Errata to published manuscript of Opdyke, J.D., "Estimating Operational Risk Capital with Greater Accuracy, Precision, and Robustness," *The Journal of Operational Risk*, Issue 9, Number 4, December, 2014.

Erratum	Page	
#	-	
1	14	
	Reads	$\hat{\beta}$ = 1 $\hat{\beta}$ = 1 1 $\hat{\beta}$ = 1 1 $\hat{\beta}$ = 1 1 $\hat{\beta}$
	D '	for each of the 1000 estimated P we calculated
	Fix	for each of the 1000 estimated $\hat{\beta}^s$ we calculated
2	16	
	Reads	from the author upon request). ²⁵ All demonstrate that for sufficiently extreme percentiles (eg, $p > 0.999$), VaR is a convex function of either one or both of the severity parameters (and a linear function of the others).
	Fix	from the author upon request). All demonstrate that for sufficiently extreme percentiles (eg, $p > 0.999$), VaR is a convex function of either one or both of the severity parameters (and a linear function of the others). ²⁵
3	16, Fn 25	
	Reads	$\partial^2 VaR / \partial \sigma^2 = VaR \times \left[\Phi^{-1} p \right]^2$
	Fix	$\partial^2 VaR / \partial \sigma^2 = VaR \times \left[\Phi^{-1}(p) \right]^2$
4	20	
	Reads	And this is consistent with graphing VaR as a function of the parameter values, then attributing
	Fix	And this is consistent with graphing VaR as a marginal function of each parameter, then attributing
5	21	
	Reads	is shown in 216 simulation studies summarized
	Fix	is shown in the 216 simulations summarized
6	21, Fn	
	30	
	Reads	so it had become the widely used default. Also note that (2.2) require only
	Fix	so it has become the widely used default. Also note that (2.2) requires only
7	23, Fn	
	32	
	Reads	and the CvM tests.
	Fix	and the Cramér von Mises (CvM) tests.
8	29	
	Reads	extreme value theory – peaks over threshold (EVT-POT; see Chavez-Demoulin et al 2014) estimator, ³⁸ robust estimators such as the quantile distance estimator (QD; see Ergashev 2008), optimal bias-robust estimator (OBRE; see Opdyke and Cavallo 2012a) the CvM estimator (not to be confused with
	Fiv	extreme value theory _ peaks over threshold estimator (EVT DOT: see Chaver
	ГIХ	Demoulin et al 2014), ³⁸ robust estimators such as the quantile distance estimator (QD; see Ergashev 2008), optimal bias-robust estimator (OBRE; see Opdyke and Cavallo 2012a) the Cramér von Mises estimator (CvM: not to be confused with
9	33, Fig.	
	+ Reads	Nonlinear interpolation via (3.3) with roots
	Fix	Nonlinear interpolation via (3.4) with roots
1		

10	34	
	Reads	(ii) using straightforward simulation study
	Fix	(ii) using a straightforward simulation study
11	35, Fig.	
	5 x, y	
	axes	
	Reads	Parameter 1 Parameter 2
	Fix	Parameter 1 / σ_1 Parameter 2 / σ_2
12	36, Fn	
	Reads	weight $-[1 - n] \times 2[1 - n_{c}]$
	Fix	weight $= \begin{bmatrix} 1 & p_{sev} \end{bmatrix} \times 2\begin{bmatrix} 1 & p_{freq} \end{bmatrix}$ weight $= \begin{bmatrix} 1 & p_{sev} \end{bmatrix} \times 2 \times \begin{bmatrix} 1 & p_{c} \end{bmatrix}$
13	38	weight $- \begin{bmatrix} 1 & p_{sev} \end{bmatrix} \times 2 \times \begin{bmatrix} 1 & p_{jreq} \end{bmatrix}$
15	Reads	
	iteaus	$q \# stdev = \sqrt{\frac{\chi_k^2 p \cdot (1 + z_1 z_2 \rho_{1,2})}{2}}$
	Fix	$q \# stdev = \sqrt{\frac{\chi_k^2(p) \cdot (1 + z_1 z_2 \rho_{1,2})}{2}}$
		V 2
14	38	
	Reads	so far "out-of-sample", or VaR is the
15	Fix	so far "out-of-sample", VaR is the
15	39	
	Reads	joint parameter distribution (obtained from (3.2)) and a pair
16	F1X	joint parameter distribution (obtained from (3.3)) and a pair
16	49 D 1	
	Reads	In other words, they can only be
17	F1X	In other words, any differences can only be
1/	50 Deede	Tables E4a h E8a h) at www. DataMinait.com
	Fix	Tables F4a, b F8a h at www.DataMineit.com
19	ГIX 50	Tables F4a,0–F8a,0 at www.DataMillett.com).
10	Reads	and part (a) of Table 7 on page 55
	Fix	and part (b) of Table 7 on page 55,
19	51	
17	Reads	still much closer to true capital (see Tables F5a b
	Fix	still much closer to true capital than MLE (see Tables F5a b
20	59	
20	Reads	(see part (b) of Table 7 on page 52).
	Fix	(see part (b) of Table 7 on page 55).
21	61. Fn	
	66	
	Reads	is only about $p = 0.016$.
	Fix	is only about $Pr = 0.016$.
22	64	
	Reads	to rightly encourage research to focus on operational risk capital estimation on the capital distribution, where it belongs.
	Fix	to rightly encourage operational risk capital estimation research to focus on the capital distribution, where it belongs.
23	66	

	Reads	APPENDIX A. PROBABILITY DISTRIBUTION FUNCTION,
	Fix	APPENDIX A. PROBABILITY DENSITY FUNCTION,
24	67	
	Read	$j = \left(-u^2/2\right) / \sqrt{2\pi}$
	Fix	$j = \exp\left(-u^2/2\right) / \sqrt{2\pi}$
25	69, Fn 70	
	Reads	$\delta(z) = \partial \ln \Gamma z / \partial z$ and $\tau(z) = \partial^2 \ln \Gamma z / \partial^2 z$
	Fix	$\delta(z) = \partial \ln \Gamma(z) / \partial z$ and $\tau(z) = \partial^2 \ln \Gamma(z) / \partial^2 z$
26	70	
		$A = trigamma(a) - \frac{\left[\int_{1^{+}}^{H} \ln(b) + \ln(\ln(x)) - digamma(a) f(x) dx\right]^{2}}{\left[1 - F(H;a,b)\right]^{2}}$
		$A = trigamma(a) - \frac{\left[\int_{1^{+}}^{H} \left[\ln(b) + \ln(\ln(x)) - digamma(a)\right]f(x)dx\right]^{2}}{\left[1 - F(H;a,b)\right]^{2}}$
27	70	
	Reads	$\boxed{-\frac{\left[1-F(H;a,b)\right]\cdot\int_{1^{+}}^{H}\left[\ln(b)+\ln(\ln(x))-digamma(a)\right]^{2}-trigamma(a)f(x)dx}{\left[1-F(H;a,b)\right]^{2}}}$
	D '	
	F1X	$-\frac{\left[1-F(H;a,b)\right]\cdot\int_{1^{+}}^{H}\left(\left[\ln(b)+\ln(\ln(x))-digamma(a)\right]^{2}-trigamma(a)\right)f(x)dx}{2}$
		$\left[1-F(H;a,b)\right]^2$
28	70	
	Reads	$-\frac{\left[1-F(H;a,b)\right]\cdot\int_{1^{+}}^{H}\left[\ln\left(b\right)+\ln\left(\ln\left(x\right)\right)-digamma\left(a\right)\right]\cdot\left[\frac{a}{b}-\ln\left(x\right)\right]f\left(x\right)dx}{\left[1-F(H;a,b)\right]^{2}}$
		$\left\lfloor 1 - F(H;a,b) \right\rfloor$
	Fix	$-\frac{\left[1-F(H;a,b)\right]\cdot\int_{1^{+}}^{H}\left(\left[\ln(b)+\ln(\ln(x))-digamma(a)\right]\cdot\left[\frac{a}{b}-\ln(x)\right]\right)f(x)dx}{\left[1-F(H;a,b)\right]^{2}}$
20	70	
29	Reads	H H H H
	Reads	$\int_{-\frac{1^{+}}{b}} \ln(b) + \ln(\ln(x)) - digamma(a) f(x) dx \cdot \int_{1^{+}} \left(\frac{a}{b} - \ln(x)\right) f(x) dx$
		$\left[1-F(H;a,b)\right]^2$
	Fix	$\int_{-1^{+}}^{H} \left[\ln(b) + \ln(\ln(x)) - digamma(a) \right] f(x) dx \cdot \int_{1^{+}}^{H} \left(\frac{a}{b} - \ln(x) \right) f(x) dx$
		$-\frac{1-F(H;a,b)}{\left[1-F(H;a,b)\right]^2}$

30	70	
	Reads	$D = \frac{a}{b^{1+1}} = \left[\int_{1^{+1}}^{H} \left(\frac{a}{b} - \ln(y) \right) f(x) dx \right]^{2} + \left[1 - F(H;a,b) \right] \cdot \int_{1^{+1}}^{H} \frac{a(a-1)}{b^{2}} - \frac{2a\ln(y)}{b} + \left[\ln(y) \right]^{2} f(x) dx$
		$\begin{bmatrix} D - b^2 \\ 1 - F(H;a,b) \end{bmatrix}^2$
	Fix	$\int_{\Gamma^{+}} \left[\int_{\Gamma^{+}}^{H} \left(\frac{a}{b} - \ln(y) \right) f(x) dx \right]^{2} + \left[1 - F(H;a,b) \right] \cdot \int_{\Gamma^{+}}^{H} \left[\frac{a(a-1)}{b^{2}} - \frac{2a\ln(y)}{b} + \left[\ln(y) \right]^{2} \right] f(x) dx$
		$D = \frac{1}{b^2} - \frac{1}{\left[1 - F(H;a,b)\right]^2}$