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Abstract

Seven bootstrap algorithms coded in SAS® are compared. The fastest (“OPDY”), which uses no modules
beyond Base SAS®, achieves speed increases almost two orders of magnitude faster (over 80x faster) than the
relevant “built-in” SAS® procedure (Proc SurveySelect). It is even much faster than hashing, but unlike hashing
it requires virtually no storage space, and its memory usage efficiency allows it to execute bootstraps on input
datasets larger (sometimes by orders of magnitude) than the largest a hash table can use before aborting. This
makes OPDY arguably the only truly scalable bootstrap algorithm in SAS®.
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Introduction

Since its introduction three decades ago, the bootstrap (see Efron, 1979) has become a ubiquitous statistical
procedure, and during that same time period SAS® has grown to become one of the most widely used statistical
computing platforms globally.! The footprint of researchers and analysts using SAS® to perform bootstraps,
therefore, is considerable. Combine this with the exponential growth in the size of individual datasets requiring
data-intensive resampling procedures like the bootstrap, across most industries and scientific disciplines, and
the large and critical need for increasingly fast SAS® bootstraps quickly becomes apparent.

This paper compares seven bootstrap algorithms coded in SAS®, only one of which requires SAS® modules
beyond Base SAS® (the one that uses Proc SurveySelect requires SAS/STAT®). The core of the algorithms
obviously is the with-replacement sampling required for a bootstrap, so they are relevant for most data-intensive
statistical procedures requiring sampling with replacement. All implement the conventional monte carlo
bootstrap, but all can be adapted to perform more involved bootstraps,” and all but one (HTIT) can be adapted
to bootstrap any statistic besides the sample mean, which is used for convenience in this paper.

Background:
When is O(N) better than O(n) (even when N>>n)? Exploiting the Fast Sequential Access of SAS®

Key to this paper is the fact that SAS™ is not a “matrix” language (like MATLAB or Gauss) or a “vector”

* J.D. Opdyke is Managing Director of Quantitative Strategies at DataMinelt, a consultancy specializing in applied statistical,
econometric, and algorithmic solutions for the financial and consulting sectors. Clients include multiple Fortune 50 banks and credit
card companies, big 4 and economic consulting firms, venture capital firms, and large marketing and advertising firms. J.D. has been
a SAS" user for nearly 20 years and routinely writes SAS®™ code faster (sometimes orders of magnitude faster) than SAS® Procs
(among them Proc Logistic, Proc MultTest, Proc Summary, Proc NPARIWAY, and Proc SurveySelect as herein). He earned his
undergraduate degree from Yale University, his graduate degree from Harvard University where he was a Kennedy Fellow, and has
completed additional post-graduate work as an ASP Fellow in the graduate mathematics department at MIT. Additional of his peer
reviewed publications spanning number theory/combinatorics, statistical finance, statistical computation, applied econometrics, and
hypothesis testing for statistical quality control can be accessed at www.DataMinelt.com.

"' See www.SAS.com. With over 45,000 registered user sites, SAS®™ is arguably the most widely used statistical platform globally,
even without including users of the many SAS® “clones” that exist as well (see WPS (from World Programming — see
http://teamwpc.co.uk/home), Dap (see http://www.gnu.org/software/dap/ and http://en.wikipedia.org/wiki/DAP_(software)), and
arguably Carolina (see DullesOpen.com, a unit of Dulles Research LLC), and formerly, PRODAS (from Conceptual Software) and
BASS (from Bass Institute)).

* See CherNick (2007) and Davison and Hinkley (1997) for good surveys, and Efron and Tibshirani (1993) for the seminal
introduction to the topic.



language (like S-Plus or R), but rather, with a few exceptions, it processes data sequentially, record-by-record.
Since the late 1970’s SAS® has become extremely fast and efficient at such sequential record processing,” and
naturally, this strongly shapes the algorithms presented herein. It also leads to a bit of a paradox when
comparing the time complexity of these algorithms: the real runtime ranking of these algorithms, when
implemented in SAS®, can deviate notably from a ranking based on their theoretical time complexity. In other
words, due to SAS®’s fast sequential access, O(N) algorithms are often “better” in SAS®™ than O(n) algorithms,
even when N>>n. While this is important to note, the focus of this paper is real runtimes, and the speed with
which SAS® users can obtain actual results. Resource constraints such as I/O speeds, storage space, and
memory are discussed below, and CPU runtimes are presented alongside real runtimes in the Results section,
but the goal here is not to develop or compare algorithms based on their theoretical time complexity.

The Seven Algorithms

The seven algorithms compared in this paper include: One-Pass, Duplicates-Yes (OPDY), Proc SurveySelect
(PSS), HTPS (Hash Table, Proc Summary), HTHI (Hash Table, Hash Iterator), Direct Access (DA), Output-
Sort-Merge (Out-SM), and Algorithm 4.8 (A4.8). SAS® v.9.2 code for all the algorithms except the two hash
algorithms is presented in Appendix A. All except OPDY and A4.8 have been widely used in the SAS®
literature, if not specifically for bootstraps, then for very closely related analyses. Each is completely modular
and takes only five macro variables as inputs: the size of the bootstrap samples (n observations), the number of
bootstrap samples (M), the “by variables” defining the strata, the input dataset, and the variable to be
bootstrapped. All are described briefly below.

OPDY:

This is a completely new and original memory-intensive algorithm, which is why it is so fast. It uses no storage
space, other than the original input dataset and a summary dataset of the record counts for each stratum. OPDY
makes one pass through the dataset, record by record, stratum by stratum, and efficiently builds a large array of
data values, essentially converting a column of data into a row of data. Then random draws are made from the
array using a uniform random variate, U, drawn from 1 to N (where N is the size of the current stratum).
Bootstrap results from each stratum are saved in cumulated macro variables to minimize the intermediate
memory requirements of outputting a dataset in the data step. The only constraint on this algorithm is not the
total number of records across all strata but rather, the number of records in the largest stratum, which
determines the size of the array held in memory. Yet even on a system with very little memory (2 gigabytes of
RAM), the algorithm is able to process input datasets where the largest stratum contains over 100 million
records, so this should not be a constraint for most users and most practical uses (the hashing algorithms
described below sometimes crash with a largest stratum size of only about three to four million records, in
datasets with only two “by variables” defining twelve strata). With more reasonable memory resources (e.g. 16
gigabytes of RAM), OPDY can process datasets where the largest stratum is many billions of records.

PSS:

PSS uses the built-in SAS® procedure, Proc SurveySelect, to create a sampling variable in the original dataset
indicating how many times record i is selected into the with-replacement random sample, and multiple bootstrap
samples can be created automatically for multiple strata. These are then summarized by another procedure to
obtain the desired bootstrap statistics. According to SAS® Documentation, Proc SurveySelect uses Floyd’s

Algorithm (see Bentley and Floyd, 1987, and SAS® OnlineDoc 9.2, 2007).*

* To quote the author of a previous SAS® bootstrap paper that extols the virtues of PROC SurveySelect, “Tools like bootstrapping and
simulation are very useful, and will run very quickly in SAS .. if we just write them in an efficient manner.” (Cassell, 2007).

* Note that PROC PLAN was not tested because it does not sample with replacement, and PROC MultTest was not tested because it
conducts only n-out-of-n bootstraps and does not allow the user to define the size of the bootstrap sample (aside from changing the
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DA:

DA is merely code for directly accessing specified records within a SAS® dataset. A uniform random variate, u,
is drawn from 1 to N (the size of the stratum), and record # U is selected from the dataset using the point= option
on the set statement. In a nested loop, this is done n times to obtain a single bootstrap sample, and then the
entire process is repeated m times to obtain mbootstrap samples. The bootstrap samples do not need to be
summarized after the data step because the bootstrap statistics are created sequentially, as each bootstrap sample
is created, saved in an array, and then summarized by functions applied to the array when the end of the stratum
is reached, all within the data step. DA requires virtually no storage space beyond the original input dataset.

Out-SM:

Out-SM also uses a uniform random variate, U, drawn from 1 to N to identify the records to include in the
samples, but instead of using direct access it creates a new dataset by outputting, in a nested loop, one record for
each record # identified by u, looping n times to create one bootstrap sample. This is done mtimes in a nested
loop to create mbootstrap samples, while keeping track of both the record numbers (u) and the number of the
bootstrap sample (m). This new dataset is then sorted and merged with the original dataset (in which a record
counter was created) to obtain the actual data records for each bootstrap sample. These are then summarized at
the level of the bootstrap sample.

HTHLI:

The Hash code used in HTHI follows two published SAS®™ papers. The structure of the code is essentially the
same as that of Out-SM, except that a hash table, instead of a merge statement, is used to merge the original
dataset and the bootstrap sample dataset (see Secosky and Bloom, 2007), and a hash iterator, instead of Proc
Summary, is used to summarize the bootstrap samples (see Secosky and Bloom, 2008). This algorithm is
memory-intensive, as well as being storage-intensive, but it is fast. However, it has two major drawbacks: first,
the hash iterator can only sum the values of the variable being bootstrapped, so if the statistic of interest requires
more complex calculations, additional or separate data steps and/or procedures would be required (this is
handled by HTPS, which uses a Proc Summary instead, but which is slightly slower as a result). Secondly, the
memory constraints of hashing are far greater than those of OPDY, causing it to crash under dataset sizes much
smaller than those OPDY can handle (this constraint also applies to HTPS below). For example, using input
datasets with two “by variables” defining twelve strata, OPDY can handle strata with over 100 million records,
while both hashing algorithms often crash when only three to four million records per strata are used. And of
course, since the size constraint on OPDY is the number of records in the largest stratum and not the number of
records overall in the dataset, it actually can handle datasets orders of magnitude larger than those the hashing
algorithms can handle, as long every stratum is below a certain size.

HTPS:

This algorithm is identical to HTHI except that Proc Summary is used instead of the hash iterator. While slower
than the hash iterator, Proc Summary allows the user to bootstrap any statistic, not just those based on the sum
of the variable of interest.

A4.8:

I believed I had discovered this with-replacement sampling algorithm, but it is, in fact, listed as Algorithm 4.8
in Till¢é (2006), who calls it “neglected.” The original source of the algorithm is unknown to Till¢ (see email
correspondence, 09/30/10), and no proof of its validity is provided in Tillé (2006), so a proof is provided herein
in Appendix B. The main advantage of this algorithm is that it requires virtually no storage space beyond the
original input dataset (no extra bootstrap “sample” dataset is created, as in Out-SM and the two hashing

size of the input dataset, which would require an extra randomization step which would defeat the purpose of conducting efficient
sampling with replacement). And the SASFILE statement used with PROC SurveySelect (see Cassell, 2007) is useless when the
datasets to be bootstrapped are too large for the extant memory — and that is the only time that fast bootstraps really are needed.
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algorithms), and it has relatively low memory requirements. In addition, no nested loops are required, like the n
x Mnested loops required for DA, Out-SM, and the hashing algorithms: A4.8 requires only a single pass
through the dataset, with one loop performed m times on each record, to generate the desired statistic for all m
bootstrap samples.

Although not noted elsewhere, the algorithm closely follows the structure of Bebbington (1975), one of the first
and most straightforward sequential-sampling-without-replacement algorithms. Like Bebbington (1975), the
algorithm is sequential, it requires that N is known ahead of time, and it makes exactly n selections from N
items, each with equal probability. It makes one important modification to Bebbington (1975) that transforms it
from a without-replacement algorithm to a with-replacement algorithm: it uses binomial random variates
instead of uniform random variates. Below, for clarity, both Bebbington and A4.8 are presented.

Initialize: Leti «— O, N < N+1,n" «<n

i«—i+1

Ifn" =0, STOP Algorithm

Visit Data Record i

N «—N -1

Generate Uniform Random Variate u ~ Uniform[0, 1]

Ifu>n /N, GoTo 2.

Otherwise,  Output Record i into Sample
n«—n-1
Go To 2.

Nk W=

Bebbington’s (1975) algorithm above guarantees that 1) all possible samples of size n drawn from N are equally
likely; 2) exactly nitems will be selected; 3) no items in the sample will be repeated; and 4) items in the sample
will appear in the same order that they appear in the population dataset. The A4.8 algorithm presented below
guarantees 1), 2), and 4), and instead of 3), it allows duplicates into the sample.

Initialize: Leti «— O, N < N+ 1,n" «<n
i«—i+1
Ifn" =0, STOP Algorithm
Visit Data Record i
N «—N -1
Generate Binomial Random Variate b ~ Binomial(n’, p« 1/N’ ) >
Ifb=0, Go To 2.
Otherwise,  Output Record i into Sample b times
nN«n-b
Go To 2.

Nk W=

The only difference between the code implementation of A4.8 in Appendix A and its algorithm definition above
is that the check of ' = 0 on line 3. is excluded from the code: execution simply stops when all records in the
dataset (stratum) are read once through, sequentially. This is more efficient for these purposes, since all
bootstrap samples are being created simultaneously, and the likelihood that all of them will be complete before
that last record of the dataset (stratum) is read is usually very small — not nearly large enough to justify
explicitly checking for it on line 3.

> Using A4.8, p will never equal zero. If p= 1 (meaning the end of the stratum (dataset) is reached and i = N, N’ = 1, and 0’ = 0)
before all n items are sampled, the rand function b=rand(‘binomial’,p,n’) in SAS® assigns a value of N’ to b, which is correct for A4.8.
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Results

The real and CPU runtimes of each of the algorithms, relative to those of OPDY, are shown in Table 1 below
for different #strata, N, n, and m (for the absolute runtimes, see Table B1 in Appendix B). The code was run on
a PC with 2 GB of RAM and a 2 GHz Pentium chip. OPDY dominates in all cases that matter, that is, in all

Table 1: Real and CPU Runtimes of the Algorithms Relative to OPDY for Various N, #strata, n, and m

(ex = excessive, cr = crashed)

REAL CPU
N # Out- Out-
(perstratum) strata  n m PSS A48 HTPS HTIT DA SM PSS A48 HTPS HTIT DA SM
10000 2 500 500 | 53 102 90 45 88 75| 26 101 33 21 38 60
100,000 2 500 500 | 233 833 62 46 73 97|180 814 73 24 3.1 44
1,000,000 2 500 500 | 311 1212 2.5 19 14 42250 1193 12 12 07 18
10,000,000 2 500 500 | 422 1649 25 27 07 7.6 334 162.0 14 14 04 18
10000 6 500 500| 84 168 100 68 138 143 | 58 166 45 36 60 7.6
100,000 6 500 500| 237 840 47 43 74 87189 87 28 25 33 44
1,000,000 6 500 500 | 373 1450 23 2.1 44 45304 1432 14 14 08 22
10,000,000 6 500 500| 398 3708 or| o] 78 88325 3491 or 04 18
10,000 12 500 500 | 114 237 179 280 181 168 | 85  23.1 58 46 80 96
100,000 12 500 500 | 314 963 94 90 87 86247 942 32 27 34 50
1,000,000 12 500 500 | 470 1607 38 33 101 42| 381 1558 17 16 09 22
10,000,000 12 500 500 | 450 |  ex| er| e | 110 71 368|  ex| | o] 04 18
10000 2 1000 1000 | 53 73 72 57 112 124 36 70 37 28 53 72
100,000 2 1000 1000 | 257 804 85 74 143 160|199 781 47 3.6 64 84
1,000,000 2 1000 1000 | 500 1839 33 25 89 44399 1797 19 1.6 16 27
10,000,000 2 1000 1000 | 652 14287 25 23 91 62 521 12187 12 L1 05 16
10000 6 1000 1000 | 82 107 183 179 169 268 | 53 104 54 43 76 107
100,000 6 1000 1000 | 283 878 145 136 156 255 215 84 53 44 63 95
1,000,000 6 1000 1000 | 568 2144 52 48 42 85460 2113 22 20 17 32
10,000,000 6 1000 1000 | 636 | ex| e | er] 95 69 510 ex| | o] 05 15
10,000 12 1000 1000 | 112 158 196 180 243 378 | 80 153 84 65 107 164
100,000 12 1000 1000 | 151 477 6.1 60 87 122 118 472 29 22 36 53
1,000,000 12 1000 1000 | 61.1 2136 44 48 101 88504 2106 23 20 18 33
10,000,000 12 1000 1000 | 63.1| ex| er| o 106 60|57 ex| e | er| 05 14
10,000 2 2000 2000 | 106 88 270 256 286 492 | 7.6 86 93 71 124 222
100,000 2 2000 2000 | 142 391 125 148 144 208 108 382 45 35 58 105
1,000,000 2 2000 2000 | 456 1679 53 56 65 116|365 1662 26 21 26 48
10,000,000 2 2000 2000 | 872 34 28 85 61694 x| 13 11 07 18
10,000 6 2000 2000 | 13.5 100 296 208 320 929 | 85 98 110 8.1 134 26l
100,000 6 2000 2000 | 239 637 195 170 23.1 505|180 628 74 59 89 176
1,000,000 6 2000 2000 | 62.6 2303 74 66 88 321|500 2242 36 30 33 70
10,000,000 6 2000 2000 | 859 | ex| | o] 78 127]682  ex| e o 07 18
10,000 12 2000 2000 | 13.1 102 271 243 33.1 856 | 91 100 116 86 140 28.1
100,000 12 2000 2000 | 264 635 173 159 254 554 | 185 625 82 62 101 190
1,000,000 12 2000 2000 | 622 2079 7.0 66 81 210|497 2052 3.6 29 30 62
10,000,000 12 2000 2000 | 502 ex!| ! or| 60 381405 ex| ! ol 04 10

cases where the absolute runtimes are not trivial (i.e. under one minute).® This runtime efficiency gap grows

% In the only case where any of the algorithms is faster than OPDY (relatively few records (#strata =2, N = 10,000,000) and relatively
few bootstrap samples required (n = m= 500)), DA is faster by less than 15 seconds of real runtime. In absolute terms, however, total
runtimes for both OPDY and DA are under a minute, making this irrelevant to solving the problem of developing fast, scalable
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dramatically in absolute terms for OPDY vs. most of the other algorithms as #strata, N, n, and/or mincrease (to
take just one example, when the input dataset contains 6 strata with only N =1,000,000 records each, and n=m
= 2,000, the real runtime of OPDY is 36 seconds, compared to real runtimes of PSS (almost 38 minutes), A4.8
(about 2 hours, 19 minutes), HTPS (almost 5 minutes), HTPI (almost 4 minutes), DA (almost five and a half
minutes), and Out-SM (over 19 minutes)). That OPDY so convincingly beats DA is mildly surprising given
how widely known, how used, and how old DA is. Similarly, PSS, A4.8, and Out-SM never are serious
competitors against OPDY. And even the algorithms that keep up better with OPDY, namely the two hashing
algorithms, crash under dataset sizes that OPDY handles easily. As mentioned above, using input datasets with
two “by variables” defining twelve strata, OPDY can handle multiple strata with slightly over 100 million
records each, while both hashing algorithms often crash when the input dataset contains only three to four
million records per strata. And of course, since the size constraint on OPDY is the number of records in the
largest stratum and not the number of records overall in the dataset, it can actually handle datasets orders of
magnitude larger than those the hashing algorithms can handle, as long every stratum is below a fixed size.
Obviously memory constraints for the hashing algorithms can be avoided with more memory, but it is the
relative performance for a fixed amount of memory that matters, and OPDY’s more efficient use of memory
clearly trumps that of the hashing algorithms.

Aside from speed, note, too, that PSS, the two hashing algorithms, and Out-SM have the added disadvantage of
requiring storage space for the bootstrap sample datasets, which can become prohibitively large if #strata, N, n,
and/or mare large. All of these results combined arguably make OPDY the only truly scalable bootstrap
algorithm in SAS®.

Focusing on the real runtime of OPDY and its relationship to #strata, N, n, and m (see Graph 1), the empirical
runtimes in Table B1 yield a reasonably accurate approximation in (1), so OPDY appears to be O(N*n*m),
which is sensible.

Logio(Real Runtime) =-5.99228 + 0.588164 * Log;o(N*n*m) (where N = all N across strata) (D)

Graph 1: OPDY Real Runtime by N*n*m (N = all strata)
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bootstraps. DA fails on this front when absolute runtimes are large enough to actually matter. To take just one example, when the
input dataset contains 12 strata with only 100,000 records each, but 2,000 bootstrap samples of size n = 2,000 are drawn, OPDY runs
in under 26 seconds real time, while DA runs in about 11 minutes real time; if hundreds of such datasets require the application of
bootstraps, DA becomes runtime prohibitive and is excluded as a viable option.
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Conclusions

The goal of this paper was to develop a non-resource intensive, with-replacement sampling algorithm to execute
bootstraps faster than its competitors on arguably the most widely used statistical software platform globally.
The OPDY algorithm accomplishes this objective. It uses negligible storage space, and on the SAS® platform,
it is much faster than any other alternative, including the built-in SAS® Procedure designed (with Floyd’s
algorithm) specifically for this purpose. It is even much faster than hashing, and simultaneously does not have
the large storage requirements of hashing. Most importantly, the hashing algorithms crash under dataset sizes
much sglaller than those which OPDY can handle, making OPDY the only truly scaleable bootstrap algorithm
in SAS™.

That said, it should be noted that the algorithm runtimes presented herein, and in any empirical algorithm
research for that matter, obviously very much depend on the hardware configurations on which the algorithms
are run. Very fast I/O speeds on grid platforms, for example, may well allow the hashing algorithms to close
the speed gap on OPDY. However, it is also likely that such platforms will also have comparably souped-up
memory resources, and thus, OPDY may retain or even increase its speed lead: all else equal, as a rule, in-
memory processing will always be faster than I/O processing, and OPDY does not need to create and write to
disk the bootstrap sampling dataset that the hashing algorithms “merge” with the original input dataset. In fact,
preliminary runs on such systems (with large amounts of memory) show dramatic (relative) speed gains for
OPDY, as well as for A4.8. The code provided herein allows for testing and comparisons on different
platforms, and this author welcomes feedback from readers regarding the relative performance of the algorithms
across an array of configurations.

Acknowledgments

I sincerely thank Nicole Ann Johnson Opdyke and Toyo Johnson for their support and belief that SAS® could
produce a better bootstrap.

J.D. Opdyke, Managing Director, DataMinelt Page 7 of 23 Inter Sat, October, 2010



Appendix A

SAS® v.9.2 code for the OPDY, PSS, A4.8, DA, and Out-SM algorithms, and the SAS® code that generates the
datasets used to test them in this paper, is presented below.

khkkkhkhkkhkhkhhkhkhhhkhhkhkhhhhhhhhhhhdhhhhhhhhhhhhhhhkhhhhhhhhhhhdhhhkhhhkhhkhkrkhkrkkhrk*x*
khkhkkhkhkkhkhkhhkhkhhkhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhdhhhdhhhkhhhkhhhkrkkhkrkkhkrk*x*

PROGRAM  MFBUS. SAS

DATE: 9/ 13/ 10

CODER: J.D. Opdyke
Managi ng Director, Quantitative Strategies
Dat aM nel t

PURPOSE: Run and conpare different SAS bootstrap algorithms including OPDY, PSS, DA,
Qut-SM and A4.8. See "Mich Faster Bootstraps Using SAS' by J.D. Opdyke for
detail ed expl anations of the different algorithns.

| NPUTS: Each nmacro is conpletely nmodul ar and accepts 5 nacro paraneters:
bsnp_si ze = nunber of observations in each of the bootstrap sanples
num bsnmps = nunber of bootstrap sanpl es
i ndat a = the input dataset (including |Iibname)
byvars = the "by variables" defining the strata
boot var = the variable to be bootstrapped

QUTPUTS: A uni quely nanmed SAS dataset, the nane of which contains the name of the
algorithm bsnp_size, and numbsnps. Variables in the output dataset include
the mean of the bootstrap statistics, the standard deviation of the bootstrap
statistics, and the 2.5th and 97.5th percentiles of the bootstrap statistics.
Additional or different bootstrap statistics are easily added.

CAVEATS: The "by variables" defining the strata in the input datasets are, in OPDY and
DA, assuned to be character vari abl es.

The directory c:\M-BUS nmust be created before the programis run

EE R I O I I I O R I R I O I I R R I I R S I R R I I O I O
R I R I R I I O R I S I I R I I R R I R R O I R R R S I S O

*k k.
1

options

| abel

synbol gen

full stimer

year cut of f =1950
nocent er

s = 256

ps = 51

msynt abmax=max
npri nt

m ogi c

nm noperator mndelimter=
cl eanup

| i bname MFBUS "c:\ MFBUS";
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%racr o makedat a(strata_size=, nunsegs=, nungeogs=);
% et nunstrata = %val (& unsegs. *&nungeogs. ) ;

*** For the price variable, multiplying the random vari ates by the | oop counter
dramatically skews the values of the sanple space, thus ensuring that any
erroneous non-random sanpling will be spotted quickly and easily.

* Kk k-
’

data MFBUS. price_data_&nunstrata.strata_&strata_si ze. (keep=geography segnent price
sort edby=geogr aphy segnent);
format segnent geography $8.
array seg{3} $ _TEMPORARY_ ('segmentl' 'segnent2' 'segnment3');
array geog{4} $ _TEMPORARY_ ('geogl' 'geog2' 'geog3 'geog4');
strata_size = 1* &strata_size.
do x=1 to &nungeogs. ;
geogr aphy=geog{ x} ;
do j=1 to &nunsegs.;
segnent =seg{]j };
if j=1 then do i=1 to strata_size;
price=rand(' UNl FORM ) *10*i
out put ;
end;
else if j=2 then do i=1 to strata_size;
price=rand(' NORMAL' ) *10%i
out put ;
end;
else if j=3 then do i=1 to strata_size;
price=rand(' LOGNORMAL' ) *10*i ;
out put ;
end;
end;
end;
run;

%rend nmakedat a;

Y%rakedat a(strata_si ze=10000, nunmsegs=2, nungeogs=1);
Y%rakedat a(strata_si ze=10000, nunmsegs=2, nhungeogs=3);
Y%rakedat a(strata_si ze=10000, nunmsegs=3, nhungeogs=4);

%rakedat a(strata_si ze=100000, nunsegs=2, nungeogs=1);
%rakedat a(strata_si ze=100000, nunsegs=2, nungeogs=3);
Y%rakedat a(strata_si ze=100000, nunsegs=3, nungeogs=4);

%rakedat a(strata_si ze=1000000, nunsegs=2, nungeogs=1);
%rakedat a(strata_si ze=1000000, nunsegs=2, nungeogs=3);
%rakedat a(strata_si ze=1000000, nunmsegs=3, nungeogs=4);

Y%rakedat a(strata_si ze=10000000, numsegs=2, nungeogs=1);

%akedat a(strata_si ze=10000000, nunsegs=2, nungeogs=3);
%akedat a(strata_si ze=10000000, nunsegs=3, nungeogs=4);
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*** OPDY_Boot ***;
*** OPDY_Boot ***;
*** OPDY_Boot ***;

%racr o OPDY_Boot (bsnp_si ze=, num bsnps=, indata=, byvars=,

boot var =) ;

*** the only assunption nade within this nmacro is that the byvars are all character

vari abl es;

*** obtain | ast byvar, count byvars, and assign each byvar

access/ processi ng;

% et |ast_byvar Y%scan( &yvars., -1);
% et num byvars %sysfunc(count w( &yvars.));
%lo i =1 % o0 &um byvars.;
% et byvar& . = Y%scan(&byvars., & .);
%end;

*** macro obtains nunber of observations in a dataset;

%racr o nobs(dset);
% f Y%sysfunc(exist(&lset)) % hen %lo;
% et dsi d=%sysfunc(open(&dset));
% et nobs=%ysfunc(attrn(&dsid, nobs));
% et dsi d=%sysfunc(cl ose(&dsid));
%end;
%! se % et nobs=0;
&nobs
%rend nobs;

*** jnitialize macro vari abl es used | ater
% et bnean =;

% et bstd
% et b975 =
% et b025 =;

*** optain counts and cumrmul ated counts for each strata;

proc summary dat a=& ndata. nway;
cl ass &byvars. ;
var &bootvar. ;
out put out =byvar _nobs(keep=_FREQ_ &byvars.) n=junk;
run;

% et n_byval s = %mobs(byvar_nobs);

data cum tenmp(keep=_FREQ cumprev_freq);
set byvar _nobs(keep=_FREQ);
retain cumprev_freq O;
prev_freq = lag(_FREQ);
if n_ =1 then prev_freq = O;
cumprev_freq = sumcum prev_freq, prev_freq);
run;

into macro vari ables for easy

*** put counts, cumul ated counts, and byvar values into macro strings;
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proc sgl noprint;
select cumprev_freq into :cumprev_freqs separated by

from cum t enp;

quit;

proc sgl noprint;
select freq_into :freqgs separated by ' ' fromcumtenp;
quit;

%lo i =1 % o0 &um byvars.;
proc sgl noprint;
sel ect &&byvar& . into :byval s& . separated by
quit;
%end;

from byvar _nobs;

*** get size of |largest stratum

proc summary dat a=byvar _nobs(keep=_FREQ ) nway;
var _FREQ ;
out put out =byvar _nobs(keep=max_freq) max=nmax_freq;
run;
data _null _;
set byvar _nobs;
call synputx('max_freq' ,max_freq);
run;

*** gsave results of each stratumin cumul ated macro variables instead of outputting to a

dat aset on the data step to lessen intermediate nmenory requirenents
* Kk k-

data _null _;
set & ndata. (keep=&byvars. &bootvar.);
by &byvars.;

array bneans{&um bsnps.} bml- bm&um bsnps. ;
array tenmp{&max_freq.} _TEMPORARY_;
retain byval counter 0 cumprev_freq O;
tenp[ _n_-cum prev_freq] =&boot var.
if last.& ast_byvar. then do;
byval _count er +1;
freq = 1* scan("&f regs.", byval _counter,' ');
num bsnps = &um bsnps. *1;
bsnp_size = &bsnp_si ze. *1;
do mrl to num bsnps;
x=0;
do n=1 to bsnp_size;
x = tenp[floor(ranuni (-1)*freq) + 1] + Xx;
end;
breans[m = x/bsnp_si ze;
end;
brean = nean(of bml- bm&um bsnps.);

bstd = std(of bnl-bm&num bsnps.);

b975 = pctl (97.5, of bml-bnm&um bsnps.);

b025 = pctl (2.5, of bml-bm&num bsnps.);

call synput (' brean', synget (' brrean')||" "||conpress(bnean));

call synput('bstd',synmget('bstd )||" "|]|conpress(bstd));

call synput (' b975',synget (' b975")||" "|| conpress(b975));

call synput (' b025', synget (' b025")||" "|| conpress(b025));

cumprev_freq = 1*scan("&um prev_freqgs.", byval _counter+1,' ');
end;
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run;

*** gbtain and assign the format of each byvar, all of which are assuned to be character

vari abl es;

dat a | ens(keep=Il ens);
set & ndata. (keep=&byvars. firstobs=1 obs=1);
do i=1 to &um byvars.;
| ens = vl engt hx(scan("&byvars.",i));
out put ;
end;
run;
proc sgl noprint;
select lens into :alllens separated by '
quit;
%racro assign_formats;
%lo i =1 % o0 &um byvars.;
&&byvar & . $%scan(&alllens., & .).
%end;
%rend assign_formts;

froml ens;

*** assign each byvar value for each stratum

%racr o assi gn_byvar_val s(whi ch_strata=);
%lo j=1 % o0 &um byvars.;
&&byvar & . = scan("&&byval s& .", &hich_strata.,' ');
%end;
%rend assign_byvar_val s;

*** unwi nd and assign all the cunul ated nacro vari abl es;

dat a MFBUS. OPDY_boot s_&bsnp_si ze. _&um bsnps. (sort edby=&byvars.

n_byvals = 1*&n_byval s.;
format %assign_formats;
do i=1 to n_byvals;

brmean = 1*scan("&bnean.",i,' ');
bstd = 1*scan("&bstd.",i," ');
b025 = 1*scan("&b025.",i," ');
b975 = 1*scan("&b975.",i," ');
%assi gn_byvar _val s(which_strata = i)
out put ;
end;
run;
*** optional
proc datasets |ib=work nemype=data kill nodetails;

run;

%end OPDY_Boot ;

%OPDY_Boot (bsmp_si ze=500,
num bsnmps=500,
i ndat a=MFBUS. pri ce_data_6strata_100000,
byvar s=geogr aphy segnent,

boot var =pri ce

)
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* k * PSS ***;
* k * PSS ***;
* % % PSS ~k~k~k;

%racr o PSS(bsmp_si ze=, num bsnps=, indata=, byvars=, bootvar=);

proc surveysel ect data=& ndata. method=urs sanpsize=&bsnp_si ze. rep=&um bsnps. seed=-1
out =Boot PSS Sanps(drop=expect edhits sanplingwei ght) noprint;

strata &byvars.;

run;

proc summary dat a=Boot PSS Sanps nway;
cl ass &byvars. replicate
wei ght nunberhits;
var &bootvar.;
out put out =Boot PSS avgs(sort edby=&byvars. keep=&byvars. &bootvar.) mean=;
run;

proc univari ate data=Boot_ PSS avgs noprint;
by &byvars.;
var &bootvar. ;
out put out =MFBUS. Boot _PSS_&bsnp_si ze. _&num bsnps.
nmean=bmean

st d=bstd
pctlpts = 2.5 97.5
pctl pre=b

run;

*** optional
proc datasets |ib=work nemype=data kill nodeta
run;

S;
%rend PSS;

%UPSS( bsnp_si ze=500,
num bsnps=500,
i ndat a=MFBUS. pri ce_dat a_6strata_100000,
byvar s=geogr aphy segnent,

boot var =pri ce

);

* k * Boot DA *k k.
%% Boot DA ***;
%% Boot _DA ***;

%racr o Boot DA(bsnp_size=, num bsnps=, indata=, byvars=, bootvar=);

*** the only assunption nade within this macro is that the byvars are all character
vari abl es;

*** obtain |ast byvar, count byvars, and assign each byvar into nacro variables for easy
access/ processi ng;

% et |ast_byvar %scan( &yvars., -1);
% et num byvars %sysfunc(count w &yvars.));
%lo i =1 % o0 &um byvars.;

% et byvar& . = U%scan(&byvars., & .);
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%end;

*** macro obtains nunber of observations in a dataset;

%racr o nobs(dset);
% f Y%sysfunc(exist(&lset)) % hen %lo;
% et dsi d=%sysfunc(open(&dset));
% et nobs=%ysfunc(attrn(&dsid, nobs));
% et dsi d=%sysfunc(cl ose(&dsid));
%end;
%! se % et nobs=0;
&nobs
%rend nobs;

*** optain counts and cumrmul ated counts for each strata;

proc summary dat a=& ndata. nway;
cl ass &byvars. ;
var &bootvar. ;
out put out =byvar _nobs(keep=_FREQ_ &byvars.) n=junk;
run;

% et n_byval s = %mobs(byvar_nobs);

data cum tenmp(keep=_FREQ cumprev_freq);
set byvar _nobs(keep=_FREQ);
retain cumprev_freq O;
prev_freq = lag(_FREQ);
if n_ =1 then prev_freq = O;
cumprev_freq = sumcum prev_freq, prev_freq);
run;

*** put counts, cumul ated counts, and byvar values into macro strings;

proc sqgl noprint;
select cumprev_freq into :cumprev_freqs separated by
quit;

proc sgl noprint;
select freq_into :freqs separated by '
quit;

fromcumtenp;

from cum_t enp;

%lo i =1 % o0 &um byvars.;
proc sgl noprint;
sel ect &&byvar& . into :byval s& . separated by
quit;
%end;

from byvar _nobs;

*** obtain and assign the format of each byvar, all of which are assuned to be

vari abl es;

dat a | ens(keep=Il ens);
set & ndata. (keep=&byvars. firstobs=1 obs=1);
do i=1 to &um byvars.;
| ens = vl engt hx(scan("&byvars.",i));
out put ;
end;
run;
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proc sgl noprint;
select lens into :alllens separated by
quit;
%acro assign_formats;
%lo i =1 % o0 &um byvars.;
&8byvar& . $%scan(&alllens., & .).
%end;
%rend assign_formats;

froml ens;

*** assign each byvar value for each stratum

%racro assi gn_byvar_val s(which_strata=);
%lo j=1 %0 &um byvars.;
&&byvar & . = scan("&&byval s& .", &hich_strata.,' ');
%end;
%rend assi gn_byvar _val s;

dat a MFBUS. boot _da_&bsnp_si ze. _&um bsnps. (keep=&byvars. brmean bstd b975 b025);

n_byval s=&n_byval s. ;

bsnp_size = 1* &bsnp_si ze.

num bsnps = 1* &um bsnps. ;
format %assign_formats;

do byval counter=1 to n_byvals;

freq = 1* scan("&f regs.", byval counter,' ');
cumprev_freq = 1* scan("&umprev_freqgs.", byval counter,’

%assi gn_byvar _val s(which_strata = byval counter)

array bneans{&um bsnps.} bnil- bm&um bsnps. (&um bsnps. *0);

do bsampl e=1 to num bsnps;
XSumnme0;
do obs=1 to bsnp_si ze;

obsnum = fl oor(freqg*ranuni (-1))+1+cum prev_freq;

set & ndat a. (keep=&bootvar.) poi nt=obsnum
Xsum = xsum + &boot var.
end;
brreans[ bsanpl e] = xsuni bsnp_si ze;
end;
brmean = nean(of bml- bm&um bsnps.);

bstd = std(of bnl-bm&num bsnps.);
b025 = pctl (2.5, of bml-bm&num bsnps.);
b975 = pctl (97.5, of bml-bm&um bsnps.);
out put ;

end;

st op;

run;

*** optional
proc datasets |ib=work nemype=data kill nodetails;
run;

%end Boot DA

%Boot _DA( bsnp_si ze=500,
num bsnmps=500,
i ndat a=MFBUS. pri ce_data_6strata_100000,
byvar s=geogr aphy segnent,

boot var =pri ce

)
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**xx Boot SM ***;
* %k BOOt_SM -
*kk BOOt_SM***'

%racr o Boot SM bsnp_si ze=, num bsnps=, indata=, byvars=, bootvar=);
*** obtain counts by strata,;

proc summary dat a=& ndata. nway;
cl ass &byvars. ;
var &bootvar. ;
out put out =byvar _nobs(keep=_FREQ_ &byvars.) n=junk;
run;

*** out put bootstrap observations to sanple in a nested | oop

dat a bsnp;

set byvar _nobs(keep=&yvars. FREQ);

num bsnps = 1*&um bsnps. ;

bsnp_size = 1*&bsnp_si ze.

do sanpl e=1 to num bsnps;

do k=1 to bsnp_size;
obsnum = fl oor (_FREQ *ranuni (-1))+1

out put ;
end;
end;
run;

proc sort data=bsnp;
by &byvars. obsnum
run;

proc sort data=& ndata. out=price_data,;
by &byvars.;
run;

*** create record counter on input dataset;
% et |ast_byvar = %scan(&byvars.,-1);

dat a boot;
set price_data;
retain obsnum O
by &byvars.;
if first. & ast_byvar. then obsnumel;
el se obsnumt1;
run;

proc sort data=boot;

by &byvars. obsnum
run;

*** merge bootstrap sanpl e observations with input dataset to obtain bootstrap sanples;

dat a boot
error

ner ge boot(in:inboot)
bsnp(i n=i nbsmp)
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by &bybars. obsnum

if inboot & inbsnp then output boot;
el se if inboot~=1 then output error
run;

*** gsummari ze bootstrap sanpl es;

proc summary dat a=boot (keep=&byvars. sanple &bootvar.) nway;
cl ass &byvars. sanpl e;
var &bootvar. ;
out put out =boot neans(keep=&byvars. &bootvar. sortedby=&byvars.) nean=;
run;

proc univari ate data=boot_neans(keep=&byvars. &bootvar.) noprint;
by &byvars.;
var &bootvar.;
out put out =MFBUS. boot _Qut _SM &bsnp_si ze. _&num bsnps.
nmean = b_nean
std = b_std
pctlpts = 2.5 97.5 pctlpre=b

run;

*** optional
proc datasets |ib=work nemype=data kill nodetails;
run;

%rend Boot SM

%Boot _SM bsnp_si ze=500,
num bsnps=500,
i ndat a=MFBUS. pri ce_data_6strata_100000,
byvar s=geogr aphy segnent,

boot var =pri ce

)

*k * AL(m_p8 *k k.
* k * AL(m_p8 ***:
* k * AL(m_p8 ***:

%racro Al god4p8(bsnp_size=, num bsnps=, indata=, byvars=, bootvar=);
*** obtain counts by strata and nerge onto input dataset;
proc summary dat a=& ndata. nway;
cl ass &byvars. ;
var &bootvar. ;
out put out =byvar_nobs(keep=_FREQ_ &byvars.) n=junk;
run;
proc sort data=& ndata. out=price_data,;
by &byvars.;

run;

data price_data
error

ner ge byvar_nobs(in:innobs keep=&byvars. FREQ)
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& ndata. (i n=infull)
by &byvars.;
if innobs & infull then output price_data;
el se output error;
run;

*** ginmultaneously create all bootstrap sanples and sunmari ze results of each as the end
of stratumis reached;

% et |ast_byvar = %scan(&byvars.,-1);

dat a MFBUS. boot _al go4p8_&bsnp_si ze. _&num bsnps. (keep=&byvars. bstd bnean b025 b975);
set price_data end=l astrec;
by &byvars.;
num bsnmps = &um bsnps. ;
array bsumreans{&um bsnps.} bsumean_1- bsumrean_&num bsnps. ;
array bcds{&um bsnps.} bcd_1-bcd_&num bsnps. ;
retai n bsunmean_1- bsunmean_&num bsnps. 0 bcd_1-bcd_&um bsnps. &bsnp_si ze. counter O;
count er +1;
p = 1/ (_FREQ -counter+1);
do i=1 to num bsnps;
if bcds[i]>0 then do;
x = rand(' BI NOM AL' , p, bcds[i]);
bsumreans[i] =x*&bootvar. + bsumeans[i];
bcds[i] =bcds[i]-x;
end;
end;
if last.& ast_byvar. then do;
bsnp_size = 1*&bsnp_si ze.
do h=1 to num bsnps;
bsumreans[ h] = bsunmmeans[ h]/bsnp_si ze;
end;
bmrean = nean(of bsummean_1- bsumean_&num bsnps.);

bstd = std(of bsumean_1-bsunmean_&nhum bsnps.);

b025 = pctl (2.5, of bsunmean_1-bsumrean_&num bsnps.);
b975 = pctl (97.5, of bsummean_1-bsumean_&num bsnps.);
out put ;

if lastrec~=1 then do;
counter = 0;
do x=1 to num bsnps;
bsumreans| x] =0;
bcds[ x] =bsnp_si ze;
end;
end;
end;
run;

*** optional
proc datasets |ib=work nemype=data kill nodetails;
run;

%rend Al go4p8;

%Al go4p8( bsnp_si ze=500,
num bsnmps=500,
i ndat a=MFBUS. pri ce_data_6strata_100000,
byvar s=geogr aphy segnent,

boot var =pri ce

)
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Appendix B

Table B1:

Real and CPU Runtimes (minutes) of the Algorithms for Various N, #strata, n, and m
(ex = excessive, cr = crashed)

REAL CPU
N # Out- Out-
(per stratum)  Strata n m  OPDY PSS A4.8 HTPS HTIT DA SM OPDY PSS A4.8 HTPS HTIT DA SM
10,000 2 500 500 0.01 0.06 0.12 0.10 0.05 0.10 0.09 0.00 0.03 0.12 0.04 0.02 0.04 0.07
100,000 2 500 500 0.01 0.33 1.19 0.09 0.07 0.11 0.14 0.01 0.26 1.17 0.10 0.04 0.05 0.06
1,000,000 2 500 500 0.10 3.00 11.70 0.24 0.19 0.14 0.41 0.07 241 11.51 0.12 0.11 0.07 0.17
10,000,000 2 500 500 0.71 29.96 117.14 1.80 1.93 0.47 5.37 0.60 23.75 115.03 0.97 0.97 0.30 1.28
10,000 6 500 500 0.02 0.18 0.35 0.21 0.14 0.29 0.30 0.01 0.12 0.35 0.09 0.08 0.12 0.16
100,000 6 500 500 0.04 0.99 3.50 0.20 0.18 0.31 0.36 0.03 0.79 3.44 0.12 0.10 0.14 0.18
1,000,000 6 500 500 0.24 8.95 34.83 0.56 0.49 1.07 1.08 0.19 7.30 34.38 0.35 0.34 0.20 0.53
10,000,000 6 500 500 2.24 89.17 830.52 cr cr 17.51 19.78 1.83 72.76 781.98 cr cr 0.97 4.00
10,000 12 500 500 0.03 0.36 0.75 0.57 0.89 0.57 0.53 0.02 0.27 0.73 0.18 0.15 0.25 0.31
100,000 12 500 500 0.08 2.39 7.35 0.72 0.68 0.66 0.65 0.06 1.88 7.19 0.25 0.20 0.26 0.38
1,000,000 12 500 500 0.46 21.78 74.56 1.78 1.55 4.67 1.96 0.38 17.67 72.27 0.80 0.75 0.44 1.04
10,000,000 12500 500 467 21019 | ex | or ‘ or | 5139 3301 | 3.64  171.66 ‘ ex ‘ cr | or ‘ 191 828
10,000 2 1000 1000 0.03 0.18 0.24 0.24 0.19 0.37 0.41 0.01 0.12 0.23 0.12 0.09 0.18 0.24
100,000 2 1000 1000 0.03 0.75 2.36 0.25 0.22 0.42 0.47 0.02 0.58 2.29 0.14 0.11 0.19 0.25
1,000,000 2 1000 1000 0.13 6.39 23.51 0.42 0.32 1.13 0.56 0.11 5.10 22.98 0.24 0.21 0.21 0.34
10,000,000 2 1000 1000 0.96 62.69 1372.74 2.44 2.20 8.73 5.95 0.85 50.07 1170.95 1.15 1.10 0.46 1.53
10,000 6 1000 1000 0.07 0.56 0.73 1.25 1.23 1.16 1.83 0.03 0.36 0.71 0.37 0.30 0.52 0.73
100,000 6 1000 1000 0.08 2.30 7.14 1.18 1.11 1.27 2.07 0.07 1.75 7.03 0.43 0.36 0.51 0.77
1,000,000 6 1000 1000 0.33 18.80 71.00 1.72 1.59 1.39 2.81 0.29 15.23 69.97 0.74 0.67 0.58 1.06
10,000,000 6 1000 1000 2.93 186.14 | ex | or ‘ or | 2781 2024 | 251 149.18 ‘ ex ‘ cr | or ‘ 143 453
10,000 12 1000 1000 0.09 1.04 1.46 1.81 1.67 2.25 3.50 0.06 0.74 1.42 0.78 0.60 0.99 1.52
100,000 12 1000 1000 0.30 4.51 14.26 1.82 1.80 2.58 3.65 0.13 3.52 14.08 0.88 0.67 1.07 1.60
1,000,000 12 1000 1000 0.67 40.72 142.47 2.92 3.21 6.77 5.85 0.58 33.64 140.50 1.53 1.37 1.22 2.20
10,000,000 12 1000 1000 6.47 408.29 | ex | cr ‘ cr | 68.52  39.03 5.28 334.25 ‘ ex ‘ cr | cr ‘ 3.04 9.32
10,000 2 2000 2000 0.05 0.57 0.47 1.44 1.37 1.53 2.62 0.04 0.40 0.46 0.50 0.38 0.66 1.19
100,000 2 2000 2000 0.12 1.68 4.62 1.47 1.75 1.71 2.46 0.07 1.28 4.52 0.53 0.41 0.69 1.24
1,000,000 2 2000 2000 0.27 12.37 45.58 1.44 1.52 1.77 3.16 0.19 9.91 45.12 0.70 0.58 0.70 1.30
10,000,000 2 2000 2000 1.38 119.97 4.70 3.92 11.63 8.38 1.26 95.43 1.75 1.57 091 2.48
10,000 6 2000 2000 0.14 1.92 1.43 421 2.96 4.55 13.23 0.12 1.22 1.40 1.57 1.15 1.91 3.72
100,000 6 2000 2000 0.22 5.25 13.98 4.27 3.73 5.08 11.07 0.20 3.94 13.78 1.62 1.29 1.95 3.87
1,000,000 6 2000 2000 0.60 37.76 138.84 4.46 3.97 532 19.38 0.54 30.11 135.16 2.17 1.79 1.99 4.24
10,000,000 6 2000 2000 426 365.80 ‘ ex cr ‘ cr ‘ 3327 5424 | 3.80 290.18 ‘ ex cr cr ‘ 280  7.80
10,000 12 2000 2000 0.27 3.59 2.79 7.45 6.67 9.10  23.49 0.24 2.51 2.75 3.18 2.35 3.85 7.72
100,000 12 2000 2000 0.43 11.40 27.36 7.46 6.87 10.93  23.87 0.40 7.97 26.96 3.53 2.66 4.37 8.18
1,000,000 12 2000 2000 1.33 82.82 276.65 9.35 8.80 10.76 ~ 28.00 1.13 66.17 273.12 4.75 3.89 4.00 8.30
10,000,000 12 2000 2000 15.84 794.49 ex cr cr | 9552  59.85 7.88 640.85 ‘ ex cr cr 5.62 15.30
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Appendix C

To prove the validity of Algorithm 4.8 as an equal-probability, with-replacement sampling algorithm, it must be
shown that all possible samples of n items have equal probability of being selected. The probability of drawing
any specific item in any draw from among the N items is 1/N, so the probability of a particular set of n items

being drawn, in a specific order, is simply (1/ N )n or 1/ N" 7 However, the order of selection does not matter

for these purposes,® so we must use the probability of drawing a particular sample of n items, in any order, and
show that this is identical to the probability of drawing any sample of n items using Algo4.8.

The probability of drawing any particular sample of n items, in any order, when sampling with replacement is
given by Efron and Tibshirani (1993, p. 58) as

nt 1Y
bt 1 )

when n= N, and b; indicates the number of times item i is drawn. Note that, by definition, n= Zh , SO
i=1

n h _ n
(l/n) - (l/n) . Sowhen n<N, (C1) is simply

1=1
n

n! |

b!b!b! LN (2)

To show that the probability that any sample of n items drawn from N items (n < N) using Algo4.8 is equal to
(C2), note that the probability that any of the n items in the sample is drawn b times, where b is 0 < positive
integers < ', is by definition the binomial probability (using N’ and p as defined in Algo4.8)

n' , n'—b"
— ) — b (1 _ )

Pr(h =8) =| . |p* (1-P)

This makes the probability of drawing any n items with Algo4.8, with possible duplicates, in any order, the
following:

for0<p<1’ (C3)

7 This corresponds with there being N" possible sample-orderings for a with-replacement sample of n items drawn from N items, n <
N.

¥ Note that given the sequential nature of the algorithm, the order of the n items will be determined by, and is the same as, the order of
the N population items, which of course can be sorted in any way without affecting the validity of the Algo4.8 algorithm.

’ In Algo4.8, as mentioned above, p will never equal zero, and if p= 1, h* =n', which is correct.
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Pr(Algo4.8 sample = any particular with-replacement sample) =

MR
bzz((nn—_nblz!bz)!(Nl—lj (l_ﬁj -

(n-b -b,)! ( 1 j@(l_#j”'q'@'bsm
b!(n-b b, =b,)I\ N -2 N -2

b n—b —b, —b; —-- oy

(n-b-b, = -b,)! ! 1
by!(n=hb =b, =b, = b, )I| N (N -1) N N -1) (©

Reordering terms gives

Pr(Algo4.8 sample = any particular with-replacement sample) =

o (n-h)! . (n-b -h,)! . (n=b —b, = -b_,)! .
b!(n-b)! b!(n-b-b) bl(n-b -b b))  b!(n-b b b - b)!

i b N =1 n-b 1 b, N =2 n— —b, 1 by N =3 n—bl—bz—bsgnm
N N N -1 N -1 N -2 N -2
b n—b —b, —b; —-- by

1 N-N
N-(N-1) ] | N-(N-1) (C3)

n

Because " = ZQ , the denominator in the last “combinatoric” term in (C5) is by 10! =D, ! , and except for the
i=1

first numerator n! and b;! in each denominator, the rest of the numerators and denominators in the combinatoric

terms cancel leaving n'/(b1 b,!---by !) . Of the remaining “probability” terms, the final term can be written as

1 N 1 n-b —b, =y —-- by 0
{ N — ( N - 1) ] ( N — ( N _1) ] (Tj . If we avoid the centuries old debate (at least

since the time of Euler) regarding the value of 0° and define 0° = 1, as is accepted convention by numerous
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august mathematicians (including Euler)," then all the (N - X) numerators and denominators cancel here as well,
b n-by _ n
leaving only, from the first term, (1/ N) (1/ N) = (1/ N) , which yields

n! 1Y

b!b,!---b,! (N ) ,whichis(C2).

Examples of calculating this probability using both (C2) directly and the steps of Algo4.8, for both n< N and n
= N, are shown in Table C1 below.

Table C1:
Algo4.8 vs. (2): Probability of Drawing Any Particular With-Replacement Sample of n items, n <N

Algo4.8 (C2)

for n=N
Cum. Cum. Cum.
Variable Record Cum. Product Product Product
Value # N n N n p  b* Sample Pr(b=b*) Pr. (1/n)"b*  (1/n)"b* b*! b*!
a 1 3 3 3 3 033 2 a,a 0.222 0.222 0.111 0.111 2 2
b 2 3 3 2 1 0.50 0 a,a 0.500 0.111 1.000 0.111 2
c 3 3 3 1 1 1.00 1 a,a,c 1.000 0.111 0.333 0.037 1 2

End Pr(any 3) = Pr(any 3) =
Result a,a,c Pr(a,a,c) = 0.111 2)= 0.111
Algo4.8 (C2)

for n<N
Cum. Cum. Cum.
Variable Record Cum. Product Product Product
Value # N n N n p b* Sample Pr(b=b*) Pr. (1/N)*b*  (1/N)"b* b*! b*!
a 1 5 3 5 3 020 2 a,a 0.096 0.096 0.040 0.040 2 2
b 2 5 3 4 1 025 0 a,a 0.750 0.072 1.000 0.040 1 2
c 3 5 3 3 1 033 0 a,a 0.667 0.048 1.000 0.040 1 2
d 4 5 3 2 1 050 1 a,a,d 0.500 0.024 0.200 0.008 1 2
e 5 5 3 1 0 a,a,d 1.000 0.008 1 2

End Pr(any 3) = Pr(any 3) =

Result a,a,d Pr(a,a,d) = 0.024 2)= 0.024

12 See Euler (1748), Euler (1770), Graham et al., (1994), Knuth (1992), and Vaughan (1970).
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