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“Measurement is the first step that leads to control and eventually to 
improvement.  If you can’t measure something, you can’t understand it.  If you 
can’t understand it, you can’t control it.  If you can’t control it, you can’t improve 
it.” (emphasis added)
- H.J. Harrington

This presentation is all about increasing the accuracy, precision, and robustness 
of measuring the magnitude of extremely high severity, low probability events to 
guide decision-making for more effective and efficient risk management.  Absent 
useable and scientifically defensible measurement, there simply is no meaningful 
risk management.

Absent Defensible Risk Measurement, There is no Risk Management
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I. The Model
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• Credit Risk, Operational Risk, Insurance Risk, Actuarial, Catastrophic Loss, and many other models 
all have used The Compound Loss Distribution (CLD) approach.

• The CLD convolves a frequency distribution (representing the # of losses that can occur during a 
specified time period (e.g. 1 year)) and a severity distribution (representing the magnitudes of these 
losses) to generate a compound loss distribution.

• We then estimate risk metrics (e.g. Value-at-Risk (VaR)) and related ‘capital’ based on the CLD.

     ,and , ; ;  frequency/severity independenceX N X Ng x n f x p n     

   where  is the cdf of  0.999 for 99.9%tileSF s S  
**NOTE: As explained below, the choice of frequency distribution affects the ultimate VaR estimate very little – orders of magnitude less – than the 
choice the severity distribution. The Poisson is the most commonly used frequency distribution, but only minor changes are required to analytic results 
related to the CLD if other frequency distributions (e.g. the Negative Binomial) are used.  

**
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I. The Model

Compound Loss Distribution Approach (for one unit-of-measure):

DCT = 10k

f () ~ Estimated Severity PDF – Truncated LogNormal (µ=10, σ=2.8, H=10k)

p () ~ Estimated Frequency PMF – Poisson (annual λ=25)

Convolution via 
simulation (in practice, 
rarely a closed form 
solution … but for the 
VaR there are good & 
widely accepted 
analytical 
approximations much 
faster than Monte Carlo 
simulation) 

Compound Loss Distribution (CLD)

(Regulatory) Capital = 
VaR at 99.9%tile
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1. Per the above, most applications of CLD assume independence between the frequency and severity 
distributions, although this is widely recognized as an unrealistic simplifying assumption.  Initial 
research (see Stahl, 2016) tells us that risk metrics like VaR increase in magnitude and variance 
when this assumption is relaxed.

2. Note that this estimate of VaR is based on estimates of the parameters of the severity and frequency 
distributions: this is a different estimator than the Empirical VaR estimator, which is shown below:

a. As we shall see below, VaR-CLD is most certainly not normally distributed, at least not under 
finite sample conditions, under which it is highly skewed (see Opdyke, 2014, Opdyke, 2017, and 
(only relevant for VaR-SLD) Guégan, et al., 2017).

I. The Model
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~ ,  where empiricalVaR N VaR SD SD
f VaR n 



 





specified percentile, a.k.a. 'confidence level' (here, 0.999 )   

quantile at specified percentileVaR 

  value of probability density at the quantile of the specified percentilef VaR 

 note that when the quantile itself is being estimated, this becomes f VaR
 
  

number of loss event data points in the samplen 
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I. The Model
b. However, inverting this relationship gives us the number of losses needed to obtain a specified 

precision on our quantile (capital) estimate, and this is instructive to see that the variance for 
extreme VaR is extremely large, which matches our intuition: our certainty in a 1-in-1000 year 
estimate (i.e. VaR99.9) should be very low compared with those of smaller VaRs. More on this 
later.

c. Shevchenko (2011) uses this to show that even for a relatively light-tailed severity distribution 
(LogNormal, µ=0, σ=2), at least 50,000 to 100,000 years worth of losses would be required to 
attain quantile (capital) estimates within 10% of the true value (which is another reason we 
cannot use this estimator).

3. Also very important to note that all results contained herein for VaR-CLD, under the conditions 
discussed herein in the next section, also apply to VaR based on a Single Loss Distribution (VaR-
SLD) where frequency (sample size) is held constant.  In other words, when we have only a severity 
distribution.

This is notable: the only difference between VaR-CLD and VaR-SLD is a larger variance and a larger 
bias associated with the former over the latter, which again matches our intuition, especially given 
that VaR-CLD has been shown to be notably skewed under finite sample conditions (see Opdyke, 
2014 and (only relevant for VaR-SLD) Guégan et al., 2017).
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n

f VaR VaR 

 






  

2 = relative error of the quantile estimateSD VaR  

number of data points required to achieve precision of %n 
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The algorithm/model presented herein (JAEQE – Jensen-Adjusted Extreme Quantile Estimates) fills a 
hole in the literature when the conditions below all exist concurrently (which is often):

i. VaR is Extreme: At the very least, we’re referencing VaR99.5 (representing a 1-in-200 year loss, on 
average), although most define “extreme” here as VaR99.9 or greater (representing a 1-in-1000 year 
loss, on average).

a. Importantly, for the CLD, VaR99.9 requires estimating much higher VaR for the severity 
distribution specifically: for, say, λ = 30, and α = 0.999 and α = 0.9997, (which correspond to 
typical values of Regulatory and Economic Capital, respectively)                                    0.999967 
and 0.99999, respectively.  These are EXTREMELY high VaR!

b. This contributes significantly to very large increases in the size of the variance and bias 
associated with the estimate of VaR-CLD.

ii. Sample sizes are Finite:  As shown below, estimation bias due to Jensen’s inequality disappears 
asymptotically, so we are concerned with sample sizes of, say, somewhere north of 150 and south of 
1,000.

iii. Severity Loss distributions are Heavy-tailed:  Convexity in VaR-CLD as a function of one or more 
severity parameters (specifically, those associated with the tail index, as shown below) only exists 
for heavy-tailed severity distributions: this is a non-issue for, say, Gaussian data.

The extant literature treats different combinations of these 3 conditions, but rarely, if ever, all 3 
simultaneously.  

Notably, the degree to which the above 3 conditions are true directly affects the size of the variance, bias, 
and RMSE of the VaR-CLD (and VaR-SLD) estimate, as discussed further below.

II. Relevant Conditions of Use/Application

 1 1p       
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III. Approximation, Estimation, and Model Error
Three sources of error exist when estimating VaR-CLD (see Opdyke, 2017; Abdimomunov et al., 2019):

1. Approximation Error (not relevant to VaR-SLD) – formulaic error in approximating VaR.

2. Estimation Error – NOT choosing the right parameter values of the right distributions.
3. Model Error – NOT choosing the right frequency and severity distributions.

1. Very rarely do frequency-severity pairs provide exact, closed-form solutions to VaR-CLD.  The Single-
Loss Approximation (SLA) of Degen (2010) is the only closed-form approximation that does NOT 
(always) require numeric integration (only when solving for the point b) below).  This is shown below.

Opdyke (2017) showed SLA to have a discontinuity when the tail index approaches a value of 1.0, and he 
solved the problem by implementing a straightforward nonlinear interpolation across the discontinuity.

1 11C F
 


     
 

1 11 11 1FC F c F 
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(the above assumes a Poisson-distributed frequency distribution and can be modified if this assumption does not hold)
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(           is so extreme as to not be
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III. Approximation, Estimation, and Model Error

• Opdyke (2017) conducted an extensive simulation study of methods for approximating VaR-CLD, and 
found his MISLA and the PE2 of Hernandez et al. (2014) to be the fastest and most accurate, with the 
former slightly faster and the latter slightly more accurate.  However, when both are applied across 
the range of most or all possible severity parameter values as herein, MISLA is much faster than PE2 
on average as it does not always require numeric integration, and PE2 always does.  Therefore 
MISLA is used throughout this study as the best method for eliminating approximation error.

• Note that VaR-CLD (y-axis right graph above) is a highly convex function the tail index (which is a 
direct function of one of the severity parameters!!).

ξ

Fo
r α

= 
0.

99
9

a) →

← c) →

interpolation

Correction terms of Degen (2010)

← b)

Va
R

99
.9

ξ

a) →

← c) 

← b)

SLA Degen (2010) vs. MISLA Opdyke (2017)

Figure 1:  SLA vs. MISLA for GPD Severity (θ = 55,000; ξ = tail index)
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III. Approximation, Estimation, and Model Error

 ˆpdf 

 ˆE   ̂

sample2̂ sample1̂ sample3̂

 ˆPr    

2. Estimation Error
• Loss/Returns Data = a Sample, NOT a Population
• Therefore, true severity parameters, β , will never be known.

BUT Estimated Parameters,    , 
have DISTRIBUTIONS that are 
known under specified 
assumptions (e.g. Maximum 
Likelihood Estimators (MLE) are 
asymptotically normal, 
unbiased, and efficient under 
i.i.d. data)

̂Figure 2: 
Severity Parameter PDF
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III. Approximation, Estimation, and Model Error
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* Graph based on Kennedy (1992), p.37.

“Jensen’s inequality”
first proved in 1906.

If VaR, g(), is strictly convex in
, capital always will be inflated, 

on average.

This is true for i) relevant (heavy-
tailed) severities under relevant 
(large) parameter values, WHEN 
ii) n=not large, AND  iii) p is large 
(i.e. p≥0.995).

̂

Figure 3: 
Estimator Variance Causes 
Bias in VaR due to 
Jensen’s Inequality
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• For straightforward severities with closed-form VaR functions, Figure 3 (for large p) – the convexity 
of VaR as a function of severity parameter(s) – can be shown analytically.  

• For example, for the LogNormal (which has no dependence between parameters):

  1exp ,  soLNVaR p     2 2 0 andLN LNVaR VaR      22 2 1 0LN LNVaR VaR p        

III. Approximation, Estimation, and Model Error

• For more complicated 
distributions, especially when 
truncated, these marginal checks 
of each parameter are easy to do 
graphically (such results are 
shown for GPD in Figures 4a/4b), 
as are bivariate graphs of the 
response surface.

GPD

θ

ξ

VaR99.9

((1 ) 1)GPD pVaR     

2 2 3(1 ) (2 2(1 ) [1 ](2 [1 ] ) 0)GPD p pV Log p Log paR                

2 2 0GPDVaR   
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 1 ;F p 

Figure 4a:  For Tail Index Parameter ξ, Convexity of VaR-CLD Increases Rapidly as a Function of p

III. Approximation, Estimation, and Model Error



© J.D. Opdyke   16 of 65

 1 ;F p 

Figure 4b:  VaR-CLD is a LINEAR function of θ, the NON-tail Index Parameter

III. Approximation, Estimation, and Model Error
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TABLE 1: Extreme VaR (i.e. p ≥ 0.995) as a function of Severity Parameters by Parameter by Severity
(see Appendix 4 for Distributional Characteristics of 1, 3, 4, 6, 8, 9)

Note that, as shown in Figure 4a, VaR’s convexity in p (when p is large) INCREASES in p: larger quantiles 
are associated with greater convexity.

Severity Distribution
VaR is Convex/Linear as Function of... Relationship 

between 
Parameter 1 Parameter 2 Parameter 3 Parameters

1)   LogNormal (µ, σ) Convex Convex Independent
2)   LogLogistic (α, β) Linear Convex Independent
3)   LogGamma (a, b) Convex Convex Dependent
4)   GPD (ξ, θ) Convex Linear Dependent
5)   Burr (type XII) (ϒ, α, β) Convex Convex Linear Dependent
6)   Truncated 1) Convex Convex Dependent
7)   Truncated 2) Linear Convex Dependent
8)   Truncated 3) Convex Convex Dependent
9)   Truncated 4) Convex Linear Dependent
10) Truncated 5) Convex Convex Linear Dependent

III. Approximation, Estimation, and Model Error
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Before proceeding, it is important to define not only the MECHANISM by which VaR’s estimate (as a 
function of severity parameter(s)) becomes biased, but also the mechanisms defining the DEGREE of 
this bias (and increased variance), and these are 3:
1. The larger the sample size (and smaller the variance of the severity parameter estimate(s)) the 

smaller the VaR bias.  This can be seen in Figure 3: smaller variance on the X-axis shrinks the 
skewness and bias of VaR on the Y-axis.

2. The farther out in the tail we go, i.e. the larger the p, the larger the VaR bias.  This is shown above in 
analytics derivations and graphically (Figures 1 and 4a).

3. Finally, the heavier the tail, the larger the VaR bias (so truncated distributions, ceteris paribus, exhibit 
more VaR bias, as do the same severity distributions with ‘larger’ (tail index) parameter values)

As shown empirically in Opdyke (2014), VaR is a slightly concave function of λ, the frequency parameter.  
This makes sense intuitively as it is essentially 1. above: λ defines the sample size, and bias shrinks as 
sample size increases because parameter estimate variance decreases.  And even when VaR is a linear 
function of one of the severity parameters, it is a highly convex function of the other, i.e. the one 
associated with the tail index* (see Figure 1).  So on net, VaR as a function of all 3 (or more) CLD 
parameters is convex (and thus, POSITIVELY biased – this bias only goes in one direction!).

Note that for many applications (e.g. Operational Risk modeling), the above conditions put us squarely in 
the bias goldilocks zone: we have few observations (several hundred at most), heavy-tailed loss 
distributions (e.g. GPD, LogGamma, and LogNormal with large σ≥2, or the truncated versions of these), 
and must estimate quantiles associated with large percentiles (e.g. p ≥ 0.995 or 0.999 or greater!).

* Degen (2010) defines the tail index as follows:  A positive measurable function,   , is regularly varying with parameter   (written as                   ) if    satisfies

for all x>0.  In the case    = a probability density, one in particular has that        implies                              where     is the tail index. 

III. Approximation, Estimation, and Model Error

f  f RV f
lim ( ) / ( )
t
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Also before proceeding, several important mentions below:
A. Because CVaR / ES is a (provably) convex function of severity parameter estimates (see Brown, 

2007, Bardou et al., 2010, & Ben-Tal, 2005),  switching from VaR to CVaR does not avoid this problem
(and in fact, appears to make it worse).

B. Jensen Inequality-induced VaR bias is unaffected by whether moments are in/finite per se.
C. The extensive focus in this setting on PARAMETER estimation (   ), as opposed to VaR estimation, 

has been largely misguided BECAUSE PARAMETER ESTIMATION MISSES THE MECHANISM OF 
VaR BIAS (see Figure 3)! 

Over the past dozen years, especially in the operational risk space, many dozens of journal papers 
have focused on manipulating parameter estimates to achieve better VaR estimates, with at best 
mixed success: only robust parameter estimation has had some limited success here, but this is 
only because more extreme values of the distribution of parameter estimates (X-axis in Figure 3) are 
downweighted: this approach STILL does not directly address the convexity of VaR as a function of 
the (severity) parameter values, which is the only way to improve the accuracy, precision, and 
robustness of these VaR estimates.

D. Other bias reduction strategies (e.g. see Kim and Hardy, 2007), do not appear to work under these 
conditions because most involve shifting the distribution of the estimator, often using some type of 
bootstrap, which can easily result in negative VaR estimates and greater instability in the estimator. 
Also, approaches that rely on the derivative(s) of VaR(s) such as (Taylor) series expansions, can 
easily run into numeric precision issues for some severities given the very high quantiles being 
estimated and the rapidly changing gradient.  So even when such solutions exist in theoretical form, 
practical challenges may derail their application under these conditions.

III. Approximation, Estimation, and Model Error

   ˆ ˆ; ; 0E VaR f x VaR E f x                       

̂
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• Jensen’s Inequality WAS PROVEN IN 1906: how can it have been missed in this setting?!

• Aside from Opdyke and Cavallo (2012a, 2012b), Opdyke (2014 & 2017), only Taleb & Douady (2014 & 
2015) explicitly identify convexity, i.e. Jensen’s inequality, as the source of the bias in parametrically-
based estimates of VaR (Guégan, et al., 2017 shows that the distribution of VaR-SLD (not VaR-CLD) 
is skewed, but does not connect this to Jensen’s inequality and the resulting bias in its estimation). 

• One cannot develop a defensible solution to a problem without first spelling out WHY it was missed 
in previous research… We believe some of the reasons this was missed here include:
• A narrow focus on the statistical properties of parameter estimators, rather than exploring/recognizing the possibility that the function 

that LINKS the parameter estimates to the VaR estimate is nonlinear, thus skewing the VaR-CLD distribution and biasing its first moment.

• Statisticians like asymptotic results, and asymptotically, bias goes away, since variance in the parameter estimate, which allows 
convexity-induced VaR bias, goes away; so a focus on asymptotic results overlooks this real-world Jensen Inequality-induced VaR bias.

• The empirical VaR estimator is normally distributed and well-behaved, which might have thrown some off the scent of the VaR-CLD 
estimator being convex.

• Convexity-induced VaR-CLD bias does not manifest when severity distributions are not heavy-tailed, and many researchers have a 
tendency to default to (mathematically convenient) Gaussian assumptions, which often, if not typically, do not reflect reality when it 
comes to loss/returns distributions.

• This bias only manifests materially when alpha is large (at least ≥ 0.995) (Appendix 1 addresses the issue of whether large alpha are 
appropriate for financial institutions, as opposed to estimating, say, 1,000-year floods).

• This bias often only manifests materially when the COMBINATION of most or all of these conditions exist concurrently: alpha is large ( ≥
0.995), severity tails are heavy, AND sample sizes are small to moderately sized.

• Finally, Opdyke (2014 and 2017) and Abdymomunov et al. (2019) warn of the importance of separately treating the 3 sources of error in 
this setting – Approximation, Estimation, and Model error.  Failure to do this makes it very difficult, if not impossible based on empirical 
results alone, to correctly identify the MECHANISM causing the VaR bias, even when identifying it as a factual/empirical matter.  In the 
operational risk setting, this resulted in extensive (and misguided) efforts to ‘fix’ biased VaR-CLD estimates via different types of 
parameter estimation.  Appropriately separating distinct sources of error requires analytic discipline, but can avoid such wrong paths 
altogether, not to mention related papers that can cross the line from the misguided to the obfuscatory (see Larsen, unpublished, 2015; 
see APPENDIX 2 for more detail) when promulgating irrelevant schemes (e.g. so-called ‘median bias’; see APPENDIX 2).

IV. How can Jensen’s Inequality (1906!) Have Been Missed?
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• Again, to reemphasize: the particular PARAMETER estimator used here generally matters little under 
these conditions, since (almost) all are unbiased and most are very similar in terms of efficiency (e.g. 
Maximum Likelihood Estimation (MLE), Penalized Likelihood Estimation (PLE), Method of Moments, 
Generalized Method of Moments, Probability Weighted Moments, etc. generally, all M-Class 
Estimators work well here; this includes many Robust Estimators (OBRE & CvM (see Opdyke and 
Cavallo, 2012b), Quantile Distance (see Ergashev, 2008), etc.), which are the only partial exception to 
the above statement as robust estimators do have SOME indirect, although not much, mitigating 
effect on Jensen’s-induced VaR bias).

• While Taleb & Douady (2015) identify VaR-CLD bias due to Jensen’s inequality, and base their 
fragility heuristic on it to serve as an effective ‘red flag’ indicating its presence (see Taleb & Douady, 
2014), they do not develop an ESTIMATOR to mitigate its effects.

• The only other estimator in the extant literature to directly address VaR-CLD bias due to Jensen’s 
inequality – the RCE estimator from Opdyke (2014) – yields similar empirical results to those 
developed herein.  But RCE requires the specification of a tuning parameter value, and relies on 
asymptotic Fisher information matrices as opposed to the empirical versions used herein.  Both 
issues arguably can be viewed as drawbacks compared to the JAEQE method developed herein.

• The point of the present research is to develop a very general ESTIMATOR of VaR-CLD that, under 
the widest possible range of distributions, directly estimates its bias-inducing convexity to eliminate 
it; this dramatically improves the accuracy, precision, RMSE, and robustness of the estimator 
compared to competitors under the conditions cited above (small-to-medium sample size, large 
alpha far into the tail, and heavy-tails).  This is consistent with Harrington’s dictate!

• The Jensen-Adjusted Extreme Quantile Estimate (JAEQE) is described in Section VI below.

IV. How can Jensen’s Inequality (1906!) Have Been Missed?
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V. Fixing Approximation Error with MISLA
1. Approximation Error is irrelevant for VaR-SLD because this is just the quantile of a single (severity) 

distribution.*  However, there very rarely are closed-form Compound Loss Distributions, so VaR-CLD 
must be approximated.  Approximation error is effectively eliminated via both MISLA of Opdyke 
(2017) and PE2 of Hernandez et al. (2014), and while the latter is (very) slightly more accurate, the 
former is much faster to calculate under most circumstances, that is, across the entire range of 
relevant (severity) parameter values.  So MISLA is the preferred approximation and is used 
throughout this presentation.

*NOTE:  Again, it is very notable that the results shown herein regarding Jensen’s Inequality-induced bias in VaR-CLD also apply to VaR-SLD based 
on a single (severity) loss distribution like, say, a GPD; the only difference being that the variance and bias of VaR-SLD are less than those of VaR-
CLD, all else equal.
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VI. Fixing Estimation Bias with JAEQE
1. The Source of Estimation Bias under the defined conditions (small-to-medium sample size, large 

alpha far into the tail, and heavy-tails) is Jensen’ Inequality: convexity in VaR-CLD as a function of 
the severity parameter(s) estimates.  This has been missed by almost all the extant literature.

2. Misguided attempts to improve parameter estimation will never address this convexity-induced bias 
in VaR-CLD.

3. So how do we fix it? … We have to broaden our estimation process beyond parameter estimates and 
explicitly build the convexity of VaR as a function of the severity parameter estimates into the VaR
estimation process, and this is done using JAEQE.

4. The point of the present research is to develop a very general ESTIMATOR of VaR-CLD that, under 
the widest possible range of distributions, directly estimates its bias-inducing convexity to eliminate 
it; this dramatically improves the accuracy, precision, RMSE, and robustness of the estimator 
compared to competitors under the conditions cited above (small-to-medium sample size, large 
alpha, and heavy-tails). The Jensen-Adjusted Extreme Quantile Estimate (JAEQE) described below 
accomplishes these objectives.
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The Jensen-Adjusted Extreme Quantile Estimate (JAEQE) is defined below:

1. Estimate frequency and severity parameters from data sample of losses/returns

2. Simulate 100k samples where all (3) parameters are random variables (note that the severity distribution is 
selected!) and estimate the parameters (using MLE or similar M-class estimator) for every sample.

3. Define the empirical 0.99 isodensity of     using the Mahalanobis distance from the original 1.     estimates 
and define a grid within it of 400-500 of pairs of evenly spaced values of     with     at the center.

4. Define a second grid like 3. but based on the Mahalanobis distance x d=1.5 (verifying that d=1.5 does not 
violate the parameter domain; if it does, adjust d accordingly).

5. Using the lattice from 4., generate 5k samples for each lattice point using the corresponding values for    , 
calculate the corresponding ‘true’ values of VaR-CLD, calculate the mean of these 5k VaR-CLD’s, and then 
the difference between this mean and the ‘true’ VaR-CLD using the values of      for each lattice point.  This 
difference is the estimated bias due to Jensen’s Inequality.

6. Define Y = [‘true’ VaR-CLD / avg VaR-CLD] (ranging from 0 < Y ≤ 1) for each lattice point, and regress X’s on Y 
using the Adaptive LASSO of Zou (2006) with Ƴ = 1.0, where X’s are polynomials of     into the high teens, 
and all their interactions (when dependence exists between the parameters; see Table 1).

7. Take the lattice defined in 3. (i.e. the 0.99 isodensity) and generate 5k samples for each lattice point and 5k 
corresponding VaR-CLD values, apply the model built in 6. to deflate each of the 5k VaR-CLD values by the 
percentage that is estimated to be bias, and take the mean of the adjusted 5k VaRs.

8. Finally, define %diff=(avg adj VaRs (7.) – ‘true’ VaRs)/ ‘true’ VaRs, take avg %diff across all 400-500 values, 
then final VaRs = avg adj VaRs – avg%diff*(‘true’ VaRs): this shift yields an unbiased VaR on a RELATIVE 
rather than ABSOLUTE basis (to avoid overfitting on the border of the 0.99 isodensity).  This adjustment 
applied to VaR-CLD based on the original parameter estimates     yields the final JAEQE VaR-CLD estimate.  
For new quarters of data, use model from 6. & repeat 7 (only re-estimate 6. if beyond the 0.99 isodensity).

VI. Fixing Estimation Bias with JAEQE
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Figure 5: JAEQE Finite Sample Parameter Lattices – GPD Severity (ξ = 0.95 θ = 5,000) 

Note Upper Left Lattice for Model Build: Fewer than Half of the 5k samples for these Grid points had 
convergent parameter estimates, and so were discarded.

VI. Fixing Estimation Bias with JAEQE

Mahalanobis distance x 1.5 for
Model Estimation/Build 

Mahalanobis distance:
0.99 isodensity for Model Prediction

ξ

θ

	where	 	is	the	vector	of	data	points,	 	is	the	vector	of	corresponding	means,	and	
is the covariance matrix.
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Table 2: Example of A-LASSO Model Statistics/Fit

VI. Fixing Estimation Bias with JAEQE

VaR99.9
ALasso Parms ALasso Est Model Fit Stats DF Sum Sqrs Mean Sqr F Value Prob>F Model Sel Descrip Value ValueN
int 0.930325 Root MSE 0.01456 Model 8 2.67859 0.33482 1579.6 <.0001 Selection Method Adaptive LASSO
parm1^4*parm2 ‐0.000011759 R‐Square 0.9781 Error 283 0.05999 0.000212 _ _ Stop Criterion SBC
parm1^2 ‐0.5177 Adj R‐Sq 0.97748 Corrected Total 291 2.73858 _ _ _ Effect Hierarchy None
parm1^4 0.190552 AIC ‐2167.20022 Stop Horizon 3 3
parm1^8 ‐0.00518 AICC ‐2166.4173
parm1*parm2^4 1.72E‐16 SBC ‐2428.10943
parm2^10 6.66E‐41 ASE 0.00020543
parm2^3 3.50E‐13
parm2^5 ‐3.02E‐20
VaR99.95
int 0.908909 Root MSE 0.01629 Model 7 2.86971 0.40996 1545.8 <.0001 Selection Method Adaptive LASSO
parm1^2*parm2^2 1.37E‐08 R‐Square 0.97442 Error 284 0.07532 0.0002652 _ _ Stop Criterion SBC
parm1^3*parm2 ‐0.000073157 Adj R‐Sq 0.97379 Corrected Total 291 2.94503 _ _ _ Effect Hierarchy None
parm1^2 ‐0.557937 AIC ‐2102.72879 Stop Horizon 3 3
parm1^4 0.281613 AICC ‐2102.09049
parm1^8 ‐0.008142 SBC ‐2367.31476
parm2^5 ‐1.92E‐20 ASE 0.00025794
parm2^8 7.82E‐33
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VI. Fixing Estimation Bias with JAEQE
Figure 6a: A-LASSO Model–VaR99.9 Bias Predictions v. Bias Actuals, λ=25, GPD Severity (ξ=0.925 θ=6000)
Log-Scale

Linear-Scale   (NOTE THE SPANNING OF MANY ORDERS-of-MAGNITUDE in VaR to fully cover ellipses!)

(center)
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VI. Fixing Estimation Bias with JAEQE
Figure 6b: A-LASSO Model, VaR99.95 Bias Predictions v Bias Actuals λ=25, GPD Severity (ξ=0.925 θ=6000)
Log-Scale

Linear-Scale (NOTE THE ORDER-of-MAGNITUDE DIFFERENCE BETWEEN VaR99.9 (p.27) & VaR99.95!)

(center)
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VI. Fixing Estimation Bias with JAEQE
Figure 6c: A-LASSO Model – Bias Predictions vs. Bias Actuals λ=25, GPD Severity (ξ=0.925 θ=6000)

(center)
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VI. Fixing Estimation Bias with JAEQE
Figure 6d: A-LASSO Model–VaR99.9 Bias Predictions v Bias Actuals, λ=25, TGPD Severity (ξ=0.9 θ=25,000)
Log-Scale

Linear-Scale CAUTION: TRUNCATION CAN CHANGE DIRECTION OF FUNCTIONAL RELATIONSHIPS(  )!

(center)
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Figure 7a: JAEQE %Deviation of VaR-CLD from True Value by Tail Index Severity Parameter Value
λ=25, GPD Severity (ξ=0.95 θ=5000)

VI. Fixing Estimation Bias with JAEQE

ξ : 0.575 – 1.326 ξ : 0.575 – 1.326

JAEQE – VaR99.9 JAEQE – VaR99.95

Not perfectly uniform residuals, some curvature in ξ, BUT…

(center)
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Figure 7b: JAEQE v. SLA*: %Deviation of VaR-CLD from True Value by Tail Index Severity Parameter Value
λ=25, GPD Severity (ξ=0.95 θ=5000)

(SLA Outliers Removed)

VI. Fixing Estimation Bias with JAEQE

ξ : 0.575 – 1.326 ξ : 0.575 – 1.326

VaR99.9 VaR99.95

SLA

JAEQE

Note that SLA-based VaR bias increases primarily as a function of the tail index parameter (ξ ) consistent 
with Figures 1, 3, and 4a.

SLA

JAEQE

(center)



© J.D. Opdyke   33 of 65

Figure 7c: JAEQE v. SLA: %Deviation of VaR-CLD from True Value by Tail Index Severity Parameter Value
λ=25, GPD Severity (ξ=0.95 θ=5000) (center)

(SLA Outliers NOT Removed – extensive additional evidence exists of SLA’s non-robustness)

VI. Fixing Estimation Bias with JAEQE

ξ : 0.575 – 1.326 ξ : 0.575 – 1.326

VaR99.9 VaR99.95

SLA

JAEQE

SLA

JAEQE

Note that SLA-based VaR bias increases primarily as a function of the tail index parameter (ξ ) consistent 
with Figures 1, 3, and 4a.
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JAEQE one sentence summary:  Calculate VaR-CLD averages over many samples, for each grid-point of 
a lattice across a reasonably large range of parameter values (e.g. a 0.99 isodensity), and run a 
regularization regression of the severity parameter values (polynomials + interactions) on these averages 
to estimate convexity-induced VaR-CLD bias; then use this regression to predict (and eliminate) the bias 
due to Jensen’s Inequality and obtain a nearly unbiased estimate of VaR-CLD.  Why this approach?

i. Since VaR-CLD is a convex function of the (severity) parameter(s), it is best to estimate the 
convexity (so we can discard it) based directly on the parameter values.

ii. The RANGE of parameter values used in estimation should be efficiently defined: this requires 
knowledge of their joint (finite!) distribution to efficiently define the 0.99 isodensity.  The asymptotic 
joint distributions of the relevant severities (defined in Opdyke (2014) and in APPENDIX 4) can differ 
materially from their finite counterparts, which also appropriately account for dependence between 
severity parameters (see APPENDIX 4 and Table 1).

iii. Estimating convexity based on a larger range that that used for prediction helps to guard against 
overfitting extreme values as well as poor predictions at the edges of the 0.99 isodensity.

iv. Using regularization regression also helps to guard against overfitting, which is a very real trap here 
because the range of VaR-CLD over the range of relevant severity parameter values changes by 
ORDERS OF MAGNITUDE!  It is not a hard regression model to build and fit due the SHAPE of the 
response function, which is actually smooth and well behaved, but rather because it spans orders of 
magnitude in value AND changes very quickly: the rate of change of the gradient continues to 
increase (i.e. ‘accelerate rapidly’, vs. maintain ‘velocity’) towards the edges of the 0.99 isodensity.

v. Given iv., iii. is especially true: it is very easy to fit badly at the edges.  But iii. and iv., combined with 
vi., mitigate it well.

vi. The %diff adjustment of 8. also mitigates difficult predictions on the edge of the 0.99 isodensity.

VI. Fixing Estimation Bias with JAEQE
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vii. Given iv., it is best to define the dependent variable of the regression not on absolute value, but on 
relative value (i.e. ranging from 0 to 1 where 1=no bias … a semi-log model yields similar results).

viii. Four regularization regression models were tested: LASSO [Tibshirani, 1996], Adaptive LASSO (A-
LASSO) [Zou, 2006], Elastic Net [Zou & Hastie, 2005], Scaled Elastic Net [Zou & Hastie, 2005].  
Across twelve severity distributions tested [LogNormal, LogGamma, GPD, TruncatedLogNormal, 
TruncatedLogGamma, TruncatedGPD, LogNormal-Poisson, LogGamma-Poisson, GPD-Poisson, 
TruncatedLogNormal-Poisson, TruncatedLogGamma-Poisson, TruncatedGPD-Poisson], the ranking 
in terms of model parsimony, from greatest to least, was LASSO, A-LASSO, Elastic Net, and Scaled 
Elastic Net.  A-LASSO and Elastic Net were very similar, with the former providing a slightly better 
tradeoff between avoiding overfitting, and thus, oversensitivity to large predictions “on the edges,” 
versus not being able to sufficiently adapt to the order-of-magnitude changes in VaR over the entire 
range of the 0.99 isodensity.

ix. The approximation methods MISLA (Opdyke, 2014) and PE2 (Hernandez, et al., 2014) also were 
tested and compared, with no measurable difference in results (although MISLA was orders of 
magnitude faster, on average).

x. Although by definition a 0.99 isodensity does not cover the entire range of possible parameter 
values, if the analyst encounters parameter values outside or near the edge of the isodensity, he/she 
can simply re-center the lattice on the new parameter values and re-estimate the JAEQE VaRs.

xi. JAEQE arguably is computationally demanding (several hours on a modest PC), but not when 
considering the $ and resources at stake.  Also, once the regularization model is estimated, it can be 
reused in only a few minutes, unless input data changes notably (see x.).

VI. Fixing Estimation Bias with JAEQE
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Real-World Simulation Study – JAEQE vs. SLA: 
40 Cumulative Quarters, Annually Re-estimated, with Annual λ = 25, GPD Severity (ξ = 0.925; θ = 6,000)
1. Start with 10 Years of Losses
2. Add Losses Quarterly, Use Data Cumulatively: Re-estimate A-LASSO Model Every 4 quarters
TABLE 3

VI. Fixing Estimation Bias with JAEQE

Absolute Deviation SLA JAEQE JAEQE/SLA SLA JAEQE JAEQE/SLA
Mean $25,249,348 ‐$1,387,660 18.20 $48,559,168 ‐$7,571,148 6.41
Median $22,358,047 ‐$3,287,492 6.80 $43,730,374 ‐$11,914,097 3.67
Q1 $14,983,043 ‐$7,875,857 $26,998,933 ‐$20,019,971
Q3 $33,454,020 $3,567,597 $65,810,239 $1,361,122
IQR $18,470,976 $11,443,454 62.0% $38,811,306 $21,381,093 55.1%
STDEV $14,903,944 $11,851,928 79.5% $29,746,828 $23,205,780 78.0%
RMSE $29,225,056 $11,784,825 40.3% $56,751,606 $24,132,298 42.5%
Relative Deviation
Mean 32.8% ‐1.8% 33.4% ‐5.2%
Q1 19.4% ‐10.2% 18.6% ‐13.8%
Q3 43.4% 4.6% 45.3% 0.9%
IQR 24.0% 14.8% 26.7% 14.7%
STDEV 19.3% 15.4% 20.5% 16.0%
RMSE 37.9% 15.3% 39.0% 16.6%

+‐‐‐‐‐‐‐‐ VaR99.95 ($145m) ‐‐‐‐‐‐‐‐++‐‐‐‐‐‐‐‐ VaR99.9 ($77m) ‐‐‐‐‐‐‐‐+
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VI. Fixing Estimation Bias with JAEQE
40 Cumulative Quarters, Annually Re-estimated, with Annual λ = 25, GPD Severity (ξ = 0.925; θ = 6,000)
Figure 8
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VI. Fixing Estimation Bias with JAEQE
Real-World Simulation Study – JAEQE vs. SLA: 
40 Cumulative Quarters, Annually Re-estimated, with Annual λ = 25, GPD Severity (ξ = 0.925; θ = 6,000)
COMMENTS:
1. These results are compelling: most notable is that RMSE of JAQEQ is well under HALF that of SLA.
2. JAEQE’s accuracy is also compelling: SLA’s bias due to Jensen’s Inequality hovers around +33%, 

which his very material, while JAEQE essentially eliminates this bias altogether.
3. Since the above simulation was run, I have had time to re-run this with other parameter values and 

other severity distributions.
4. While the Means for JAEQE above are not atypical, they CAN be much bigger, e.g. well over 20% 

deviation from true VaR.
5. This is due in part because this is not a full simulation study, but rather, only 10-20 years worth of 

loss data, by design, to replicate the reality facing many financial institutions.  Larger numbers of 
simulations would improve the mean performance of JAEQE and widen the gap even further vs. SLA 
based on not only accuracy, but also precision, RMSE, and robustness.

6. However, the point is less that JAEQE can exhibit notable variance for a specific, small-scale 
simulation study, than that it will ALWAYS notably outperform, on a relative basis, the alternative of 
failing to directly address Jensen’s Inequality-induced VaR bias.
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1. To date, even the best Statistical Goodness-of-Fit (GoF’s) Tests have notoriously low statistical 
power for moderately sized samples, especially for heavy-tailed distributions; in other words, the 
tests, when used to select the True distribution that generated the data, get it wrong very often.  We 
need better GoF’s to address Model Error, which in this case, is the selection of the wrong severity 
distribution when samples are of only small-to-moderate size.

2. Until then, we must take solace in the timeless words of the immortal sage Meat Loaf: 
“Don’t be sad, ’cuz 2 out of 3 ain’t bad…”   For now, we must ‘know’ the right severity distribution…

3. And in the interim, use JAEQE, which as we have seen above in Figure 8, is transformational:

BEFORE Implementing JAEQE…                            AFTER Implementing JAEQE

VII. …But What About Model Error?!  “Don’t be sad…”
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• For both Compound Loss Distributions (frequency+severity) AND Single Loss Distributions (only 
severity, constant sample size), VaR is a convex function of the (tail-index) severity parameter(s) 
under the following conditions: when samples are small-to-moderately sized, severity distributions 
are heavy-tailed, and extreme quantiles (VaR99.5+) must be estimated.

• This convexity means that when VaR is estimated BASED on the parameters, as it must be under 
these conditions, its estimate will be biased upwards (often dramatically) due to Jensen’s Inequality.

• This is true regardless of the parameter estimators used (only Robust estimators provide very partial 
mitigation of this convexity-induced VaR-bias (see Opdyke, 2012)).

• Failure to separately treat the 3 distinct sources of error here – Approximation Error, Estimation 
Error, and Model Error – makes solving this convexity-induced VaR bias difficult, if not impossible.

• But Approximation Error is solved by Opdyke’s (2017) MISLA.

• And Estimation Error, the greatest source of which in this setting is convexity-induced VaR bias, is 
solved herein with the Jensen-Adjusted Extreme Quantile Estimator.  JAEQE directly estimates 
VaR’s convexity using regularization regression, and then shrinks it away.  

• JAEQE is a very general solution that works on all relevant severity distributions.  No other bias-
reduction methods in the extant literature (shifted and otherwise manipulated bootstraps, various 
‘expansions’, etc.) work effectively under the above-defined conditions (which are the dominant 
reality for many firms in many industries).

• The improved accuracy, precision, RMSE, and robustness of JAEQE over SLA, the most widely used 
alternate method, are notable (RMSE is cut by more than half).

• Further mitigating Model Error remains as an important area of continued research under these 
conditions.

VIII. Summary and Conclusions
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1. Develop better GoF’s to more effectively address model error for heavy-tailed distributions under 
finite sample conditions.  This is hard and currently an active topic of applied research.

2. JAEQE is a very general approach that works on all relevant distributions.  For the simpler 
distributions (e.g. LogNormal and GPD) I HAVE used analytical solutions to estimate VaR accounting 
for convexity, but these involve recursive traces of Fisher information matrices that very quickly 
become both analytically and empirically intractable for more complicated distributions (especially 
truncated distributions), even when using symbolic programming platforms like Mathematica, Maple, 
and mathStatica.  Analytical solutions to this problem that are useable across a wide range of 
severity distributions would be a significant advance and strong contribution to the literature.

3. Using covariates to estimate (severity) parameters in GAMLSS regression will kill 2 birds with one 
stone: most importantly, this is the only way to scientifically and defensibly provide “KRI” levers for 
active, direct risk mitigation and management; secondly, this will reduce variance in parameter (and 
thus VaR) estimation, all else equal, to achieve more precise risk measurement and consequently, 
more effective risk management.  This can be done within the JAEQE approach (see APPENDIX 3).

4. Under the CLD model, we must properly account for dependence between severity and frequency 
distributions, which undoubtedly exists in most real-world settings.  Stahl (2017) is a great start on 
this front, and there appears to be no conflict with applying this method and JAEQE simultaneously.

5. We must right-size alpha (the VaR level) in financial settings based on statistics and science as 
opposed to political considerations.  Protecting against a 1-in-1,000 year FINANCIAL loss is absurd 
on its face (naturally occurring phenomena are another matter).  How many companies, let alone 
sovereign nations, have existed continuously for 200 years (VaR99.5)?  1,000 years (VaR99.9)?  Back 
to around the time that Ghengis Khan roamed the Eurasian Steppe?!  And Economic Capital typically 
is much LARGER than Regulatory Capital, starting at least at VaR99.95!  This brings us back to the 
Roman Empire and Biblical times!!!  Does that really make any sense?! (see APPENDIX 1).

IX. Next Steps
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We must note that the statistics of extreme quantile estimation correspond remarkably well with common 
sense here. So we must again ask the questions so often asked over the past dozen+ years:
“Is it really meaningful to be guarding against a 1-in-1000 year loss?  A loss that would only occur, on 
average, slightly less than once since the time of Gengis Khan?  A time before most (all?) of today’s 
sovereign nations, let alone companies, even existed??  Or worse still, for Economic Capital rather than 
Regulatory Capital, a 1-in-2000 year loss corresponding to VaR99.95?!  Back to the Roman Empire and 
biblical times??!!!”**

“Might a 1-in-200 year loss (99.5%tile, per Solvency II), or even a 1-in-100 year loss (99%tile), be a more 
realistic, meaningful, and appropriate threshold?”

“Can all the requests for this more meaningful level of capital over the past dozen years really be 
considered intentional ‘gaming’ of regulations, motivated solely by unadulterated corporate self-
interest?”

It is now 15 years since Basel II was published (2004), and a dozen years since the (US) Joint Final Rule: 
Risk-Based Capital Standards: Advanced Capital Adequacy Framework–Basel II, November 2, 2007 –
Docket Number R-1261, was published, and explicitly identified an ‘alpha’ (‘significance level’) of 
99.9%tile (with a probability densify function diagram, p. 69291).

**Only now does it appear that the above apoplexy is finally being acknowledged as appropriate (see 
Risk.net, 9/1/19: “Measuring 1-in-1000 Year Loss Events ‘Unrealistic’, Researchers Say” A. Campbell).  
The difference between 99%tile and 99.9%tile is NOT 0.9% – it is 10x larger!  An order of magnitude!!  
This non-linearity was somehow missed in the abovementioned regulatory promulgation, causing untold 
misdirected resources and misguided risk measurement and risk management efforts.

Appendix 1 – Right-sizing Alpha in Finance
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Back to ME??!  VaR99.9?  
REALLY?!!

Ok, get the presses rolling 
(thank the hordes we invented 

paper money… I wonder what the 
Europeans are gonna do…  Is 
Basel even part of Europe??)

Puh-leeze!  The man 
said ECONOMIC 

Capital, Not Regulatory 
Capital … We’re talkin’ 

back to ME!  
VaR99.95+!!!  1-in-2000 
Years! (…on average)

Appendix 1 – Right-sizing Alpha in Finance
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Appendix 2 – Confusion Re: Jensen (Larsen, unpublished 2015)

• Unfortunately, there are misstatements and confusion regarding Jensen’s Inequality in this setting 
in an unpublished paper (see Larsen, 2015):

• Fn[3] “This mean bias is a central object of study in Opdyke and Cavallo (2012), where they claim that MLE results in capital 
overestimation. The meaning of this statistic for modeling decisions, however, is not completely clear. … Opdyke and Cavallo
(2012) write that the mean OpVaR bias is a consequence of Jensen's inequality, but no further details are given. This would 
follow if the CDF              for a heavy-tailed distribution were a convex function. There is no mention whether convexity is with 
respect to the loss variable x or with respect to the parameters θ. For the Jensen's inequality argument of Opdyke and Cavallo
(2012) to be valid, convexity must be shown with respect to the parameters θ, not the loss amount x.[fn3]  Specifically, we 
would have to show that, for all loss amounts x in a neighborhood of the true OpVaR, the Hessian of               with respect to θ
is negative definite (and hence the Hessian of the quantile function of              would be positive definite). This property is 
trivial to verify for the Pareto distribution considered here as depending only on one variable, but is less than straightforward 
for more complicated distributions. That there is still something to prove before invoking Jensen's inequality is mentioned in 
a subsequent paper (Opdyke, 2014).”

• In fact, on page 68, Opdyke and Cavallo (2012) do explicitly state that the convexity of the quantile function is with respect to 
the estimated severity parameters – no mention is made regarding ‘x,’ the data values themselves:  “This is illustrated in 
Figure 20 (from Kennedy (1992, p. 37)).  This applies to quantile estimation of all commonly used severity distributions: if β is 
a random variable (here, our severity distribution parameter estimates) and       is a (strictly) convex function (here, the inverse 
of our severity distribution CDF), then                              , and our quantile estimate (capital estimate) is biased upward.”  In the 
later paper Larsen (2015) references, Opdyke (2014) makes essentially the same statement on page 12, again with no mention 
of VaR convexity with respect to ‘x,’ the loss data itself: “…under these conditions, VaR appears to always be a convex 
function, like       , of the parameters of the severity distribution, which here is the vector β (we can visualize β as a single 
parameter without loss of generality as the multivariate case for Jensen’s inequality is well established (see Schaefer 1976)). 
Consequently, the capital estimation,              will be biased upward.” 

• Larsen’s (2015) comments are not only incorrect as a factual matter, but also misguided.  In 
footnote 3 he examines potential convexity of VaR with respect to “x,” the variable representing the 
size of the loss events.  But these are not being ESTIMATED – they are the data points themselves!  
Jensen’s inequality is fundamentally about ESTIMATION, not data per se, so the point of the 
footnote is incomprehensible.  We encourage (re)reading Opdyke and Cavallo (2012a) and Opdyke 
(2014) above to avoid any confusion regarding the relevance Jensen’s inequality in this setting.  

 |F x 

 |F x 
 |F x 
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a. The 2nd confusion in Larsen (2015), this time regarding bias, is addressed below.

b. It is critical to note here that even though extreme quantile (capital) estimates will be, on average, 
high 50% of the time and low 50% of the time even under Jensen’s inequality (see Figure 3), the 
AMOUNTS that they are high vs. low are very different: when high, they are often MUCH HIGHER 
than the true quantile (capital) because the distribution is positively skewed, but when low, they 
often are NOT MUCH LOWER than true capital.  Would you/your bank bet on a nickel gain vs. a 
dollar loss with equal probability?!  If you were to use the median rather than the mean here vis-à-
vis Larsen’s so-called ‘median-bias,’ that is what you would be doing.

c. When comparing quantile (capital) estimates to true quantile (capital) values, probability alone is 
not sufficient here – the absolute DISTANCE from true values matters too, if not predominantly.  
But quantiles, like the median, ignore ‘distance from truth’ by design, while the mean (expected 
value) does not.  This is why the mean is more appropriate in this setting of highly skewed VaR
distributions.

d. This also is why ‘bias’ has been defined for well over half a century with respect to the mean and 
not other measures of central tendency (like the median).  Larsen’s proposed “median bias” metric 
does not work in this setting based on b.: it is essentially an irrelevant and obfuscatory artifice to 
the extent that it distracts from the central and primary role that Jensen’s Inequality plays in VaR
estimation in this setting.

Appendix 2 – Confusion Re: Jensen (Larsen, unpublished 2015)
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Appendix 3 – Parameter Est. using KRIs/Covariates

Key Risk Indicator (KRI) Data 

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss Severity

KRI Data can (and should!) be used directly in capital modeling.  Establishing material, 
statistically causal relationships between KRIs and capital is the only way that 
operational risk management and mitigation efforts can have direct and desired 
effects on capital requirements.  

For example, this gives the operational risk capital analyst the means by which to make 
statements to, say, the head of the trading shop such as, “If you can decrease your 
system downtime by a standard deviation, or X%, I can take $40m in capital off the 
table for you, all else equal.”

This is accomplished using multivariate econometric (regression) techniques to 
estimate frequency and severity parameters based directly on the KRI Data.  This is 
directly analogous to knowing the drivers of, say, a PD model when estimating capital 
for credit risk.
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Appendix 3 – Parameter Est. using KRIs/Covariates

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss Severity

WHY Multivariate Regression?

Multivariate regression is needed to control for covariance betwixt the KRI covariates.  
Multivariate regression is the only way to estimate the effect of an independent 
variable (a particular KRI) on a dependent variable (capital) holding all else constant, 
that is, without capturing the effects of other KRIs that to some degree move in tandem 
with the one in question.  

Without a regression to “hold all else constant” and eliminate the confounding effect 
of, say trading volume, when estimating the effect of system downtime on operational 
risk capital, the estimate of the effect of system downtime will be biased, and inference 
based on it will be misinformed, and the mitigation efforts based on it will be misguided 
and likely ineffective. 
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss Severity

WHY Multivariate Regression?

This, of course, presumes that relationships (covariance) exist betwixt relevant 
KRIs, as it does in the real world (if it did not, there would be no need for 
multivariate regression here).

Multivariate regression also increases the precision with which we are able to 
estimate the frequency and severity parameters.  We are using additional data 
in the estimation, which will increase statistical power (even though we are 
not increasing sample size in the form of additional loss events).

Appendix 3 – Parameter Est. using KRIs/Covariates
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss Severity

WHY Multivariate Regression?  ONLY this approach provides
1. Statistically Causal Relationships between KRIs and Capital, AND KRIs and LOSS FREQUENCY AND 

SEVERITY (… NOT JUST CAPITAL!!!)

2. Magnitude of Effect of Each KRI on i. Capital AND ii. LOSS FREQUENCY AND SEVERITY Independent 
of other KRIs

3. RELATIVE IMPORTANCE of Each KRI’s Effect on i. Capital AND ii. LOSS FREQUENCY AND SEVERITY 
Independent of other KRIs (key for $allocation for mitigation efforts)

4. Direction of Effect of Each KRI on i. Capital AND ii. LOSS FREQUENCY AND SEVERITY Independent 
of other KRIs

5. Whether Effect of Each KRI is Statistically Significant vis‐à‐vis i. Capital AND ii. LOSS FREQUENCY 
AND SEVERITY Independent of other KRIs

6. Whether Effect of Each KRI is Material vis‐à‐vis i. Capital AND ii. LOSS FREQUENCY AND SEVERITY 
Independent of other KRIs

7. Increase in the Precision of the Estimate of Capital (AND Frequency and Severity), all else equal

Appendix 3 – Parameter Est. using KRIs/Covariates



© J.D. Opdyke   52 of 65

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss Severity

REQUIREMENTS

KRI Data for modeling purposes must be disaggregated at the level of the 
loss event.  In other words, it must be “granular,” with data points for each KRI 
collected associated with each individual loss (or timing that concurs with the 
loss).  

This is distinct from what many (non-modelers) refer to as “KRIs,” which are 
typically highly aggregated, descriptive statistics that are tracked over time and 
used to guide operational risk management and mitigation efforts directly, rather 
than via an estimation process that links them to capital (or some other outcome 
measure).  Aggregated KRIs typically are used non-inferentially, to identify 
“Red Lights,” “Amber Lights,” and “Green Lights.”

Appendix 3 – Parameter Est. using KRIs/Covariates



© J.D. Opdyke   53 of 65

Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss Severity

METHODS

Frequency: Poisson and Negative Binomial Regression
‐ Time tested, decades old methods applied in many fields.
‐ However, doesn’t move the capital needle nearly as much as severity.

Severity: Scale regression
‐More recent, main difference is just the link function.
‐ DOES move the capital needle, sometimes dramatically.
‐ This is a Scale Regression, and so the Severity requires a scale parameter.

GAMLSS (Generalized Additive Models of Location, Scale, and Shape) Regression:
‐Most general, covariates apply to location, scale, and shape parameters.
‐ In literature and applied use at least as long as Operational Risk has been a
discipline (see Rigby and Stasinopoulos, 2001).

Appendix 3 – Parameter Est. using KRIs/Covariates
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss Severity

METHODS

Frequency: Poisson and Negative Binomial Regression
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss Severity

METHODS

Severity: Scale Regression

 ~ ,  such that  is affected by the regressors as Y   
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Econometric Methods for Establishing Direct, Material, Statistically Causal 
Relationships between KRIs and i. Capital, ii. Loss Frequency, and iii. Loss Severity

METHODS

GAMLSS Regression

 if ~ ; , , ;  1, , ;  and  are  covariates; 1, ,  parameters;
ki i i i i ikj kY f y i N X j k p     

   ,k k k k k kg h X   

   
1 11 1 1 1 1 11 12 12 1 1, i j i jg h X X X          
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3 33 3 3 3 3 31 32 32 3 3, i j i jg h X X X          
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 for the parametric version, and a penalized log likelihood for 

the semi‐parametric version.

GAMLSS can include both linear & non‐linear effects.

and , ,  and  are location, scale, and shape parameters, i i i k   
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Appendix 4 – Distributional Characteristics

• PDF and CDF of LogNormal:

• Mean of LogNormal:

• Inverse Fisher information of LogNormal:
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• PDF and CDF of Truncated LogNormal:

• Mean of Truncated LogNormal:

• Inverse Fisher information of Truncated LogNormal:

From Roehr (2002).  Note that the first cell of this matrix as presented in Roehr, 2002, contains a typo: this is corrected in 
the presentation above.
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• PDF and CDF of Generalized Pareto Distribution (GPD):

• Mean of GPD:

• Inverse Fisher information of GPD:

from Smith (1987)

• Tail Index = 
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• PDF and CDF of Truncated GPD:

• Mean of Truncated GPD:

• Inverse Fisher information of Truncated GPD:

from Roehr (2002)

• Tail Index = 
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• PDF and CDF of LogGamma*:

• Mean of LogGamma:

• Inverse Fisher information of LogGamma:

from Opdyke and Cavallo (2012a)

• Tail Index =
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 where  is the complete gamma functiona

*NOTE that a location parameter can be added to change the lower end of the domain to zero, but this is unnecessary in this setting.
Also note that this is the “rate” or “inverse scale” parameterization of the LogGamma, which can also be defined with a “scale” 
parameterization wherein b = 1/b.
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• PDF and CDF of Truncated LogGamma*:

• Mean of Truncated LogGamma:

from Opdyke (2017)

• Tail Index = 

• Inverse Fisher information of Truncated LogGamma:
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• Inverse Fisher info. of Truncated LogGamma*:

from Opdyke and Cavallo (2012b)
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• Inverse Fisher information of Truncated LogGamma:
To avoid computationally expensive numeric integration, 
Opdyke (2014) derives the analytic approximation below:  

1
1     where  
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• Inverse Fisher information of Truncated LogGamma:
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