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Presented at the Marcus Evans Operational Risk Management conference, New 
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This work was completed by the sole author, J.D. Opdyke, when he was Senior 
Managing Director of DataMineit, LLC (aside from more recent reviews of the 
published journal paper).  The views presented herein are the views of the sole 
author and do not reflect the views of DataMineit, LLC, GE Capital, or any other 
institution. 
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1. Presentation Goals 

I. Demonstrate that Jensen’s Inequality is the apparent source of 
systematically inflated operational risk capital estimates under the 
most common implementations of Basel II/III’s AMA-LDA, and that 
this bias often is very large: hundreds of $millions, and sometimes 
$billions at the unit-of-measure level. 
 

II. Develop a Reduced-bias Capital Estimator (RCE) that i) dramatically 
mitigates this capital overstatement, ii) notably increases the 
precision of the capital estimate, and iii) consistently increases its 
robustness to violations of the (unsupported) i.i.d. presumption.  
With capital accuracy, precision, and robustness greater than any 
other current LDA implementation, RCE arguably would 
unambiguously improve the most widespread OpRisk Capital 
Estimation Framework, and would be the most consistent with 
regulatory intent vis-à-vis an unbiased and more stable 
implementation under Basel II/III’s AMA. 
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1. Operational Risk Setting 

Operational Risk 
 Basel II/III 
  Advanced Measurement Approaches (AMA) 
   Risk Measurement & Capital Estimation 
    Loss Distribution Approach (LDA) 
     Frequency Distribution 

    Severity Distribution*  
 

       Aggregate Loss Distribution 

* For purposes of this presentation, and as is widespread practice, potential dependence between the frequency and severity distributions is 
ignored.  See Chernobai, Rachev, and Fabozzi (2007) and Ergashev (2008). 
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2. AMA–LDA OpRisk Capital Defined 

• A la Basel II/III, Operational Risk Capital for large banks/SIFIs must be estimated with an 
Advanced Measurement  Approaches (AMA) framework. 

• In writing, AMA provides great flexibility, but in practice, there has been industry 
convergence to the Loss Distribution Approach (LDA). 

• Under LDA, severity and frequency distributions representing the magnitude and 
number of OpRisk loss events, respectively, are estimated based on samples of OpRisk 
loss event data. 

• The severity and frequency distributions are convoluted (rarely in closed form) to obtain 
the Aggregate Loss Distribution. 

• Estimated Capital is a VaR of the Aggregate Loss Distribution: specifically, the quantile 
associated with its 99.9%tile, or the 1-in-1000 year loss, on average.  Capital is estimated 
for every cell of data (or “Unit-of-Measure” (UoM), typically defined by Line of Business 
and Event Type) and then aggregated to the enterprise level via dependence modeling.  
The focus in this presentation is UoM-level capital. 

• In practice, frequency parameters have very little effect on estimated capital, which is 
driven almost entirely by the severity parameter values (see Degen’s (2010) analytical 
result below). 
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2. AMA–LDA OpRisk Capital Defined 
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Loss Distribution Approach – For a given UoM: 
 

DCT = 10k 

Estimated Severity PDF – Truncated LogNormal (µ=10, σ=2.8, H=10k) 

Estimated Frequency PMF – Poisson (annual λ=25) 

Convolution via 
simulation (in 
practice, rarely a 
closed form solution 
… but for the VaR 
there are good and 
widely accepted 
analytical 
approximations 
much faster than 
Monte Carlo 
simulation)  

Aggregate Loss Distribution 

Regulatory Capital 
= VaR at 99.9%tile 
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3.a. Apparent Convexity of Severity VaR     Inflated Capital 

• Estimated Capital is Essentially a High Quantile of the Severity Distribution as per 
Degen’s (2010) Single Loss Approximation (SLA): 
 
 
 
In other words, first term >> second term (see Appendix A for an improved Interpolated 
SLA (ISLA) from Opdyke, 2014). 

• PROPOSED: For this setting (heavy-tailed severities, certain parameter value ranges, and 
very high p = percentiles):   
IF Aggregate Loss Distribution (ALD) VaR (i.e. Capital) is a very slightly concave function 
of λ, the frequency parameter(s) (as shown empirically in Opdyke, 2014),  
AND Severity VaR is a sufficiently convex function of severity parameter vector      for 
Jensen’s inequality to hold 
THEN ALD VaR (Capital) is a sufficiently convex function of        for Jensen’s inequality to 
hold. 

• NOTE:  Severity VaR is much more extreme than ALD VaR, because for, say, λ = 30, and α 
= 0.999 and α = 0.9997,                                   0.999967 and 0.99999, respectively. 

1 1 ˆ1 ;C Fα
α β λµ
λ

− − ≈ − + 
 

β̂

β̂

⇒

where  = frequency parameter and  = E Xλ µ   

( )1 1p α λ = − − = 



3.a. Apparent Convexity of Severity VaR     Inflated Capital 

( )ˆpdf β

( )ˆE β β= β̂

sample2β̂ sample1β̂ sample3β̂

( )ˆPr β β= ± ∆

• Operational Risk Loss Event Data = a Sample, NOT a Population 

• Therefore, true severity parameters, β , will never be known. 

    BUT Estimated Parameters,    , 
have DISTRIBUTIONS that are 
known under specified 
assumptions (e.g. Maximum 
Likelihood Estimators (MLE) are 
asymptotically normal, 
unbiased, and efficient under 
i.i.d. data) 

β̂Figure 1:  
Severity Parameter PDF 
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3.a. Apparent Convexity of Severity VaR     Inflated Capital 

 
© J.D. Opdyke 

10 of 70 

( ) ( )ˆ ˆ =Capital Bias  0E g g Eβ β    − >        
( )ˆ ˆ Estimated Capitalg Cβ = =

( ) ( )1ˆ ˆ; = presumed shape of severity quantile/VaRg F pβ β−=

( )ˆE β β= β̂

( )ˆpdf β

( )( )ˆpdf g β

LOWCI HIGHCI

( )LOWg CI

( )HIGHg CI

( )ˆg E β 
  

( )ˆE g β 
  

Capital Bias 

* Graph based on Kennedy (1992), p.37. 

“Jensen’s inequality” 
first proved in 1906. 
   

If VaR, g(), is strictly convex 
in    , capital always will be 
inflated. 
  

This appears to be true for i) 
the relevant severities 
(heavy-tailed) with ii) relevant 
parameter ranges, WHEN iii) 
p is large (i.e. p>0.999). 

β̂

Figure 2:  
Estimator Variance Causes 
Jensen’s Inequality 

⇒



• Of course, this is convexity with respect to estimated severity 
parameters.  This is explicitly stated in Opdyke and Cavallo (2012a) 
on p.68, and again in Opdyke (2014) on p.12, respectively, as below: 

• “This is illustrated in Figure 20 (from Kennedy (1992, p. 37)).  This 
applies to quantile estimation of all commonly used severity 
distributions: if β is a random variable (here, our severity distribution 
parameter estimates) and        is a (strictly) convex function (here, the 
inverse of our severity distribution CDF), then                         , and our 
quantile estimate (capital estimate) is biased upward.” 

• “under these conditions, VaR appears to always be a convex 
function, like       , of the parameters of the severity distribution, 
which here is the vector β (we can visualize β as a single parameter 
without loss of generality as the multivariate case for Jensen’s 
inequality is well established (see Schaefer 1976)). Consequently, the 
capital estimation,             will be biased upward.” 
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3.a. Apparent Convexity of Severity VaR     Inflated Capital ⇒

( ) ( )ˆ ˆg E E gβ β   <     

( )g ⋅

( )g ⋅

( )ˆV̂ g β=



• Unfortunately, there is a little confusion on this point in an unpublished paper 
(see Larsen, 2015): 

• “This mean bias is a central object of study in Opdyke and Cavallo (2012), where they claim that MLE results in capital 
overestimation. The meaning of this statistic for modeling decisions, however, is not completely clear. … Opdyke and Cavallo 
(2012) write that the mean OpVaR bias is a consequence of Jensen's inequality, but no further details are given. This would 
follow if the CDF              for a heavy-tailed distribution were a convex function. There is no mention whether convexity is with 
respect to the loss variable x or with respect to the parameters θ. For the Jensen's inequality argument of Opdyke and Cavallo 
(2012) to be valid, convexity must be shown with respect to the parameters θ, not the loss amount x.[fn3]  Specifically, we 
would have to show that, for all loss amounts x in a neighborhood of the true OpVaR, the Hessian of               with respect to θ 
is negative definite (and hence the Hessian of the quantile function of              would be positive definite). This property is 
trivial to verify for the Pareto distribution considered here as depending only on one variable, but is less than straightforward 
for more complicated distributions. That there is still something to prove before invoking Jensen's inequality is mentioned in 
a subsequent paper (Opdyke, 2014).” 

• In footnote 3 Larsen (2015) examines potential convexity of VaR with respect to 
“x,” the variable representing the size of the loss events.  But these are not being 
ESTIMATED – they are the data points themselves! Jensen’s inequality is 
fundamentally about ESTIMATION, not data per se, so the point of the footnote is 
unclear, if not misguided.  We encourage (re)reading Opdyke and Cavallo (2012a) 
and Opdyke (2014) above to avoid any confusion regarding the relevance 
Jensen’s inequality in this setting.  Finally, Mayorov and Opdyke (forthcoming, 
2016) ANALYTICALLY demonstrate that examining the positive vs. negative 
definiteness of the Hessian alone is not enough to verify VaR’s local convexity 
here, and they establish more rigorous conditions for this to hold. 

• The 2nd confusion in Larsen (2015), this time regarding bias, is addressed below. 
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3.a. Apparent Convexity of Severity VaR     Inflated Capital ⇒

( )|F x θ

( )|F x θ
( )|F x θ



• It is critical to note here that even though capital estimates will be, on 
average, high 50% of the time and low 50% of the time even under 
Jensen’s inequality, the AMOUNTS that they are high vs. low are very 
different: when high, they are often much higher than true capital, but 
when low, they often are not much lower than true capital.  Would you/ 
your bank bet on a nickel gain vs. a dollar loss with equal probability?!   

• When comparing capital estimates to true capital, probability alone is 
not sufficient here – the absolute DISTANCE from true capital matters 
too.  And it is the mean (expected value), rather than specific quantiles 
like the median, that is determined by BOTH the probability, AND the 
absolute distance from true capital, associated with specific capital 
estimates. 

• The capital estimate distribution, and all of its relevant characteristics, 
are examined throughout this presentation.  The specific issue of the 
distance of true capital from specific quantiles of the distribution (e.g. 
the median) is examined in great detail in Appendix D herein, as well as 
in footnote 67, p.59, of Opdyke (2014), where it is shown that so-called 
“median bias” is an essentially irrelevant artifice in this setting. 
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3.a. Apparent Convexity of Severity VaR     Inflated Capital ⇒



• Severity VaR is NOT a convex function of the severity parameter 
vector     globally, for all percentiles (p) and all severities.  This is 
widely known and easily proved.   

• However, Severity VaR appears always to be a convex function of      
under, concurrently, BOTH i) sufficiently high percentiles (p>0.999) 
AND ii) sufficiently heavy-tailed severities (amongst those used in 
OpRisk modeling).  Both conditions hold in AMA–LDA OpRisk 
Capital Estimation (see Appendix B), and the very strong empirical 
evidence is exactly consistent with the effects of convexity in that we 
observe Jensen’s Inequality empirically.  

• Still, we would like to PROVE Jensen’s inequality for a) Severity VaR 
under these conditions, and b) Severity VaR for all relevant severities 
[a) and b) would be proven asymptotically: ultimately we would like 
to prove Jensen’s inequality for c) arbitrary finite sample size.] 

β̂

3.b. Multiple Checks for Convexity of Severity VaR 

β̂
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3.b. Multiple Checks for Convexity of Severity VaR 
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• Still, we would like to PROVE a) convexity in Severity VaR under 
these conditions, and b) convexity in VaR for all relevant severities. 

• Re: a), we can examine three things: 
The shape of VaR as a function of the severity parameters…  

i. individually (i.e. check for marginal convexity) 

ii. jointly (i.e. mathematically determine the shape of the 
multidimensional VaR surface) 

iii. jointly, based on extensive Monte Carlo simulation (i.e. examine 
the behavior of VaR as a function of joint parameter perturbation) 



3.b. Multiple Checks for Convexity of Severity VaR 
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• Re: a), we can examine three things: 
The shape of VaR as a function of the severity parameters…  

i. individually (i.e. check for marginal convexity) 
 
Analytically this is straightforward for those severities with 
closed-form VaR functions.  For the LogNormal, for example, 
 
 
 
 
 
 
However, this is not typically the case, especially for truncated 
distributions.  But these marginal checks are easy to do 
graphically (NOTE that GPD also is straightforward analytically). 
 

( )( )1exp ,  soVaR ICDF pµ σ −= = + Φ

2 2 0VaR VaRµ∂ ∂ = >

( )
22 2 1 0VaR VaR pσ − ∂ ∂ = ⋅ Φ > 



3.b. Multiple Checks for Convexity of Severity VaR 

( )1 ;F p ξ−

Figure 3a: 
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3.b. Multiple Checks for Convexity of Severity VaR 

( )1 ;F p θ−

Figure 3b: 

 
© J.D. Opdyke 

18 of 70 



For GPD, for large p(>0.999): VaR is convex in    and linear in   , so 
VaR APPEARS to be convex in parameter vector    , implying 
systematic and consistent capital inflation.  Note this convexity in  
increases in p.  Additional widely used severities are shown below. 
 
TABLE 1: Marginal VaR Convexity/Linearity OVER RELEVANT DOMAIN (p > 0.999) by Parameter by Severity 

 

 

 

 

 

 
 

ξ θ
β̂

3.b. Multiple Checks for Convexity of Severity VaR 

 
Severity Distribution 

VaR  is Convex/Linear as Function of... Relationship  
between  

Parameter 1 Parameter 2 Parameter 3 Parameters 
1)   LogNormal (µ, σ) Convex Convex Independent 
2)   LogLogistic (α, β) Linear Convex Independent 
3)   LogGamma (a, b) Convex Convex Dependent 
4)   GPD (ξ, θ) Convex Linear Dependent 
5)   Burr (type XII) (ϒ, α, β) Convex Convex Linear Dependent 
6)   Truncated 1) Convex Convex Dependent 
7)   Truncated 2) Linear Convex Dependent 
8)   Truncated 3) Convex Convex Dependent 
9)   Truncated 4) Convex Linear Dependent 
10) Truncated 5) Convex Convex Linear Dependent 
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3.b. Multiple Checks for Convexity of Severity VaR 
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• Re: a), we can examine three things: 
The shape of VaR as a function of the severity parameters…  

i. individually (i.e. check for marginal convexity) 
 
For all commonly used severities in this space,* VaR always 
appears to be a convex function of at least one parameter, and a 
linear function of the rest.  This would be consistent with convex, 
or “convex-dominant” (see below) behavior when VaR is 
examined as a function of the severity parameters jointly. 

*NOTE:  Although in the past spliced and mixed-distribution severities 
  have been used by a number of banks, the most recent 
  Interagency Guidance (June, 2014) indicated strong preference for 
  single-density severity estimation with fewer parameters, both to 
  avoid potential for overfitting the loss event data.  Specifically, the 
  LogNormal, LogGamma, GPD, and Burr Type XII severities were  
  mentioned. 



3.b. Multiple Checks for Convexity of Severity VaR 
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• Re: a), we can examine three things: 
The shape of VaR as a function of the severity parameters…  

ii. jointly (i.e. mathematically determine the shape of the 
multidimensional VaR surface) 
 
This can be done via examination of the signs and magnitudes 
of the eigenvalues of the shape operator (which define its 
principal curvatures). 
 
This turns out to be analytically nontrivial, if not intractable 
under truncation, and even numeric calculations for many of the 
relevant severities are nontrivial given the sizes of the severity 
percentiles that must be used in this setting (because most of 
the gradients are exceedingly large for such high percentiles).   
 



3.b. Multiple Checks for Convexity of Severity VaR 
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ii. jointly (i.e. mathematically determine the shape of the 
multidimensional VaR surface) 
 
So this research currently remains underway, and without this 
strict mathematical verification, attributions of capital inflation to 
Jensen’s inequality are deemed “apparent” and/or “preliminary,” 
as are those related to VaR’s (apparent) convexity. 
 
This scientifically conservative approach, however, belies the 
strong and consistent empirical evidence of capital inflation, and 
its behavior as being exactly consistent with the effects of 
Jensen’s inequality (in addition to findings of marginal 
convexity).  In other words, just because the specific 
multidimensional shapes of high-percentile VaR under these 
severities are nontrivial to define mathematically, we should not 
turn a blind eye toward strong empirical evidence that convexity 
dominates VaR’s shapes as a joint function of severity 
parameters. 



3.b. Multiple Checks for Convexity of Severity VaR 
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ii. jointly (i.e. mathematically determine the shape of the 
multidimensional VaR surface) 
 
In other words, the cumulative weight of the evidence – even in 
the absence of a “smoking-gun” absolute mathematical proof – 
is very strong here.  An apt analogy is the relationship between 
smoking and cancer: no one study definitively proves the now-
known and widely accepted relationship between the two – it 
was the weight of cumulative evidence from disparate sources 
that eventually became accepted wisdom and scientific fact. 
 
All strong and consistent evidence here points to Jensen’s 
Inequality as the source of bias, so we should not delay in 
allowing this assumption to guide the design of solutions to it. 
 
It is also crucial to note that a strictly convex VaR surface is not 
necessary for Jensen’s inequality to be true, and this is a widely 
proven result: the surface need only be sufficiently convex. 



3.b. Multiple Checks for Convexity of Severity VaR 
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iii. jointly, based on extensive Monte Carlo simulation (i.e. examine 
the behavior of VaR as a function of joint parameter perturbation) 

This is unarguably the most directly relevant of the three “checks” 
for convexity -- EXAMPLE: 

a. simulate 10 years of i.i.d. losses generated under a Poisson 
frequency distribution, with λ = 25, and a LogNormal severity 
distribution with µ = 9.27, σ = 2.77, estimating λ, µ, and σ 
using, say, maximum likelihood. 

b. Use Degen (2010) to calculate RCap with α = 0.999 and ECap 
with α = 0.9997 based on the estimated λ, µ, and σ.  

c. Repeat a. and b. 1,000 or more times. 

d. The mean of the 1,000+ RCap/ECap estimates            will be 
about $83m/$203m larger than “true” capital            ($603m, 
$1,293m; see complete results in Table 4a below). 
 

( )ˆE g β 
  
( )ˆg E β 

  



3.b. Multiple Checks for Convexity of Severity VaR 
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ANOTHER EXAMPLE: 

a. simulate 10 years of i.i.d. losses generated under a Poisson 
frequency distribution, with λ = 25, and a GPD severity 
distribution with ξ = 0.875, θ = 47,500, estimating λ, ξ, and θ 
using, say, maximum likelihood. 

b. Use Degen (2010) to calculate RCap with α = 0.999 and ECap 
with α = 0.9997 based on the estimated λ, ξ, and θ.  

c. Repeat a. and b. 1,000 or more times. 

d. The mean of the 1,000+ RCap/ECap estimates             will be 
about $249m/$1,016m larger than “true” capital 
($391m/$1,106m; see complete results in Table 4e below). 
 

( )ˆE g β 
  

( )ˆg E β 
  



3.b. Multiple Checks for Convexity of Severity VaR 
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iii. jointly, based on extensive Monte Carlo simulation (i.e. examine 
the behavior of VaR as a function of joint parameter perturbation) 
 
As long as the percentiles examined are large enough (e.g. p > 
0.999) and the severity parameter values large enough, the 
estimates of severity VaR and Rcap/ECap consistently, across all 
severities used in AMA-based operational risk capital estimation,  
are notably inflated.  This inflation can be dramatic, not 
uncommonly into the hundreds of millions, and even billions of 
dollars, for each UoM (unit-of-measure) as shown below. 
 
So let us presume sufficient VaR convexity for Jensen’s 
Inequality to hold, and design a capital estimator accordingly to 
mitigate the actual capital bias/inflation of which it is the 
presumed source… 



• Still, we would like to PROVE a) convexity in Severity VaR under 
these conditions, and b) convexity in VaR for all relevant severities. 

• As noted above, Mayorov and Opdyke (forthcoming, 2016) establish 
ANALYTICAL results for VaR’s local convexity to hold in this setting. 

• But for the time being we are presuming a) based on very strong 
empirical evidence and incomplete mathematical evidence. 

• For b), tackling ALL potentially relevant severities is nontrivial (if 
possible), but arguably unnecessary as the number of severities 
used in this setting are quite finite, and we can satisfy a) for each 
individually. 
 
Note again that because capital (VaR of ALD) was shown empirically 
in Opdyke (2014) to be only a slightly concave function of the 
frequency parameter(s), the only source of capital inflation would 
appear to be strong convexity in severity VaR. 

3.b. Multiple Checks for Convexity of Severity VaR 

 
© J.D. Opdyke 

27 of 70 



 
© J.D. Opdyke 

28 of 70 

4. When is Capital Bias (Inflation) Material? 

Convexity in Severity VaR      Capital Bias is upwards … always! 
Magnitude of Capital Inflation is Determined by: 

a) Variance of Severity Parameter Estimator:   
Larger Variance (smaller n<1,000)         Larger Capital Bias 

b) Heaviness of Severity Distribution Tail:  
Heavier         More Capital Bias 
(so truncated distributions      more bias, ceteris paribus)  

c) Size of VaR Being Estimated:  
Higher VaR        More Capital Bias 
(so Economic Capital Bias > Regulatory Capital Bias) 

This demonstrable empirical behavior is exactly consistent with 
Jensen’s Inequality, and since most UoMs are heavy-tailed severities 
and typically n < 250, AMA–LDA OpRisk capital estimation is squarely 
in the bias zone! 
 

⇒

⇒

⇒

⇒

⇒
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NOTE:  LDA Capital Bias holds for most, if not all widely used severity 
parameter estimators (e.g. Maximum Likelihood Estimation 
(MLE), Robust Estimators (OBRE, CvM, QD, etc.), Penalized 
Likelihood Estimation (PLE), Method of Moments, all M-Class 
Estimators, Generalized Method of Moments, Probability 
Weighted Moments, etc.). 

NOTE:  Because CVaR is a (provably) convex function of severity 
parameter estimates (see Brown, 2007, Bardou et al., 2010, & 
Ben-Tal, 2005),  switching from VaR to CVaR, even if allowed, 
does not avoid this problem (and in fact, appears to make it 
worse). 

NOTE:  Severities with E(x)=∞ also can exhibit such bias (see GPD with ξ 
= 1.1, θ = 40,000 in Opdyke, 2014), even though (arguably 
contrived) counterexamples exist. 

 

 

4. When is Capital Bias (Inflation) Material? 



5. RCE – Reduced-bias Capital Estimator 

I. Demonstrate that Jensen’s Inequality is the apparent source of 
systematically inflated operational risk capital estimates … 
 

II. Develop a Solution… 
 
SOLUTION CHALLENGES / CONSTRAINTS: 
 

1. It must remain consistent with the LDA Framework (even with new guidance (6/30/14) encouraging 
new methods, arguably the smaller the divergence from widespread industry practice, the greater 
the chances of regulatory approval). 

2. The same general method must work across very different severities. 
3. It must work when severity distributions are truncated to account for data collection thresholds. 
4. It must work even if E(x)=∞ (or close, which is relevant for any simulation-based method). 
5. It cannot be excessively complex (or it won’t be used). 
6. It cannot be extremely computationally intensive (e.g. a desktop computer, or it won’t be used). 
7. Its range of application must encompass all commonly used estimators of severity (and frequency) 
8. It must work regardless of the method used to approximate VaR of the aggregate loss distribution. 
9. It must be easily understood and implemented using any widely available statistical software. 
10. It must provide unambiguous improvements over the most widely used implementations of LDA 

(e.g. MLE, and most other estimators) on all three key criteria – capital accuracy, capital precision, 
and capital robustness. 
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RCE (Reduced-bias Capital Estimator) is the only published 
estimator designed to effectively mitigate LDA Capital Bias. 

RCE simply is a scaler of capital as a function of the degree of 
empirical VaR convexity. 

RCE Conceptually Defined: 
 

Step 1: Estimate LDA-based capital using any estimator (e.g. MLE). 
 
Step 2: Using 1), simulate K iid data samples and estimate parameters of each 
 
Step 3: Using 2), simulate M data samples for each of the K parameters, estimate 
capital for each, and calculate median for each, yielding K medians of capital 
 
Step 4:  
RCE = median(K medians) * [median(K medians) / weighted mean(K medians)]^c 

5. RCE – Reduced-bias Capital Estimator 
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RCE Motivation: 

RCE = median(K medians) * [median(K medians) / weighted mean(K medians)]^c 

First term: The median of K medians is empirically close to “capital.”  The K 
medians simply trace out the VaR function (in 1-dimension,        in Figure 2) just 
as do K capital estimates, but capital is more volatile than using another layer of 
sampling to obtain the K medians in Step 3. 

Second term:  The ratio of the median to the mean is an empirical measure of the 
convexity of VaR,       .  This is used to scale down the first term (which is 
essentially capital) to eliminate inflation exactly consistent with the effects of 
Jensen’s Inequality.  The mean is weighted* based on the sampling 
(perturbation) method described below.  The c exponent is a function of the 
severity chosen and the sample size, both of which are known ex ante under 
LDA. 

5. RCE – Reduced-bias Capital Estimator 

( )ˆg β

( )ˆg β

* Due to the sampling method described below, the median in the numerator turns out to be empirically 
identical to a weighted median, and so for efficiency, the simple median is used. 
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RCE Implemented: 
 

Step 1: Estimate LDA-based capital using any estimator (e.g. MLE). 

Step 2: Using 1), generate K parameter vectors based on the Var-Cov matrix using 
iso-density sampling (see Figure 4 below): use iso-density ellipses to select 
parameter values associated with a given probability, and change parameter values 
to reach these ellipses via the decrease-decrease, decrease-increase, increase-
decrease, and increase-increase of both parameters by the same number of standard 
deviations (thus generating two orthogonal lines emanating from original parameter 
estimate in the normalized coordinate system).  Opdyke (2014) uses ellipse 
percentiles = 1, 10, 25, 50, 75, 90, and 99, so K = 4*7=28, and two frequency 
percentiles for λ, 25 and 75, so total K = 28*2 = 56.  Weights = (1-psev)*2*(1-pfrq). 

Step 3: Using the K parameter vectors from 2) (including the frequency parameters), 
generate another triplet of M parameter vectors for each (let M=K), and calculate 
capital for each, and take the median to get K medians of capital. 

Step 4: 
RCE = median(K medians) * [median(K medians) / weighted mean(K medians)]^c 

5. RCE – Reduced-bias Capital Estimator 
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FIGURE 4: Iso-density Perturbation of the Joint Severity Parameter Distribution 

5. RCE – Reduced-bias Capital Estimator 

For multivariate 
normal (e.g. all M-class 
estimators), ellipses 
are given by: 

where x is a k- (2-) 
dimensional vector, μ 
is the known k -
dimensional mean 
vector (the parameter 
estimates), ∑ is the 
known covariance 
matrix (the inverse of 
the Fisher information 
of the given severity), 
and            is the 
quantile function for 
probability p of the Chi-
square distribution 
with k degrees of 
freedom.  

( )2
k pχ

( ) ( ) ( )1 2T
kx x pµ µ χ−− Σ − ≤

1/ parmσ
2/ parmσ
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Finding x as the solution to                                    can be obtained quickly via a 
convergence algorithm (e.g. bisection) or simply the analytic solution to the 
equation rather than the inequality (see Mayorov 2014).  Simply change both 
parameters by q units of their respective standard deviations to obtain four 
pairs of parameter values on the ellipse defined by p: increase both 
parameters by q standard deviations               , decrease both parameters by 
q standard deviations                , increase one while decreasing the other 
                 , and decrease one while increasing the other                   . 
 
 
 
 
 
 
Alternately, the eigenvalues and eigenvectors of      can be used to define the 
most extreme parameter values (smallest and largest) on the ellipses 
(corresponding to the largest/smallest eigenvalues) (see Johnson and 
Wichern, 2007), but this may change the values of c calculated below, and the 
above is arguably more straightforward.  

5. RCE – Reduced-bias Capital Estimator 

( )1 2 1z z= =

( )1 2 1z z= = −

( )1 21, 1z z= = − ( )1 21, 1z z= − =

( ) ( ) ( )1 2T
kx x pµ µ χ−− Σ − ≤

( ) ( )2
1 2 1,21

#
2

k p z z
q SD

χ ρ⋅ +
=

( )1 2 1,2where stdev of parameter 1 (2), and  is Pearson's correlation of the parameter estimates.σ σ ρ=

1−Σ
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Iso-density sampling (perturbation) makes RCE runtime feasible 
(1 to 3 seconds on a standard desktop PC): 

5. RCE – Reduced-bias Capital Estimator 

Severity* Real Time CPU Time 
LogN 0.14 0.14 
TLogN 1.10 1.10 
Logg 1.13 1.12 
TLogg 2.96 2.94 
GPD 0.21 0.18 
TGPD 1.35 1.35 

Table 2: Runtime of RCE by Severity (seconds) 

The complexity of the Fisher information is the only thing that drives 
runtime (sample size is irrelevant). 

 

* See Appendix C. 
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Implementation NOTE:  
 
It is important to avoid bias when using iso-density sampling in cases of 
incalculably high capital.  For example, say the initial MLE parameters 
happen to be large, and then the 99%tile of the joint parameter 
distribution, based on the initial estimates, is obtained in Step 2 of RCE’s 
implementation; and then the 99%tile of THIS Fisher information is 
obtained in Step 3, based on the joint parameter distribution of the Step 
2 values.  Capital calculated in Step 3 sometimes simply will be too large 
to calculate in such cases.  If ignored, this could systematically bias 
RCE.  A simple solution is to eliminate the entire ellipse of values – along 
with all “larger” ellipses – when any one value on an ellipse is too large 
to calculate. 

5. RCE – Reduced-bias Capital Estimator 
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How is c(n, severity) determined?: 
 
 

Method 1: Conduct a simulation study to empirically determine the value of c for 
the relevant sample sizes and severities (both known ex ante within the LDA 
framework) using three sets of parameter values: the original estimates, and 
those corresponding to the 2.5%tile and the 97.5%tile of the joint parameter 
distribution, which yields a 95% confidence interval (a wider confidence interval 
can be used if desired).  The value of c(n, severity) is chosen to yield true capital 
(or slightly above) for all three sets of parameter values. 

Method 2: Use the simulation study conducted in Opdyke (2014) to select values 
of c for specific values of n and severity (see Table 3 and Figure 5 below). 

5. RCE – Reduced-bias Capital Estimator 
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5. RCE – Reduced-bias Capital Estimator 

Table 3: 
Values of c(n, severity) by Severity by # of Loss Events 
(Linear, and Non-Linear Interpolation with Roots Specified for Shaded Ranges) 
 

 

N →  150 250 500 750 1000   Root 

Severity               
LogN 1.00 1.55 1.55 1.55 1.75   8 
TLogN 1.20 1.70 1.80 1.80 1.80   8 
Logg 1.00 1.00 1.00 1.00 0.30   3 
TLogg 0.30 0.70 0.85 1.00 1.00   3 
GPD 1.60 1.95 2.00 2.00 2.00   10 
TGPD 1.50 1.85 2.00 2.10 2.10   10 
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5. RCE – Reduced-bias Capital Estimator 
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Figure 5: 
Values of c(n, severity) by Severity by # of Loss Events 
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NOTE:  Unfortunately, other Bias-reduction/elimination strategies in the 
literature, even for VaR (e.g. see Kim and Hardy, 2007), do not appear to 
work for this problem.*  Most involve shifting the distribution of the 
estimator, often using some type of bootstrap distribution, which in this 
setting often results in negative capital estimates and greater capital 
instability.  RCE-based capital is never negative, and is more stable than 
capital based on most, if not all other commonly used severity 
parameter estimators (e.g. MLE). 
 

Also, given the very high percentiles being examined in this setting (e.g., 
Severity VaR = 0.99999 and higher), approaches that rely on the 
derivative(s) of VaR(s), perhaps via (Taylor) series expansions, appear to 
run into numeric precision issues for some severities.  So even when 
such solutions exist in tractable form, practical challenges may derail 
their application here. 

5. RCE – Reduced-bias Capital Estimator 

 

* The only other work in the literature that appears to be similar in approach to RCE is the fragility heuristic (H) of Taleb et al. (2012) and Taleb and Douady (2013). 
Both RCE and H are measures of convexity based on perturbations of parameters: H measures the distance between the average of model results over a range of 
shocks and the model result of the average shock, while RCE is a scaling factor based on the ratio of the median to the mean of similar parameter perturbations.  
Both exploit Jensen’s inequality to measure convexity: in the case of the fragility heuristic, to raise an alarm about it, and in the case of RCE, to eliminate it (or 
rather, to effectively mitigate its biasing effects on capital estimation). 
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6. Simulation Study:  RCE vs. MLE 

SIMULATION STUDY*: 1,000 (i.i.d.) Simulations of 
• λ = 25 (Poisson-distributed average annual losses … 
    so n = 250, on average, over 10 years) 

• α = 0.999 and 0.9997 for Regulatory and Economic Capital, 
     respectively (so [ 1 – (1- α) / λ ] = 0.99996 and 0.999988, 
     respectively). 
 
Selected Results of RCE capital vs. MLE capital: 

o LogNormal 
o LogGamma 
o GPD 
o Truncated LogNormal 
o Truncated LogGamma 
o Truncated GPD 

  

*Note that true bias is probably far greater than that associated with MLE-based capital below, since under the i.i.d. 
presumption MLE is maximally efficient. 
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Table 4a:  
RCE vs. LDA-MLE for LogNormal Severity (µ = 9.27, σ = 2.77, H=$0k)* 

 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $614 $686 $1,333 $1,498 

True Capital $603 $603 $1,293 $1,293 

Bias  
(Mean - True) $12 $83 $40 $205 

Bias % 2.0% 13.8% 3.1% 15.8% 

RMSE* $328 $382 $764 $898 

STDDev* $328 $373 $763 $874 
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Table 4b:  
RCE vs. LDA-MLE for Truncated LogNormal Severity (µ = 10.7, σ = 2.385, H=$10k)* 

 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $700 $847   $1,338 $1,678 

True Capital $670 $670 $1,267 $1,267 

Bias  
(Mean - True) $30 $177 $71 $411 

Bias % 4.5% 26.4% 5.6% 32.4% 

RMSE* $469 $665   $1,003 $1,521 

STDDev* $468 $641 $1,000 $1,464 
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Table 4c:  
RCE vs. LDA-MLE for LogGamma Severity (a = 25, b = 2.5, H=$0k)* 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $466 $513   $1,105 $1,272 

True Capital $444 $444 $1,064 $1,064 

Bias  
(Mean - True) $11 $70 $42 $208 

Bias % 2.5% 15.7% 3.9% 19.5% 

RMSE* $301 $355   $814 $984 

STDDev* $301 $348   $813 $962 
 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 
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Table 4d:  
RCE vs. LDA-MLE for Truncated LogGamma Severity (a = 34.5, b = 3.15, H=$10k)* 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $539 $635 $1,158 $1,437 

True Capital $510 $510 $1,086 $1,086 

Bias  
(Mean - True) $29 $125 $72 $350 

Bias % 5.8% 24.5% 6.6% 32.2% 

RMSE* $397 $544 $941 $1,453 

STDDev* $396 $529 $938 $1,410 
 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 
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Table 4e:  
RCE vs. LDA-MLE for GPD Severity (ξ = 0.875, θ = 47,500, H=$0k)* 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $396 $640 $1,016 $2,123 

True Capital $391 $391 $1,106 $1,106 

Bias  
(Mean - True) $5 $249 $24 $1,016 

Bias % 1.2% 63.7% 2.2% 91.9% 

RMSE* $466 $870 $1,594 $3,514 

STDDev* $466 $834 $1,594 $3,363 
 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 
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Table 4f:  
RCE vs. LDA-MLE for Truncated GPD Severity (ξ = 0.8675, θ = 50,000, H=$10k)* 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $466 $737   $1,327 $2,432 

True Capital $452 $452 $1,267 $1,267 

Bias  
(Mean - True) $13 $285 $61 $1,166 

Bias % 3.0% 63.0% 4.8% 92.0% 

RMSE* $576 $1,062   $1,988 $4,337 

STDDev* $576 $1,023   $1,988 $4,177 
 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

6. Simulation Study:  RCE vs. MLE 
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Table 5: 
Summary of Capital Accuracy by Sample Size: 
MLE vs. RCE ($millions) (across 6 severities, Opdyke, 2014) 
 +-------------------- ECap --------------------+ +-------------------- RCap --------------------+ 

Mean Absolute Bias Median Absolute Bias Mean Absolute Bias Median Absolute Bias 
λ = RCE MLE RCE MLE RCE MLE RCE MLE 
15 7.8% 92.6% 2.6% 82.3% 5.9% 61.6% 1.6% 58.1% 
25 3.4% 53.1% 3.3% 40.6% 2.4% 38.1% 2.0% 30.6% 
50 2.8% 25.7% 2.7% 17.7% 2.0% 19.4% 1.9% 14.3% 
75 1.2% 15.5% 0.8% 10.7% 0.8% 11.9% 0.5% 8.7% 
100 0.9% 11.3% 0.5% 7.9% 0.5% 8.7% 0.4% 6.1% 

15 $61 $825 $18 $502 $21 $228 $5 $154 
25 $45 $727 $29 $410 $14 $209 $8 $133 
50 $69 $617 $52 $320 $20 $182 $15 $109 
75 $40 $526 $14 $250 $11 $157 $3 $80 
100 $32 $485 $15 $223 $7 $142 $5 $73 

NOTE: Even when relative absolute bias of MLE decreases, actual bias $ still are notable.  

6. Simulation Study:  RCE vs. MLE 
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SIMULATION STUDY:  Conclusions 
RCE vs. MLE-LDA 

a) RCE is Dramatically More Accurate: LDA-MLE 
Bias can be ENORMOUS: $Billion+ just for one uom! 

b) RCE is Notably More Precise: Sometimes <50% 
RCE RMSE < MLE RMSE, RCE StdDev < MLE StdDev 

c) RCE is Consistently More Robust: 
RCE Robustness to Violations of iid > MLE  (see non-iid 
simulation study in Opdyke, 2014) 

6. Simulation Study:  RCE vs. MLE 
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7. Alternate Estimators 

1. An alternate form of RCE is to simply use estimated capital as the first term, and 
then scale it based on the perturbation of its frequency and severity parameters:   

RCE = median(K medians) * [median(K medians) / weighted mean(K medians)]^c 

Modified RCE: 
MRCE = estimated capital * [median(K medians) / weighted mean(K medians)]^c. 

 This approach has the advantage of simply being a scalar of existing capital, but 
requires re-estimation of the values of “c” for some combinations of severity 
distribution + sample size.  However, with respect to the variance of capital estimate, 
RCE maintains the distinct advantage (i.e. RCE decreases it). 

2. A non-published paper by Zhou, Durfee, and Fabozzi (2015) presents a 
modification of the RCE approach.  Curiously, even though Zhou et al. (2015) 
follows Opdyke (2014), in both timing and methodology, changes made to the RCE 
estimator appear to worsen not only its performance in terms of bias, speed of 
execution, and stability, but also increase its likelihood of regulatory rejection due 
to its reliance on “trimming” (which RCE avoids).  See Appendix for further details. 



 
© J.D. Opdyke 

52 of 70 

8. Summary and Conclusions 

• Under an LDA framework, operational risk capital estimates based on the most 
commonly used estimators of severity parameters (e.g. MLE) and the relevant severity 
distributions are consistently systematically biased upwards, presumably due to 
Jensen’s inequality (Jensen, 1906).   

• This bias is often material, sometimes inflating required capital by hundreds of 
millions, and even billions of dollars. 

• RCE is the estimator MOST consistent with regulatory intent regarding a prudent, 
responsible implementation of an AMA–LDA framework in that it alone is not 
systematically and materially biased, let alone imprecise and non-robust. 

• RCE is the only capital estimator that mitigates and nearly eliminates capital 
inflation under AMA-LDA.  RCE also is notably more precise than LDA-based capital 
under most, if not all severity estimators, and consistently more robust to violations 
of i.i.d. data (which are endemic to operational risk loss data).  Therefore, with greater 
capital accuracy, precision, and robustness, RCE unambiguously and notably 
improves LDA-based OpRisk Capital Estimation by all relevant criteria. 
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9. Appendix A: Capital Approximation via ISLA 
• Under the Basel II/III AMA, estimated capital requirements are the Value-at-Risk (VaR) quantile corresponding to the 

99.9%Tile of the aggregate loss distribution, which is the convolution of the frequency and severity distributions.  This 
convolution typically has no closed form, but its VaR may be obtained in a number of ways, including extensive monte 
carlo simulations, fast Fourier transform, Panjer recursion (see Panjer (2006) and Embrechts and Frei (2009)), and 
Degen’s (2010) Single Loss Approximation.  All are approximations, with the first as the gold standard providing arbitrary 
precision, and SLA as the fastest and most computationally efficient.  SLA is implemented as below under three conditions 
(only a) is relevant for severities that cannot have infinite mean): 
 

1 11C Fα
α λµ
λ

− − ≈ − + 
 

1 11 11 1FC F c Fα ξ
α αλµ
λ λ

− − − −   ≈ − + −    
    

• When implementing the above it is important to note that the capital estimate diverges as               specifically, for a) 
                                             and for c)                                            .  Note that this divergence does not only occur for small 
deviations from             For example, for GPD, divergence can be noticeable in the range of                             Therefore, 
one must utilize a nonlinear interpolation or an alternative derivation of Degen’s formulae to avoid this obstacle.  All 
results relying on SLA herein utilize the former solution – i.e. “ISLA” (see Opdyke, 2014) and were all tested to be 
within 1% of extensive monte carlo results (e.g. five million years’ worth of monte carlo loss simulations).  Useful 
generalizations to ISLA are made in ISLA2 in Opdyke and Mayorov (forthcoming, 2016). 
 

( )1 11 11 1 1
1 1

c
C F F ξ
α

α αα
λ λ ξ

− −  − −   ≈ − − − − ⋅      −     
c) if  1 2,ξ< <

a) if  1,ξ <

b) if  1,ξ =

where 

       (the above assumes a Poisson-distributed frequency distribution and can be modified if this assumption does not hold) 

( ) ( )
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2 1 1
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2 1 2
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Γ −
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( ) ( )
0

1,  1
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Fc x F s dsξ µ  = = − ∫

where          is the mean of  µ F

1;ξ →
 as  1Cα ξ −→ +∞ →  as  1Cα ξ +→ −∞ →

1.ξ = 0.8 1.2.ξ< <

(           is so extreme as to not be 
   relevant in this setting) 
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Figures A1-A4:  ISLA Correction for SLA Divergence at Root of ξ=1 for GPD Severity (θ = 55,000) 
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9. Appendix A: Capital Approximation via ISLA 
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9. Appendix B: VaR’s Empirical Convexity Over Relevant Domain (p>0.999) 

• As currently implemented per Basel II/III’s AMA-LDA, operational risk capital is a value-at-risk (VaR) estimate (i.e. the 
quantile corresponding to p = 0.999, the 99.9%tile) of the aggregate loss distribution.  As shown by Degen (2010), this is 
essentially a high quantile of the severity distribution.  For those severities relevant to operational risk capital 
estimation, VaR always appears to be a convex function of the severity distribution parameter estimates as long as the 
quantile being estimated is large enough (e.g. corresponding to p>0.999; see Degen, Embrechts, & Lambrigger, 2007;  
Daníelsson et al., 2005;  and Daníelsson et al., 2013).  For the heavy-tailed severities examined above, in addition to two 
others sometimes used in this space (Burr type XII and LogLogistic), we see: 
 
TABLE A1: Marginal VaR Behavior OVER RELEVANT DOMAIN (p > 0.999) by Severity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     As mentioned above (p.16), VaR empirical convexity increases in p: larger quantiles are associated with greater convexity. 

 
Severity Distribution 

VaR  is Convex/Linear as Function of... Relationship  
between  

Parameter 1 Parameter 2 Parameter 3 Parameters 
1)   LogNormal (µ, σ) Convex Convex Independent 
2)   LogLogistic (α, β) Linear Convex Independent 
3)   LogGamma (a, b) Convex Convex Dependent 
4)   GPD (ξ, θ) Convex Linear Dependent 
5)   Burr (type XII) (ϒ, α, β) Convex Convex Linear Dependent 
6)   Truncated 1) Convex Convex Dependent 
7)   Truncated 2) Linear Convex Dependent 
8)   Truncated 3) Convex Convex Dependent 
9)   Truncated 4) Convex Linear Dependent 
10) Truncated 5) Convex Convex Linear Dependent 
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• PDF and CDF of LogNormal: 

 

• Mean of LogNormal: 

• Inverse Fisher information of LogNormal: 

9. Appendix C: Severity PDFs, CDFs, & Means for Capital Approximation 
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• PDF and CDF of Truncated LogNormal: 

 

• Mean of Truncated LogNormal: 
 
 

• Inverse Fisher information of Truncated LogNormal: 
 
 
 
 
 
From Roehr (2002).  Note that the first cell of this matrix as presented in Roehr, 2002, contains a typo: this is corrected in 
the presentation above. 
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• PDF and CDF of Generalized Pareto Distribution (GPD): 

 

• Mean of GPD: 

• Inverse Fisher information of GPD: 
 
 
 
    From Smith (1987) 
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• PDF and CDF of Truncated GPD: 

 

• Mean of Truncated GPD: 

• Inverse Fisher information of Truncated GPD: 
 
 
 
 
    From Roehr (2002) 
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• PDF and CDF of LogGamma*: 

 

• Mean of LogGamma: 

• Inverse Fisher information of LogGamma: 
 
 
 
 
From Opdyke and Cavallo (2012a) 
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• PDF and CDF of Truncated LogGamma*: 

 
 

• Mean of Truncated LogGamma: 
 
 
 
 
     From Opdyke (2014) 

 

• Inverse Fisher information of Truncated LogGamma: 
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• Inverse Fisher info. of Truncated LogGamma*: 
 
 
 
 
 
 
 
 
 
 
 
 
From Opdyke and Cavallo (2012b) 
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• Inverse Fisher information of Truncated LogGamma: 
 
To avoid computationally expensive numeric integration,  
Opdyke (2014) derives the analytic approximation below: 
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• Inverse Fisher information of Truncated LogGamma: 
 
 
 
 

9. Appendix C: Severity PDFs, CDFs, & Means for Capital Approximation 
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In a non-published paper, Zhou et al. (2015) present a modification of RCE.  The approach follow’s Opdyke (2014) in both 
timing and methodology by using a median/mean ratio of estimated capital combined with an adjustment factor.   

 
Adjusted capital = capital * [median of simulated capital / mean of simulated capital]  

 
Unfortunately, in attempting to compensate for greater instability due to its reliance on simple parameter simulation (as 
opposed to a far more stable approach based on the median-of-median of parameter estimates), their adjustment factor relies 
on data “trimming.”  Estimation methods like “trimming” that rely on systematically discarding a percentage of observed loss 
data (or simulated data based on parameter estimates which are based on observed loss data) have not been well received by 
regulators.  In addition, the more simple approach of Zhou et al. (2015) approach has the following disadvantages relative to 
RCE: 

 

1. It appears to be far less stable than RCE, which is designed specifically to avoid these instability issues (see above) 

2. It is tested far less extensively on fewer severities 

3. It appears to have greater capital bias compared to RCE, and the authors state that further “tuning” of the amount of 
“trimming” required is needed for its application to additional severities 

4. Its execution time is slower, sometimes by orders of magnitude (RCE typically is implemented within one or two seconds) 

5. The authors themselves conclude that their alternate method provides “ ‘limited’ improvement” and is not sufficient to 
use within a loss distribution approach for operational risk capital estimation. 

 

9. Appendix D: Rejection of “Trimming” Methods 
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In addition, Zhou et al.’s (2015) focus on so-called “median bias” is at odds with their own estimator, the statistical literature, 
and the primary goals of the operational risk capital estimation setting. 

1) For nearly a century, statistical “bias” has been defined with respect to the mean of an estimator, not one of its quantiles 
(such as the median). 

2) To the extent that researchers would like to design an estimator centered on a particular quantile (such as a median), the 
(highly) skewed nature of the operational risk capital distribution (under the loss distribution approach) means that the 
capital estimator cannot be unbiased simultaneously with respect to both the mean and the median.  Zhou et al. (2015) 
acknowledge this, but then proceed to follow Opdyke (2014) and attempt to design a capital estimator (actually, to modify 
RCE) in a manner that is “unbiased” in the traditional sense (i.e. vis-à-vis the mean) while ignoring so-called “median bias”. 

3) Exploring the possibility of estimators that are unbiased with respect to a particular quantile is arguably the wrong 
approach here.  Far more relevant is the question of how close to ALL estimator quantiles is the true value of capital, on 
average?  Or even more pertinent, given the extreme right-skewness of the capital distribution (based on ANY of the widely 
used frequency and severity estimators), is how close is the true value of capital, on average, to the quantiles in the right tail of 
the (estimator’s) capital distribution?  Stated differently, how well does the estimator “pull in” and eliminate extremes in the 
right tail?  The most established and widely used statistic that at least indirectly addresses the first question is, simply, the 
RMSE.  And Opdyke (2014) shows RCE-based capital to always have smaller – and often dramatically smaller – RMSE 
compared to MLE-based capital.  Regarding the second question, specifically with reference to RCE, Opdyke (2014) showed 
empirically that the right tail of the capital distribution (even as close to the body as the 60%tile) was far closer to true capital 
than that based on MLE.  In other words, Opdyke (2014) showed that the RCE-based capital distribution is far less skewed 
than that based on MLE (by both traditional measures of skew and quantile-based measures).  And skewness is the far more 
important question to address in this setting compared to so-called “median bias”: wildly inflated capital estimates in the 
right tail, due to instability of the estimator (as happens to Zhou et al. (2015) in the absence of “trimming”), are exactly what 
researchers and regulators are most concerned with and seeking to avoid, not whether the median of the estimator is close(r) 
to true capital. 

Thus does Opdyke (2014) show that the two most established and widely used metrics – skewness and RMSE – that also 
happen to matter most in this setting are those by which RCE-based capital has been rigorously tested and is vastly superior 
to MLE-based capital.  So-called “median bias” arguably has little to no relevance in this setting. 

9. Appendix D: Rejection of “Trimming” Methods 
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The largest US banks and Systemically Important Financial Institutions are required by regulatory mandate to estimate the 
operational risk capital they must hold using an Advanced Measurement Approach (AMA) as defined by the Basel II/III 
Accords.  Most of these institutions use the Loss Distribution Approach (LDA) which defines the aggregate loss distribution as 
the convolution of a frequency distribution and a severity distribution representing the number and magnitude of losses, 
respectively.  Capital is a Value-at-Risk estimate of this annual loss distribution (i.e. the quantile corresponding to the 
99.9%tile, representing a one-in-a-thousand-year loss, on average).  In practice, the severity distribution drives the capital 
estimate, which is essentially a very large quantile of the estimated severity distribution.  Unfortunately, when using LDA with 
any of the widely used severity distributions (i.e. heavy-tailed, skewed distributions), all unbiased estimators of severity 
distribution parameters generate biased capital estimates apparently due to Jensen’s Inequality: VaR always appears to be a 
convex function of these severities’ parameter estimates because the (severity) quantile being estimated is so large and the 
severities are heavy-tailed.  The resulting bias means that capital requirements always will be overstated, and this inflation is 
sometimes enormous (sometimes even billions of dollars at the unit-of-measure level).  Herein I present an estimator of capital 
that essentially eliminates this upward bias when used with any commonly used severity parameter estimator.  The Reduced-
bias Capital Estimator (RCE), consequently, is more consistent with regulatory intent regarding the responsible 
implementation of the LDA framework than other implementations that fail to mitigate, if not eliminate this bias. RCE also 
notably increases the precision of the capital estimate and consistently increases its robustness to violations of the i.i.d. data 
presumption (which are endemic to operational risk loss event data).  So with greater capital accuracy, precision, and 
robustness, RCE lowers capital requirements at both the unit-of-measure and enterprise levels, increases capital stability 
from quarter to quarter, ceteris paribus, and does both while more accurately and precisely reflecting regulatory intent.  RCE 
is straightforward to explain, understand, and implement using any major statistical software package. 

10. Abstract, Opdyke (2014) 

Estimating Operational Risk Capital with Greater Accuracy, Precision, and Robustness 
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