comparison 
of the IFs of two estimators leads to ambiguous conclusions, that is, if one 
estimator�s IF has tighter bounds over one range but the other�s is tighter over 
another range, then GES is a useful tool describing which is better under the worst 
case scenario.

( ) ( )* , ; ,supT F IF x T F
x

γ =
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Rejection Point: If IF does not exist in some area and is equal to zero, then 
contamination of points in that area do not have any influence on the estimator at 
all.  The rejection point, then, is defined as

Observations farther away than       are rejected completely, so it is generally 
desirable if       is finite.  In other words, for estimators with finite rejection point, 
there will be some point beyond which extreme outlying data points will have no 
influence on the value of the estimator (because the value of the influence 
function is zero), and in general, this is a desirable characteristic of an estimator, 
adding to its robustness against data that deviates notably from the model�s 
assumptions.

( ){ }* inf 0; ; , 0 when r IF x T F x rρ = > = >
*ρ

*ρ
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Empirical Influence Function: The empirical influence function (EIF) naturally 
corresponds with the IF, and is given by

To implement this in practice, EIF is simply a plot of  
as a function of x, where x is the added contamination data point inserted in place 
of observation .  The EIF can be described as an estimation using the original 
sample, but with only n � 1 of the observations, compared to one using the same 
sample with one additional data point, x, the contamination.    This also is closely 
related to the jackknife (the finite sample approximation of the asymptotic 
variance, treated below, is the jackknife estimator of the variance).

( ) ( ){ } ( )
0

ˆ ˆ1
ˆ; , lim

xT F T F
IF x T F

ε

ε εδ

ε→

 − + −
 =  
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Sensitivity Curve: A concept very closely related to the empirical influence 
function, that is, the non‐asymptotic, finite sample IF, is Sensitivity Curves.  
Analogous to the EIF, these answer the question: how sensitive is the estimator, 
based on the finite empirical sample at hand, to single‐point contaminations at 
each data point?  From Hampel et al. (1986), the sensitivity curve is simply

, which is just a 
translated and rescaled version of EIF.  The functional is applied to two empirical 
samples (both with one original data point removed): one with a point of 
contamination, and one without.  The difference between the values of the 
empirical functional, multiplied by n, is the sensitivity curve.  

Analogously, when the estimator is a functional, then

, where       is the 

empirical distribution .  In fact, based on the above,                  will in
many cases converge to                         asymptotically.

( ) ( ) ( )1 1 1 1 1, , , , ,n n n n nSC x n T x x x T x x− − − = − K K

( ) ( )1 1
1 1 11n n x nSC x T F T F
n n n

δ− −

   = − + −   
     nF

( )1 1, , nx x −K ( )nSC x
( ); ,IF x T F
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Asymptotic Variance and ARE:  Based on the IF, an important measure of 
efficiency is the asymptotic variance, from which the asymptotic relative efficiency 
(ARE) directly can be calculated.  The ARE is simply a measure of the relative size 
of the variances of two estimators, telling us which is more efficient. 

Understanding the (relative) efficiency of an estimator is especially important 
within the framework of robust statistics, because some degree of efficiency 
typically is lost when estimators are made robust.  Knowing the extent of 
efficiency loss is important, because we want estimators that are both robust and 
efficient, and these are competing criteria by which we need to compare 
estimators, under different distributions and against each other.  Designing 
estimators to be OBRE (optimally B‐robust estimators), for example, requires 
finding estimators that simultaneously can be made no more efficient, and no 
more robust, and to do this requires knowing how efficient and robust an 
estimator is.

( ) ( ) ( )2, ; ,V T F IF x T F dF x= ∫
( ) ( ), , ,T SARE V S F V T F=
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Change‐in‐Variance Sensitivity:  The �change‐in‐variance� sensitivity assesses how 
sensitive is the estimator to changes in its asymptotic variance due to 
contamination at F.  The denominator of CVS is the asymptotic variance (see 
section on M‐estimators above for a definition of ψ), and the numerator is the 
derivative of the asymptotic variance when contaminated. 

where the

change‐in‐variance function is 

for continuous

ψ, for which no delta functions arise.  The above is valid for all M‐estimators.  If 
CVS is finite, T is V‐robust (�V� is for Variance).  V‐robustness is stronger than B‐
robustness: if an estimator is V‐robust, it must also be B‐robust (and if an 
estimator is not B‐robust, then it is not V‐robust).  Note that unlike IF, only large 
positive values for CVF, not large negative values, point to nonrobustness.  

( ) ( )
( ) ( ) ( ); ,

, : sup ; \
,

CVF x F
CVS F x C D

V F
ϕ

ϕ ϕ ϕ
ϕ

  = ∈ ℜ ∪ 
  

( ) ( )
0

1 1; , , 1
2 2x xCVF x F V F

ε
ϕ ϕ ε ε δ δ

ε −

=

  ∂  = − + +   ∂     

11. Appendix III



© J.D. Opdyke
90

Local Shift Sensitivity: The point of �local shift sensitivity� is to summarize how 
sensitive the estimator is to small changes in the values of the observations; in 
other words, how much is the estimator affected by shifting an observation 
slightly from point x to point y?  When the �worst� effect of this �wiggling� is 
obtained, and it is standardized, the local shift sensitivity is defined as

This helps to evaluate how sensitive an estimator is to changes in the data, all else 
equal.  And this is relevant in this setting because loss data does change from 
quarter to quarter, if financials are restated, litigation is settled, etc.   So this is an 
important tool for assessing the robustness of a particular estimator, and can be 
used in simulation studies to compare the behavior of multiple estimators under 
such data changes.

( ) ( )* ; , ; ,sup IF y T F IF x T F y x
x y

λ = − −
≠
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Breakdown Point:  While the IF and its related summary values are related to local 
robustness, describing the effects of a(n infinitesimal) contamination at point x, 
the �breakdown point� is a measure of global robustness � it describes the global 
reliability of an estimator by asking, up to what percentage of the data can be 
contaminated before the estimator stops providing valuable information? The 
asymptotic contamination breakdown point of the estimate T at F, denoted      , is 
the largest                   such that for                     remains bounded as a 
function of H and also bounded away from the boundary of θ. 

Analogously, the finite sample breakdown point       of the estimator       at the 
sample                   is given by

where the sample
is obtained from the sample                  by replacing the m data points 
by arbitrary values                     . 

The mean, for example, has asymptotic breakdown point and finite sample 
breakdown point, respectfully, of             and               , because a single 
observation with value = arbitrarily large (i.e. ∞) renders its values meaningless.  
In constrast, those of the median are             , and              for an even n and         

for odd n, respectfully, which is far more robust than the mean. 

*ε
( )* 0,1ε ∈ ( )( )*,  1T F Hε ε ε ε< − +

nT
( )1, , nx xK

*ε

( ) ( )
1 1

*
1 1, , , ,

1; , , : max ;max  sup , , ,
n n

n n n n ni i y y
T x x m T z z

n
ε  = < ∞ 

 K K

K K

( )1, , nz zK ( )1, , nx xK

( )1
, ,

mi ix xK ( )1, , ny yK

* 0ε = * 1 nε =

* 0.5ε = * 1 2ε =

( )* 1 2n nε = −

11. Appendix III



© J.D. Opdyke
92

LogNormal Derivatives:

11. Appendix IV
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LogNormal Derivatives (for (left) Truncated case):
Due to Leibniz�s Rule, these derivatives 
can be moved inside these integrals.

( ) ( ) ( ) ( ) ( )20 0 0

; , ln
; , ; , ; ,

H H HF H y
f y dy f y dy f y dy

µ σ µ
µ σ µ σ µ σ

µ µ µ σ
 ∂ −∂ ∂= = =  

∂ ∂ ∂   
∫ ∫ ∫

( ) ( ) ( ) ( )( ) ( )
2

30 0 0
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H H H yF H
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µ σ µ σ µ σ
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 ∂ ∂ ∂
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2 2 2 4 20 0 0
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LogGamma Distribution Derivatives:

( ) ( )( )( )
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LogGamma Derivatives (for (left) Truncated Case):
Due to Leibniz�s Rule, these derivatives can be moved inside these integrals.
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Generalized Pareto Distribution Derivatives:
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Generalized Pareto Distribution Derivatives (for (left) Truncated Case):
Due to Leibniz�s Rule, these derivatives can be moved inside these integrals.
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Inserting the derivations of 

for the GPD yields
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parameter dependence)
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Inserting the derivations of

for the (left) Truncated GPD yields
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Inserting the derivations of

for the (left) Truncated GPD yields
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